用户名: 密码: 验证码:
矿井全空间小线圈瞬变电磁探测技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瞬变电磁法能够穿透高阻屏蔽层,对高阻屏蔽层下覆岩层的导水构造或含水体有比较好的分辨能力,成果比较直观,近年来在矿井中应用较多,但是探测深度与解释的多解性约束了其在矿井安全生产中的发展。本文在国家科技重大专项“裂隙分布测定技术与装备”项目的资助下开展矿井瞬变电磁全空间理论以及在井下应用技术的研究,对提高矿井瞬变电磁探测效果具有重要的理论意义和实际应用价值。
     本文从瞬变电磁场基本理论出发,整理前人研究的公式,发现了全空间和半空间瞬变电磁场存在一定的关系,提出了矿井瞬变电磁的倍数现象;提出了比较有特色的采煤工作面探测“交集法”,可以有效的避免假异常,更好的探测采煤工作面含水体;研究了小线圈瞬变电磁井下探测深度的问题,并提出全空间瞬变电磁深度估算公式;通过大量的试验数据证明本文理论和方法的正确性和可行性。
     本文的研究取得了以下主要研究成果:
     (1)对全空间和半空间瞬变电磁场进行研究,发现并提出矿井瞬变电磁的倍数现象。整理并延伸推导全空间理论瞬变电磁相关的公式,比较全空间和半空间瞬变电磁场相关参数,最后得出晚期全空间瞬变电磁磁场强度是半空间瞬变电磁磁场强度的2.5倍,即为矿井瞬变电磁的倍数现象,并由此得出应用于矿井瞬变电磁探测视电阻率的计算公式,提出了矿井瞬变电磁视电阻率计算系数的原则。矿井瞬变电磁的倍数现象表明在井下实际探测方面应用全空间瞬变电磁场理论比半空间理论提高了信噪比,加大了探测深度;另外,由于半空间瞬变电磁场在理论上比较成熟,在实践上有较多的资料可以参考,对于矿井瞬变电磁场在晚期的计算就可以利用倍数现象大体得出一个相应的结论,在实际探测工程应用上具有很重要的参考价值。
     (2)基于矿井瞬变电磁的倍数现象,提出矿井瞬变电磁深度估算公式为dm=Kdm(IA/σηv)1/5。在前人研究的基础上,延续研究了瞬变电磁半空间和全空间深度估算公式,推导出矿井瞬变电磁深度估算公式,并提出瞬变电磁全空间探测深度比半空间要大的观点;基于此探讨了矿井瞬变电磁在探测深度方面的可行性,得出了矿井瞬变电磁可以满足矿井100m范围内的探测水体的要求。
     (3)对矿井瞬变电磁方法技术进行研究,提出采煤工作面探测低阻异常“交集法”。研究结果表明:井下采煤工作面低阻异常“交集法”可以有效的避免假异常,更好的探测采煤工作面含水体;通过对不同地质模型的模拟得出,矿井瞬变电磁对低阻含水体反应比较明显,对高阻含水体不太明显,低电阻率的反应对应感应电压表现为高电位,高电阻率的反应对应感应电压表现为低电位;针对煤矿井下特殊的井下环境和受限巷道空间,设计了瞬变电磁井下工作方法:固定平移法、转换角度法和综合法;通过对井下影响因素的研究,得出了井下巷道影响不能忽略;通过大量的实践,得出了井下探测工艺和安全措施,初步形成较为完整的瞬变电磁井下数据采集工作方法。
     (4)研究矿井瞬变电磁观测方法技术,并指出井下瞬变电磁参数选择的原则。研究结果表明:适宜矿井的瞬变电磁线框大小易选择1.5m,线框形状选择方形,选取的探测频率一般为25Hz,参数选择的原则是测量的异常曲线相对光滑而且与理论曲线差别不大。
     (5)基于矿井瞬变电磁倍数现象及探测深度理论,研究矿井瞬变电磁解释软件及三维可视化。研究结果表明:井下瞬变电磁解释方法易采用层状模拟法;采用倍数现象和探测深度理论编写的井下瞬变电磁数据处理系统较好的适应了井下实际探测的需要;Surfer成图处理方法在瞬变电磁线圈打角度时用带线性插值的“三角剖分”法,线圈不打角度时用“克里格”方法,避免了一些假异常的产生;Voxler软件可以用于矿井瞬变电磁三维可视化研究,且成果图较好,立体显示探测成果,使探测成果更加直观和易于分析。
     (6)通过井下瞬变电磁大量的实践试验来验证本文提出观点的正确性和可行性。研究结果表明:井下探测实例证明采用“交集法”探测结果比较准确,大幅度的提高了探测的精度和减少了钻探验证的工作量;瞬变电磁井下异常解释的原则、井下瞬变电磁超前跟踪探测方法以及煤层开采导水裂缝带的探测方法经实践验证是可行的;应用本文提出的理论和方法,针对某一个矿进行了井下瞬变电磁探测,成功率达到了86.2%,较好的说明了理论与实践结合的正确性。
Transient electromagnetic method (TEM) is able to penetrate the high resistance shielding layer, it has a good distinguish ability to water conducted structure or containing water of overlying strata under the high resistance shielding, the results is very intuitive. This method is more applications in recent years, but the detecting depth and the multi-solution explanations constraint its development in the safety production of coal mine. This thesis carry out TEM full-space theory and the application technology research under the support of major national science and technology program "fissure distribution measurement technology and equipment project". This study has important theoretical significance and practical application value on improving sounding effect of mine TEM.
     This thesis started from basic theory of TEM, arrangement the formula of predecessors, founded that the full-space and half-space of TEM has certain relations, presented the multiple phenomenon of mine TEM; put forwarded the characteristic coal mining work-face detection "intersection method". This can effectively avoid false anomaly, and better detects water of return exploitation coal mining work-face; This thesis studied the detection depth problem of small coil TEM in the coal mine, and put forward the depth estimation formula of full-space TEM; Proved the correctness and feasibility of this theory and method though a large number of experimental data.
     This research obtained the following results:
     (1) This thesis researched the full-space TEM field and half-space TEM field, put forwarded TEM multiple phenomenon, arrangement and extended the related formula of full-space TEM theory, compared the related parameters of full-space TEM field and half-space TEM field. In the end, it is concluded that the magnetic field intensity of full-space TEM is2.5times of half-space TEM field in the late, that is multiple phenomenon of mine TEM, and furthermore, obtained the calculation formula of apparent resistivity that applied in the mine TEM detection, put forwarded the calculation coefficient principle of mine TEM apparent resistivity. The multiple phenomenon of mine TEM shows that the application of full-space TEM theory in the actual detection improved signal noise ratio and increased the detecting depth. In addition, due to the half-space TEM field is relatively mature in theory and has more reference material in practice, calculation of mine TEM field in the late can use multiples phenomenon to get a corresponding conclusion. This has a very important reference value in actual exploration project applications.
     (2) Based on the multiples phenomenon of mine TEM, this thesis put forwarded that the mine TEM depth estimation formula is dm=Kdm(IA/σηv)1/5On the basis of previous studies, this thesis continues studied the depth estimation formula of half-space TEM and full-space TEM, deduced the depth estimation formula of mine TEM, and put forwarded the view that the full-space probing depth is greater than half-space; Based on this view, this thesis discussed the feasibility of mine TEM in depth. It is concluded that the mine TEM can meets the requirements of the water detection within100meters.
     (3) This thesis research the mine TEM technology, put forwarded low resistivity abnormally "intersection method" of coal mining working detecting. Research results show that this method can effectively avoid false abnormal, and better detect containing water of working face; Drawn through the simulation of different geological models, mine TEM reaction of low resistivity aquifer obvious, less obvious body of high impedance moisture content, low resistivity response corresponding induced voltage performance for high-potential, high resistivity response corresponding to the induced voltage is expressed as the low potential;In the light of coal mine special underground environment and limited tunnel space, this research designed the TEM underground working method:fixed translation method、angle conversion method and comprehensive method; Through studying on influencing factors of underground, this thesis concluded that underground tunnel effect can not be ignored; through a lot of practice, concluded the underground technology and safety measures. Such preliminary formed relatively complete TEM underground data acquisition method.
     (4) This thesis researched the observational parameters of the mine TEM and pointed out the principle of the parameters selection of the underground TEM. Research results indicated that the appropriate size of the TEM line frame for the mine should choose1.5m, the shape of wireframe should choose square, and the selection of the exploration frequency general is25Hz. The principle of the parameter selection is the relative smooth abnormal curves when measures and not have big difference with the theoretical curves.
     (5) The thesis researched the mine TEM interpretation software and three-dimensional (3D) visualization based on the mine TEM multiple phenomenon and probing depth theory. Research results shows that the mine TEM interpretation method is easier to use the interpretation of layer simulation method; the mine TEM data processing system that using multiple phenomenon and probing depth theory to write is better adapted to the actual detection needs. Surfer image processing method use linear interpolation of "triangulation" method in TEM coil hit angle, use "Kriging" method in without the play point, this would avoid some false anomaly generation; the Voxler software can be used to mine TEM3D visualization research, and the results is good, detection results is stereoscopic display, this makes the detection results is more intuitive and easy analysis.
     (6) This thesis validated the correctness and feasibility of the proposed views through a lot of practice test of TEM. Research results show that detection of underground examples proved the correctness of the detection results using "intersection method", this method greatly improves detection accuracy and reduce drilling workload. The TEM anomaly interpretation principle, TEM tracking detection method and coal mine water conducted zone detection method is feasible by practice. Application of the theory and method presented in this thesis, to detected TEM for a mine, success rate is86.2%, and this better explain the correctness of combination of theory and practice.
引文
[1]毛节华,许惠龙.中国煤炭资源分布现状和远景预测[J].煤田地质与勘探,1999,27(3):1-6
    [2]煤炭产业仍有广阔发展空间和新的发展机遇.中国煤炭网,2011-02-15, http: //www.ccoalnews.com/101773/102232/150777.html
    [3]“十一五”期间全国煤矿水害事故分析报告.中国煤炭新闻网,2011-10-12, http: //www.cwestc.com/newshtml/2011-10-12/218078.shtml
    [4]关于进一步加强煤矿防治水工作的若干规定.山西省人民政府办公厅,2011(70)
    [5]董书宁,靳德武,冯宏.煤矿防治水实用技术及装备[J].煤炭科学技术,2008,36(3):8-11
    [6]张运霞,牛向东,韩自豪,周建雄.瞬变电磁法在矿井水害治理工作中的应用[J].工程地球物理学报,2004,1(5):418~423
    [7]牛之琏.时间域电磁法原理[M].长沙:中南工业大学出版社,1992:5-30
    [8]于景邮.矿井瞬变电磁法勘探[M].徐州:中国矿业大学出版社,2007:60~68
    [9]白登海,何兆海,卢健,等.地下全空间瞬变电磁法在煤矿水害预防中的应用[C].北京:第六届中国国际地球电磁学学术研讨会,2003
    [10]郭纯,刘白宙,白登海.地下全空间瞬变电磁技术在煤矿巷道掘进头的连续跟踪超前探测[J].地震地质,2006,28(3):456-462
    [11]李貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002:5-40
    [12]闫述,陈明生.瞬变电磁场资料的联合时-频分析解释[J].地球物理学报,2005,48(1):203~208
    [13]岳建华,甘会春.矿井瞬变电磁法及其应用[C].中国地球物理学会年会论文,南京:南京师范大学出版社,2003
    [14]代刚,漆泰岳,谭代明.全空间瞬变电磁法在地下工程探水中的应用[J].岩土工程,2006,26(2):59~60
    [15]谭代明,漆泰岳.地下全空间瞬变电磁响应的研究[J].工程地球物理学报,2008,8(8):533~537
    [16]刘志新.矿井瞬变电磁场分布规律与应用研究[D].徐州:中国矿业大学,2008
    [17]蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998:3-20
    [18]考夫曼AA,凯勒G V.频率域和时间域电磁测深[M].王建谋译.北京:地质出版社,1987:216~222
    [19]朴化荣.电磁测深法原理[M].北京:地质出版社,1990:3-32
    [20]闫述,石显新,陈明生.瞬变电磁法的探测深度问题[J].地球物理学报,2009, 52(6):1583~1591
    [21]陈明生,田小波.电偶源瞬变电磁测深研究(四)——瞬变电磁测深视电阻率[J].煤田地质与勘探,1999,27(4):52~55
    [22]Roy A, Apparao A. Depth of investigation in direct current methods[J]. Geophysics, 1971,36(5):943-959
    [23]Bhattacharya B B, Sen M K. Depth of investigation of collinear electrode arrays over homogeneous anisotropic half-space in direct current methods[J]. Geophysics,1981, 46(5):768-780
    [24]Barker R D. Depth of investigation of collinear symmetrical four-electrode arrays[J]. Geophysics,1989,54(8):1031-1037
    [25]Douglas WO, Li Y. Estimating depth of investigation in dc resistivity and IP surveys[J]. Geophysics,1999,64(2):403-416
    [26]Johannes B S, Bahr K. Optimization of signal-to-noise radio in dc. soundings[J]. Geophysics,2000,65(5):1495-1500
    [27]Spies B R. Depth of investigation in electromagnetic sounding methods[J]. Geophysics,1989,54(7):872-888
    [28]倪良高,罗子付.矿井瞬变电磁法在煤矿防治水工作中的应用[J].能源技术与管理,2007(1):54~55
    [29]石显新.瞬变电磁法勘探中的低阻层屏蔽问题研究[D].北京:煤炭科学研究总院,2005
    [30]邹振巍.LTEM-1型瞬变电磁仪控制软件的研究及应用[D].昆明:昆明理工大学,2010
    [31]宋劲.探地雷达煤矿井下探测技术的研究[D].北京:煤炭科学研究总院,2005
    [32]刘志新,岳建华,刘仰光.扇形探测技术在超前探测中的应用研究[J].中国矿业大学学报,2007,36(6):822~825
    [33]姜志海.巷道掘进工作面瞬变电磁超前探测机理与技术研究[D].徐州:中国矿业大学,2008
    [34]梁庆华.矿井探地雷达井下快速超前探测与数据分析[J].物探化探计算技术,2011,33(5):531~535
    [35]王东伟,刘志新,武俊文,许云磊.矿井瞬变电磁法在巷道迎头超前探测中的应用[J].工程地球物理学报,2011,8(4):403~407
    [36]宋先旺,姜胜华.瞬变电磁法全期视电阻率、视深度求解方法与应用[J].矿产与地质,1997,58(11):129~135
    [37]李海光.黄土高原吕二沟流域环境演变的生态水文响应[D].北京:北京林业大学,2011
    [38]刘兆平,杨进,武炜.地球物理数据网格化方法的选取[J].物探与化探,2010,34(1):94~97
    [39]刘慧鹏,李文尧.Voxler在EH4数据资料成图中的应用[J].云南地质,2010,29(1):98~101
    [40]李明星,程久龙,王玉和等.矿井瞬变电磁超前探测地质异常三维可视化[J].煤矿安全,-2011,42(11):61~64
    [41]孙宝国.综合电法在陷落柱源勘查中的应用实例[J].山西焦煤科技,2008(4):15-17
    [42]国家安全生产监督管理总局.煤矿防治水规定[M],2009
    [43]杨志军.酸刺沟煤矿地表沉陷综合评价及其数值模拟分析[D].西安:西北大学,2011
    [44]国家安全生产监督管理总局.煤矿防治水规定释义[M],2009
    [45]梁庆华.厚冲积层地表沉陷数值模拟及应用研究[D].青岛:山东科技大学,2006
    [46]王双美.导水裂隙带高度研究方法概述[J].江苏地质,2006,30(1):64~66
    [47]杨海燕.矿用多匝小回线源瞬变电磁场数值模拟与分布规律研究[D].徐州:中国矿业大学,2009
    [48]谭代明.隧道超前探水全空间瞬变电磁理论及其应用研究[D]. 成都:西南交通大学,2009
    [49]王齐仁.隧道地质灾害超前探测方法研究[D].长沙:中南大学,2007
    [50]姜志海,岳建华,刘树才.多匝重叠小回线装置的矿井瞬变电磁观测系统[J].煤炭学报,2007,32(11):1152~1156
    [51]杨海燕,邓居智,张华等.矿井瞬变电磁法全空间视电阻率解释方法研究[J].地球物理学报,2010,53(3):651~656
    [52]刘志新,刘树才,刘仰光.矿井富水体的瞬变电磁场物理模型实验研究[J].岩石力学与工程学报,2009,28(2):259~265
    [53]岳建华,杨海燕.巷道边界条件下矿井瞬变电磁响应研究[J].中国矿业大学学报,2008,37(2):152~156
    [54]姜志海,岳建华,刘志新.矿井瞬变电磁法在老窑水超前探测中的应用[J].工程地球物理学报,2007,4(4):291~294
    [55]周仕新,岳建华.巷道围岩中瞬变电磁场三维数值模拟[J].物探与化探,2005,29(6): 533~540
    [56]解海军.煤矿积水采空区瞬变电磁法探测技术研究[D].北京:中国地质大学,2009
    [57]Kaufman A A, Eaton P A. The Theory of Inductive Prospecting[J]. New York: Elsevier,2001:462-560
    [58]何继善.频率域电法的新进展[J].地球物理学进展,2007,22(4):125-1254
    [59]闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析[J].地球物理学报,2002, 45(2):275~284
    [60]阴建康,闰述,陈明生.瞬变电磁法小发射回线探测装置及其应用[J].煤田地质与勘探,2007,35(3):66~68
    [61]闫述,陈明生,傅君眉.瞬变电磁场信号在地下的扩散及地面上的时域响应特性[J].煤田地质与勘探,2001,29(2):55~57
    [62]何继善,柳建新.隧道超前探测方法技术与应用研究[J].工程地球物理学报,2004,1(4):293-298
    [63]赵国泽,詹艳,陈小斌,等.电磁法在地下水探查中的应用[J].工程地球物理学报,2004,1(3):220~225
    [64]薛国强,李貅,底青云.瞬变电磁法理论与应用研究进展[J].地球物理学进展,2007,22(4):1195~1200
    [65]闫述,傅君眉,李正斌.瞬变电磁法探测地下洞体的有效性[J].煤田地质与勘探,1999,27(2):64~68
    [66]陈明生,闫述,石显新.TEM法的小回线装置探测大深度问题[C].第七届中国国际地球电磁学术讨论会论文集.成都:成都理工大学出版社,2005:63~65
    [67]周逢道,林君,刘长胜,等.浅海底瞬变电磁法接收天线频率特性研究一带宽对浅层分辨的影响[J].地球物理学进展,2006,21(4):1342~1345
    [68]刘长胜,林君.海底表面磁源瞬变响应建模及海水影响分析[J].地球物理学报,2006,49(6):1891-1898
    [69]嵇艳鞠,林君,朱凯光,等.利用瞬变电磁技术进行地下水资源勘察[J].地球物理学进展,2005,20(3):828~833
    [70]张纪勋,范志平.瞬变电磁技术在巷道超前探测中的应用[J].中国煤田地质,2006,18(3):60~61
    [71]杜木民,李玉宝.井下瞬变电磁探水技术初探[J].河北煤炭,2006(3):1-2
    [72]丛茂祥,张爱印,张利芳.矿井瞬变电磁法探测井下工作面顶底板的含水构造[J].江苏地质,2004,28(4):238-242
    [73]Smith R S, Edwards R N. An automatic technique for presentation of coincident-loopimpulse-response transient electromagnetic data[J]. Geophysics,1994, 10 (59):1542-1550
    [74]周国华.基于DSP的瞬变电磁探测系统设计与实现[D].长春:吉林大学,2006
    [75]Kneight J H, Raiche A P. Transient electromagnetic calculation using the Gaver-Stehfest inverse Laplace transform method[J]. Geophysics,1982,47(1):47-50
    [76]白世彪,陈晔,王建.等值线绘图软件SURFER7.0中九种插值法介绍[J].物探化探计算技术,2002,24(2):1001~1749
    [77]苏朱刘,胡文宝.中心回线方式瞬变电磁测深虚拟全区视电阻率和一维反演方法 [J].石油物探,2002,41(2):216~221
    [78]牛海金,宋新华,陈永新,白登海.用TEM探测煤矿采空区的实践与探索[J]中国煤炭,2005,31(8):42~44
    [79]蒋文,胡文贤.瞬变电磁法在甘肃寻找地下含水构造中的应用[J].物探与化探,2004,28(1):32~34
    [80]严良俊,徐世浙,胡文宝,等.中心回线瞬变电磁测深全区视纵向电导解释方法[J].浙江大学学报,2003,30(2):239~243
    [81]张保祥,刘春华.瞬变电磁法在地下水勘查中的应用综述[J].地球物理学进展,2004,19(3):537~542
    [82]闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析[J].地球物理学报,2002,45(2):275~284
    [83]刘明伟.瞬变电磁资料处理方法研究及软件开发[D].徐州:中国矿业大学,2010
    [84]孙胜利.瞬变电磁法(TEM)在龙门峡北煤矿探测深度的研究[D].北京:煤炭科学研究总院,2010
    [85]Oristaglio M L, Hohmann G W. Diffusion of electromagnetic fields in two-dimensional earth:afinite-difference approach[J]. Geophysics,1984 (49):870-894
    [86]Gerrit M. Total-Field Absorbing Boundary Conditions for the Time-Domain Electromagnetic Field Equations [J]. IEEE Trans. on Electromagnetic Compatibility, 1998,40(5):100-102
    [87]Wait J R. Transient EM propagation in a conducting medium[J]. Geophysics, 1951(16):213-221
    [88]Nabighian M N. Quasi-static transient response of a conducting half-space-An approximate represent action[J]. Geophysics,1979 (44):1700-1705
    [89]Kuo J T, Cho D H. Transient time-domain electromagnetic[J]. Geophysics,1980(45): 271-292
    [90]Knight J H, Raiche A P. Transient electromagnetic calculations using the Gaver-Stehfest inverse Laplace transform method[J]. Geophysics,1982,47(1):47-50
    [91]阮百尧,徐世浙.线源二维时间域电磁响应的有限差分解[J].高校地质学报,1996,2(4):437-447
    [92]鲍光淑,张碧星,敬荣中,毛先进.三维电磁响应积分方程法数值模拟[J].中南工业大学学报,1999,30(5):472-474
    [93]熊彬,罗延钟,强建科.瞬变电磁2.5维反演中灵敏度矩阵计算方法(Ⅰ)[J].地球物理学进展,2004,19(3):616-620
    [94]白登海.时间域瞬变电磁法中心方式全程视电阻率的数值计算[J].地球物理学报2003,46(5):697-704
    [95]翁爱华,陆冬华.利用连分式定义瞬变电磁法全区视电阻率研究[J].煤田地质与勘探,2003,31(3):56-59
    [96]于景邮.矿井瞬变电磁法理论与应用技术研究[D].徐州:中国矿业大学,1999
    [97]刘树才,刘志新,姜志海.瞬变电磁法在煤矿采区水文勘探中的应用[J].中国矿业大学学报,2005,34(4):414-417
    [98]于景邮,刘志新,刘树才.深部采场突水构造矿井瞬变电磁法探查理论及应用[J].煤炭学报,2007,32(8):818-821
    [99]周仕新.巷道围岩中全空间瞬变电磁场时域有限差分数值模拟[D].徐州:中国矿业大学,2006
    [100]Jiang Zhi-hai, Yue Jian-hua, Liu Shu-cai. Prediction technology of buried water-bearing structures incoal mines using transient electromagnetic method[J]. Journal of china university of mining and technology,2007,17(2):164-167
    [101]Lee K H, Morrison H F. A numerical solution on a two-dimensional in homogeneity[J]. Geophysics,1985(50):466-472
    [102]Tabarovsky L A, Goldman M M, Rabinovich M B, ect.2.5-D Modeling in electromagnetic methodsof geophysics [J]. Journal of Applied Geophysics,1996(35): 261-284
    [103]周刚.人工源电磁法二维半问题等参有限元法数值模拟研究[D].北京:中国地质大学,2006
    [104]武军杰.瞬变电磁新技术在隧道超前地质预报中的应用研究[D].西安:长安大学,2005
    [105]周熙襄,钟本善,严忠琼,等.电法勘探正演数值模拟的若干结果[J].地球物理学报,1983,26(5):479-491,
    [106]罗延钟,孟永良.关于用有限单元法对二维构造作电阻率法模拟的几个问题[J].地球物理学报,1986(29):613-621
    [107]于景邨.矿井瞬变电磁法勘探[M].徐州:中国矿业大学出版社,2007:50~75
    [108]岳建华,杨海燕,邓居智.层状介质中地下瞬变电磁场全空间效应[J].地球物理学进展,2012,27(4):1385~1392
    [109]岳建华,李志聃,刘世蕾.层状介质中巷道底板电测深边界元正演[J].煤炭学报,1998,23(4):347-351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700