用户名: 密码: 验证码:
二维超薄卤氧化铋半导体纳米材料的可控制备及其光催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二维纳米材料因其厚度尺寸和二维平面结构的特点往往具有不同于相应块材的电子结构,不但能够影响其本征性能,还能产生一些新性质,为探究如何提高光催化性能的研究方向提供了新思路。本论文旨在探索二维半导体纳米材料的结构特征与光催化性质之间的构效关系,选取具有独特层状结构的卤氧化铋(BiOX (X=Br, Cl))为研究对象,通过简易的溶剂热法实现了原子级厚度的BiOX超薄纳米片的可控合成,并系统地探究了二维半导体纳米材料由其原子级厚度和二维结构特征所引起的表面结构和能带结构的变化对其光催化性质的影响,同时还研究了石墨烯基超薄异质复合半导体纳米材料的光催化性能。本论文的主要内容归纳如下:
     1.通过调控半导体晶体所暴露的晶面,能够实现光催化剂的性能提高。我们采用简易的溶剂热法可控地制备了原子级厚度的超薄BiOBr纳米片,高分辨透射电镜(HRTEM)和选区电子衍射(SAED)分析表明这些纳米片的上下表面暴露的都是BiOBr的(001)活性晶面,而且活性晶面的暴露比例接近100%。紫外-可见吸收光谱(UV-Vis spectra)显示, BiOBr超薄纳米片的减小还引起了能带结构的变化,导带和价带边位置的上移都有利于光生电子和空穴的分离。作为对比,我们还可控地合成了横向尺寸相似、厚度较大的BiOBr纳米盘。光催化降解罗丹明-B(RhB)的实验结果表明BiOBr超薄纳米片呈现出比纳米盘更优异的可见光光催化活性,这主要归功于超薄纳米片暴露的高活性晶面及其优化的能带结构两方面的因素。
     2.近年来,半导体的晶面工程越来越多地引起人们的研究兴趣,期待能够获得带有高活性晶面的半导体光催化剂。然而,半导体所暴露的活性晶面在改善其光催化性能方面的机理却还很模糊。基于上一个工作,我们通过简单的溶剂热法成功获得具有高效太阳能光催化活性的BiOCl超薄纳米片,几乎能够暴露所有到(001)晶面,并且对暴露晶面中的缺陷类型对其太阳能光催化性能的影响提出了新的更深层的见解。实验所得的BiOCl纳米片的厚度为2.7m,达到了原子尺寸,通过采用正电子湮没技术的表征发现BiOCl超薄纳米片的主要缺陷从单铋空位缺陷V-Bi变为三空位缔合体缺陷VBiVOVBi。正是由于这种三空位缺陷缔合体的形成,对BiOCl超薄纳米片在可见光区的间接染料光敏化作用和在紫外光区的直接半导体光催化过程产生了综合影响,导致BiOCl超薄纳米片在极低的光催化负载量下显示出显著提高的太阳能光催化活性。在此工作中,对超薄纳米片中独特的缺陷(与块材不同)的研究,无疑开拓了通过设计准二维材料光催化剂得到高效太阳能光催化活性的新方向。
     3.基于石墨烯高的比表面和良好的电荷传输性等特点,结合BiOCl超薄纳米片的特殊表面结构,我们通过简单的溶液混合的方法制备了BiOCl超薄纳米片/石墨烯复合纳米材料。与单一的BiOCl超薄纳米片和BiOCl纳米盘/石墨烯相比,该复合材料表现出了更高的光催化性能。性能的提高归因于以下几个方面:(1)暴露高比例活性晶面的BiOCl超薄纳米片自身的VBiVOVBi三空位缔合体缺陷不但有利于对染料的吸附,还能增强和石墨烯之间的相互作用力促进电子在两相界面的转移。(2)超薄纳米片更负的导带带边电势也为电子的转移提供了动力。(3)石墨烯良好的电子传输性能有助于BiOCl超薄纳米片中光生电子和空穴的有效分离。(4)石墨烯的加入引起的复合物在可见光区的光吸收增强,促进间接染料光敏化催化进程。总之,二维超薄纳米材料与二维石墨烯的复合为高性能光催化剂的制备提供了有效合成策略,拓展了二维异质复合结构的研究范围。
The two-dimensional nanomaterial is of unique electronic structure that is different from the bulk material owing to the unique properties associated with their ultra-thin thickness and two-dimensional planar morphology. Thus, not only the intrinsic characteristics are enhanced, but also new properties emerged, which provides new idea for exploring2D semiconductors in terms of improving photocatalytic performance. This dissertation focused on the studies of the relationship between the nanostructured2D semiconductor material and its photocatalytic properties. Layered BiOX (X=Br, C1) was selected as the object and ultrathin BiOX with atomic level thickness was achieved via a facile solvethermal method. Change in surface structure and bandgap caused by the atomic thickness and two-dimensional characteristic was systemically studied towards the effect of photocatalytic activity. Furthermore, incorporation with graphene for fabricating2D hetero-nanostructured composites of graphene/BiOX as a robust photocatalyst was studied. Details are listed as below:
     1. The photocatalytic performance could be significantly enhanced by adjusting the exposed crystal facets of semiconductor. Ultrathin BiOBr nanosheet was synthesized through a facile solvathermal method. HRTEM and SAED characterization reveals that the exposed facet are indexed to the (001) of BiOBr and the ratio is almost100%. UV-Vis spectroscopy indicates that the reduction in thickness of the nanosheet induces the change of bandgap, in which both conduction band and valance band are up-shift, and is beneficial for the charge separation of the photoelectron and holes. By contrast, BiOBr nanoplate with large thickness but similar2D size was prepared. The results of photocatalytic degradation of RhB reveal that ultrathin BiOBr exhibited higher photocatalytic activity which may be owned to the active (001) facets and the optimized band structure.
     2. Crystal facet engineering of semiconductors is of growing interest and an important strategy for fine-tuning the solar-driven photocatalytic activity. However, the primary factor in the exposed active facets that determines the photocatalytic property is still elusive. Inspired by the former work, we have experimentally achieved the high solar photocatalytic activity in ultrathin BiOCl nanosheets with almost fully exposed active (001) facets, and provided some new and deep-seated insights into how the defects in the exposed active facets affect the solar-driven photocatalytic property. As the thickness of the nanosheets reduces to atomic scale, the predominant defects change from isolated VBim defects to triple vacancy associates VBi(?)VO(?)VBi(?), which is unambiguously confirmed by the positron annihilation spectra. By virtue of the synergic advantages of enhanced adsorption capability, effective separation of electron-hole pairs and more reductive photoexcited electrons benefited from the VBi(?)VO(?)VBi(?) vacancy associates, the ultrathin BiOCl nanosheets show significantly promoted solar-driven photocatalytic activity even with extremely low photocatalyst loading. The finding of the existence of distinct defects (different from those in bulks) in ultrathin nanosheets undoubtedly leads to new possibilities for photocatalyst design using quasi-two-dimensional materials with high solar-driven photocatalytic activity.
     3. Based on the graphene of its outstanding charge transport ability and extremely high specific surface area, as well as the special surface structure of the ultrathin BiOCl nanosheet, heterostructured BiOCl-nanosheet/Graphene composites are prepared via simple solution mixing method. Such a composite exhibited improved photocatalytic activity towards dye degradation compared with bare BiOCl nanosheet and BiOCl-nanoplate/Graphene composite. The enhancement could be ascribed to the several aspects:1) the defect of VBi(?)VO(?)VBi(?) in the nanosheet is not only benefital for the dyes adsorption, but also strengths the interaction with graphene that improve the interface photoelectrons transfer.2) the more negative conduction band edge potential induced by the decreased thickness motivates the electron transfer process.3) graphene acts as electrons transporter, improving the charge separation efficiency.4). the induction of graphene extends the light adsorption range, promoting the photocatalyst excitation and indirect dye-sensitized degradation process. Overall, integration of graphene with2D semiconductor with exposed facets pave the way for fabricating graphene-based2D nanocomposites as robust photocatalyst.
引文
[1]Fujishima, A.; Honda, K. Nature 1972,238,37.
    [2]Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. J Catal 2009,266,165.
    [3]Tunuli, M. S.; Fendler, J. H. JAm Chem Soc 1981,103,2507.
    [4]Wen, F. Y.; Li, C. Accounts Chem Res 2013,46,2355.
    [5]Gratzel, M. Nature 2001,414,338.
    [6]Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Chem Rev 1995,95,69.
    [7]Thiruvenkatachari, R.; Vigneswaran, S.; Moon, I. S. Korean JChem Eng 2008,25,64.
    [8]Maeda, K.; Domen, K. Chem Mater 2010,22,612.
    [9]Li, G. Q.; Kako, T.; Wang, D. F.; Zou, Z. G.; Ye, J. H. Dalton T 2009,2423.
    [10]Tong, H.; Umezawa, N.; Ye, J. H. Chem Commun 2011,47,4219.
    [11]Tong, H.; Umezawa, N.; Ye, J. H.; Ohno, T. Energ Environ Sci 2011,4,1684.
    [12]Li, Q. Y.; Kako, T.; Ye, J. H. J Mater Chem 2010,20,10187.
    [13]Chen, X. Q.; Li, P.; Tong, H.; Kako, T.; Ye, J. H. Sci Technol Adv Mat 2011,12.
    [14]Chen, X. Q.; Ye, J. H.; Ouyang, S. X.; Kako, T.; Li, Z. S.; Zou, Z. G. Acs Nano 2011,5, 4310.
    [15]Xi, G. C.; Ye, J. H. Chem Commun 2010,46,1893.
    [16 Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J. JAm Chem Soc 2011,133,6490.
    [17]Liu, M.; Piao, L. Y.; Zhao, L.; Ju, S. T.; Yan, Z. J.; He, T.; Zhou, C. L.; Wang, W. J. Chem Commun 2010,46,1664.
    [18]Domen, K.; Naito, S.; Soma, M.; Onishi, T.; Tamaru, K. JChem Soc Chem Comm 1980,543.
    [19]Reiche, H.; Dunn, W. W.; Bard, A. J. JPhys Chem-Us 1979,83,2248.
    [20]Ouyang, S. X.; Kikugawa, N.; Zou, Z. G.; Ye, J. H. Appl Catal a-Gen 2009,366,309.
    [21]Tang, J. W.; Zou, Z. G.; Ye, J. H. Angew Chem Int Edit 2004,43,4463.
    [22]Ye, J.; Zou, Z.; Arakawa, H.; Oshikiri, M.; Shimoda, M.; Matsushita, A.; Shishido, T. J Photoch Photobio A 2002,148,79.
    [23]Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001,414,625.
    [24]Zhang, H. T.; Chen, X. Y.; Li, Z. S.; Liu, L.; Yu, T. F.; Zou, Z. G. JPhys-Condens Mat 2007, 19.
    [25]Ouyang, S. X.; Zhang, H. T.; Li, D. F.; Yu, T.; Ye, J. H.; Zou, Z. G. J Phys Chem B 2006, 110,11677.
    [26]Li, Q. Y.; Yue, B.; Iwai, H.; Kako, T.; Ye, J. H. JPhys Chem C 2010,114,4100.
    [27]Kamat, P. V. JPhys Chem C 2007,111,2834.
    [28]Chen, D.; Ye, J. H. Chem Mater 2007,19,4585.
    [29]Zeng, H. B.; Liu, P. S.; Cai, W. P.; Yang, S. K.; Xu, X. X. JPhys Chem C 2008,112,19620.
    [30]Zhang, X. D.; Zhang, J. J.; Zhao, J. Y.; Pan, B. C.; Kong, M. G.; Chen, J.; Xie, Y. J Am Chem Soc 2012,134,11908.
    [31]Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. J Am Chem Soc 2011,133,17832.
    [32]Novoselov, K. S.; Geim, A. K.; Morozov; S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005,438,197.
    [33]Geim, A. K.; Novoselov, K. S. Nat Mater 2007,6,183.
    [34]Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012,490,192.
    [35]Lin, Y. M.; Dimitrakopoulos, C; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, P. Science 2010,327,662.
    [36]Liu, M; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. Nature 2011,474,64.
    [37]Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009,457,706.
    [38]Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332,1537.
    [39]Park, H.; Li, Y. L.; Tsien, R. W. Science 2012,335,1362.
    [40]Yang, X.; Xu, M. S.; Qiu, W. M.; Chen, X. Q.; Deng, M.; Zhang, J. L.; Iwai, H.; Watanabe, E.; Chen, H. Z. J Mater Chem 2011,21,8096.
    [41]Gao, Y.; Chen, X. Q.; Xu, H.; Zou, Y. L.; Gu, R. P.; Xu, M. S.; Jen, A. K. Y.; Chen, H. Z. Carbon 2010,48,4475.
    [42]Xu, M. S.; Fujita, D.; Hanagata, N. Small 2009,5,2638.
    [43]Deng, M.; Yang, X.; Silke, M.; Qiu, W. M.; Xu, M. S.; Borghs, G.; Chen, H. Z. Sensor Actuat B-Chem 2011,158,176.
    [44]Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Nature 2010, 467,190.
    [45]Xu, M. S.; Gao, Y.; Yang, X.; Chen, H. Z. Chinese Sci Bull 2012,57,3000.
    [46]Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys Rev Lett 2010,105.
    [47]Teweldebrhan, D.; Goyal, V.; Balandin, A. A. Nano Lett 2010,10,1209.
    [48]Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q.; Xie, Y. Nat Commun 2012,3.
    [49]Ebbesen, T. W.; Hiura, H.Adv Mater 1995,7,582.
    [50]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004,306,666.
    [51]Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. P Natl Acad Sci USA 2005,102,10451.
    [52]Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. JPhys Chem B 2004,108,19912.
    [53]Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006,312,1191.
    [54]Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009,324,1312.
    [55]Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H.; Lai, C. S.; Li, L. J. Nano Lett 2012,12,1538.
    [56]Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C; Coleman, J. N. Nat Nanotechnol 2008,3, 563.
    [57]Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011,331,568.
    [58]Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N. Acs Nano 2012,6,3468.
    [59]Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.; Zhang, H. L. Angew Chem Int Edit 2011, 50,10839.
    [60]Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R Angew Chem Int Edit 2010,49,4059.
    [61]Matte, H. S. S. R.; Plowman, B.; Datta, R.; Rao, C. N. R. Dalton T 2011,40,10322.
    [62]Lin, C. W.; Zhu, X. J.; Feng, J.; Wu, C. Z.; Hu, S. L.; Peng, J.; Guo, Y. Q.; Peng, L. L.; Zhao, J. Y.; Huang, J. L.; Yang, J. L.; Xie, Y. J Am Chem Soc 2013,135,5144.
    [63]Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Angew Chem Int Edit 2011,50,11093.
    [64]Liu, L.; Yao, T.; Tan, X. G.; Liu, Q. H.; Wang, Z. Q.; Shen, D. C.; Sun, Z. H.; Wei, S. Q.; Xie, Y. Small 2012,8,3752.
    [65]Zhang, X. D.; Liu, Q. H.; Meng, L. J.; Wang, H.; Bi, W. T.; Peng, Y. H.; Yao, T.; Wei, S. Q.; Xie, Y. Acs Nano 2013,7,1682.
    [66]Tang, Z. Y.; Zhang, Z. L.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. Science 2006,314,274.
    [67]Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C.; Weller, H. Science 2010,329,550.
    [68]Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Nat Commun 2011,2.
    [69]Bi, W. T.; Zhou, M.; Ma, Z. Y.; Zhang, H. Y.; Yu, J. B.; Xie, Y. Chem Commun 2012,48, 9162.
    [70]Sun, Y. F.; Cheng, H.; Gao, S.; Sun, Z. H.; Liu, Q. H.; Liu, Q.; Lei, F. C.; Yao, T.; He, J. F.; Wei, S. Q.; Xie, Y. Angew Chem Int Edit 2012,51,8727.
    [71]Sun, Y. F.; Cheng, H.; Gao, S.; Liu, Q. H.; Sun, Z. H.; Xiao, C.; Wu, C. Z.; Wei, S. P.; Xie, Y. JAm Chem Soc 2012,134,20294.
    [72]Wang, C.; Ge, M. Y.; Jiang, J. Z. ApplPhys Lett 2010,97.
    [73]Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. JAm Chem Soc 2013,135,10411.
    [74]Selloni, A. Nat Mater 2008,7,613.
    [75]Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. JAm Chem Soc 2012,134,4473.
    [76]Sun, S. M.; Wang, W. Z.; Zhang, L.; Gao, E. P.; Jiang, D.; Sun, Y. F.; Xie, Y. Chemsuschem 2013,6,1873.
    [77]Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. JAm Chem Soc 2009,131,3152.
    [78]Zhao, K.; Zhang, L. Z.; Wang, J. J.; Li, Q. X.; He, W. W.; Yin, J. J. JAm Chem Soc 2013, 135,15750.
    [79]Li, J.; Zhang, L. Z.; Li, Y. J.; Yu, Y. Nanoscale 2014,6,167.
    [80]Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y.; Zhang, J. J. Chem Commun 2011,47,6951.
    [81]Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. JPhys Chem B 2005,109,9651.
    [82]Yoffe, A. D. Adv Phys 2001,50,1.
    [83]Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Lei, F. C.; Wei, S. Q.; Xie, Y. Adv Energy Mater 2014,4.
    [84]Madl, M.; Brezna, W.; Klang, P.; Andrews, A. M.; Strasser, G.; Smoliner, J. Semicond Sci Tech 2010,25.
    [85]Zhang, Y. H.; Tang, Z. R.; Fu, X.; Xu, Y. J. Acs Nano 2011,5,7426.
    [86]Li,Q.;Guo,B.D.;Yu,J.G.;Ran,J.R.;Zhang,B.H.;Yan,H.J.;Gong,J.R.J Am Chem Soc 2011,133,10878.
    [87]Zhou,W.J.;Yin,Z.Y.;Du,Y.P.;Huang,X.;Zeng,Z.Y.;Fan,Z.X.;Liu,H.;Wang,J.Y.; Zhaang,H.Small 2013,9,140.
    [88]Guo,W.X.;Zhang,F.;Lin,C.J.;Wang,Z.L.Adv Mater 2012,24,4761.
    [89]Zhu,T.;Wu,H.B.;Wang,Y.B.;Xu,R.;Lou,X.W.Adv Energy Mater 2012,2,1497.
    [90]Hou,Y.;Wen,Z.H.;Cui,S.M.;Guo,X.R.;Chen,J.H.Adv Mater 2013,25,6291.
    [1]Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Chem Rev 1995,95,69.
    [2]Bae, E.; Choi, W. Environ Sci Technol 2003,37,147.
    [3]Zou, Z. G.; Ye, J. H. ayama, K.; Arakawa, H. Nature 2001,414,625.
    [4]Kudo, A.; Miseki, Y. Chem Soc Rev 2009,38,253.
    [5]Wang, P.; Huang, B. B.; Dai, Y.; Whangbo, M. H. Phys Chem Chem Phys 2012,14,9813.
    [6]Wang, P.; Huang, B. B.; Zhang, X. Y.; Qin, X. Y.; Jin, H.; Dai, Y.; Wang, Z. Y.; Wei, J. Y.;
    Zhan, J.; Wang, S. Y.; Wang, J. P.; Whangbo, M. H. Chem-EurJ 2009,15,1821.
    [7]Zhai, W. Y.; Xue, S. J.; Zhu, A. W.; Luo, Y. P.; Tian, Y. Chemcatchem 2011,3,127.
    [8]Zhang, C.; Zhu, Y. F. Chem Mater 2005,17,3537.
    [9]Wang, R. G.; Ren, D. J.; Xia, S. Q.; Zhang, Y. L.; Zhao, J. F. J Hazard Mater 2009,169,926.
    [10]Shang, M.; Wang, W. Z.; Zhang, L. J Hazard Mater 2009,167,803.
    [11]Zhang, J.; Shi, F. J.; Lin, J.; Chen, D. F.; Gao, J. M.; Huang, Z. X.; Ding, X. X.; Tang, C. C. Chem Mater 2008,20,2937.
    [12]Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. JPhys Chem C 2008,112,747.
    [13]Chen, P.; Xiao, T. Y.; Li, H. H.; Yang, J. J.; Wang, Z.; Yao, H. B.; Yu, S. H. Acs Nano 2012, 6,712.
    [14]Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wei, J. Y.; Whangbo, M. H. Angew Chem Int Edit 2008,47,7931.
    [15]Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Chem Mater 2008,20,110.
    [16]Chen, D.; Ye, J. H. Adv Funct Mater 2008,18,1922.
    [17]Xu, H. L.; Wang, W. Z.; Zhu, W. JPhys Chem B 2006,110,13829.
    [18]Chen, Y. J.; Wen, M.; Wu, Q. S. Crystengcomm 2011,13,3035.
    [19]An, H. Z.; Du, Y.; Wang, T. M.; Wang, C.; Hao, W. C.; Zhang, J. Y. Rare Metals 2008,27, 243.
    [20]Zhang, L.; Cao, X. F.; Chen, X. T.; Xue, Z. L. J Colloid Interf Sci 2011,354,630.
    [21]Lin, X. P.; Huang, T.; Huang, F. Q.; Wang, W. D.; Shi, J. L. J Phys Chem B 2006,110, 24629.
    [22]Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. JAm Chem Soc 2012,134, 4473.
    [23]Ye, L. Q.; Tian, L. H.; Peng, T. Y.; Zan, L. J Mater Chem 2011,21,12479.
    [24]Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, I; Ye, J. JAm Chem Soc 2011,133,6490.
    [25]Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. JAm Chem Soc 2009,131,4078.
    [26]Zhang, D.; Li, J.; Wang, Q. G.; Wu, Q. S. JMater Chem A 2013,1,8622.
    [27]Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D. Appl Catal B-Environ 2006, 68,125.
    [28]Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. J Am Chem Soc 2010,132,11642.
    [29]Tafalla, D.; Salvador, P.; Benito, R. M. JElectrochem Soc 1990,137,1810.
    [1]Fujishima, A.; Honda, K. Nature 1972,238, 37.
    [2]Clasen, T.; Edmondson, P. Int. J. Hyg. Environ. Health.2006,209,173.
    [3]Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L. Chem. Commun.2001,43,3425.
    [4]Chen, C. C; Ma, W. H.; Zhao, J. C. Chem. Soc. Rev. 2010,39,4206.
    [5]Xiong, Z. G.; Zhao, X. S. J. Am. Chem. Soc. 2012,134, 5754.
    [6]Wang, J.; Tafen, D. N.; Lewis, J. P.; Hong, Z. L.; Manivannan, A.; Zhi, M. J.; Li, M.; Wu, N. Q. J. Am. Chem. Soc. 2009,131, 12290.
    [7]In, S.; Orlov, A.; Berg, R.; Garcia, F.; Pedrosa-Jimenez, S.; Tikhov, M. S.; Wright, D. S.; Lambert, R. M. J. Am. Chem. Soc. 2007,129, 13790.
    [8]Woan, K.; Pyrgiotakis, G.; Sigmund, W. Adv. Mater.2009,21,2233.
    [9]Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C; Gozzo, F.; Garcia.-Hernandez, M.; Garcia, M. A.; Cingolani, R.; Cozzoli, P. D. J. Am. Chem. Soc. 2010,132,2437.
    [10]Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. J. Am. Chem. Soc. 2011,133,10000.
    [11]Teranishi, M.; Naya, S.; Tada, H. J. Am. Chem. Soc. 2010,132, 7850.
    [12]Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C; Lopez-Sanchez, J. A.; Bechstein, R; Kiely, C. J.; Hutchings, G. J.; Besenbacher, F. ACS Nano 2012, 6, 6284.
    [13]Liu, G.; Yu, J. C; Lu, G. Q.; Cheng, H. M. Chem. Commun.2011, 47, 6763.
    [14]Kubacka, A.; Fernandez-Garcia, M.; Col6n, G. Chem. Rev. 2012, 112,1555.
    [15]Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotech.2011, 6, 147.
    [16]Zhu, Y. W.; Murali, S. T.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332, 1537.
    [17]Feng, J.; Sun, X.; Wu, C; Peng, L.; Lin, C; Hu, S.; Yang, J.; Xie, Y. J. Am. Chem. Soc. 2011, 133,17832.
    [18]Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q.; Xie, Y. Nat. Commun.2012,3, 1057.
    [19]Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y.; Zhang, J. J. Chem. Commun.2011, 47,6951.
    [20]Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. J. Am. Chem. Soc. 2012,134, 4473.
    [21]Hahn, N. T.; Hoang, S.; Self, J. L.; Mullins, C. B. ACSNano 2012, 6,77122.
    [22]Robles, J. M. C; Ogando, E.; Plazaola, F. J. Phys.: Condens. Matter 2007,19,176222.
    [23]Xiong, J. Y.; Cheng, G.; Li, G. F.; Qin, F.; Chen, R. RSC Advances 2011,1, 1542.
    [24]Barbiellini, B,; Puska, M. J.; Korhonen, T.; Harju, A.; Torsti, T.; Nieminen, R. M. Phys. Rev. B 1996, 53,16201.
    [25]Zhao, J. C; Wu, T. X.; Wu, K. Q.; Oikawa, K.; Hidaka, H.; Serpone, N. Environ. Sci. Technol.1998,32,2394.
    [26]Wu, T. X.; Liu, G. M.; Zhao, J. C; Hidaka, H.; Serpone, N. J. Phys. Chem. B. 1998, 102, 5845.
    [27]Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. J. Am. Chem. Soc. 2009, 131, 3140.
    [28]Xiao, C; Qin, X. M.; Zhang, J.; An, R; Xu, J.; Li, K.; Cao, B. X.; Yang, J. L.; Ye, B. J.; Xie, Y. J. Am. Chem. Soc. 2012,134,18460.
    [29]Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C; Chen, Z. G.; Lu, G. Q.; Cheng, H. M.J. Am. Chem. Soc. 2010,732, 11642.
    [1]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
    [2]Geim, A. K. Science 2009, 324, 1530.
    [3]Wu, J. S.; Pisula, W.; Mullen, K. Chem Rev 2007, 707, 718.
    [4]Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem Rev 2010,110, 132.
    [5]Rao, C. N. R.; Sood, A. K.; Voggu, R.; Subrahmanyam, K. S. J Phys Chem Lett 2010, 1, 572.
    [6]Lee, C; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008,321, 385.
    [7]吴代鸣。固体物理[M].长春:吉林教育出版社.2003.34.
    [8]Zhang, Y. H.; Tang, Z. R.; Fu, X.; Xu, Y. J. Acs Nano 2011,5,7426.
    [9]Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. J Am Chem Soc 2011,133,10878.
    [10]Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H.Nano Lett 2013,13,2151.
    [11]Xu, T. G.; Zhang, L. W.; Cheng, H. Y.; Zhu, Y. F. Appl Catal B-Environ 2011,101, 382.
    [12]An, X. Q.; Yu, J. C.; Wang, Y.; Hu, Y. M.; Yu, X. L.; Zhang, G. J. J Mater Chem 2012, 22, 8525.
    [13]Tran, P. D.; Batabyal, S. K.; Pramana, S. S.; Barber, J.; Wong, L. H.; Loo, S. C. J. Nanoscale 2012, 4, 3875.
    [14]Gao, E. P.; Wang, W. Z.; Shang, M.; Xu, J. H. Phys Chem Chem Phys 2011,13,2887.
    [15]Fu, Y. S.; Sun, X. Q.; Wang, X. Mater Chem Phys 2011,131, 325.
    [16]Zhang, X. F.; Quan, X.; Chen, S.; Yu, H. T. Appl Catal B-Environ 2011,105,237.
    [17]Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. J Am Chem Soc 2010,132, 6124.
    [18]Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. J Am Chem Soc 2012,134,4473.
    [19]Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011,331,746.
    [20]Hodes, G. Adv Mater 2007,19, 639.
    [21]Xue, Y.; Zhang, X. D.; Zhang, J. J.; Wu, J.; Sun, Y. F.; Tian, Y. C; Xie, Y. J Mater Chem 2012, 22, 2560.
    [22]Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C; Xie, Y. J Am Chem Soc 2013,135, 18.
    [23]Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. J Am Chem Soc 2013,135, 10411.
    [24]Sun, L.; Zhao, Z. L.; Zhou, Y. C.; Liu, L. Nanoscale 2012, 4, 613.
    [25]Akhavan, O. Acs Nano 2010,4, All A.
    [26]Ai, Z. H.; Ho, W. K.; Lee, S. J Phys Chem C 2011,115,25330.
    [27]Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angew Chem Int Edit 2009, 48, 7752.
    [28]Ferrari, A. C; Meyer, J. C; Scardaci, V.; Casiraghi, C; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys Rev Lett 2006,97.
    [29]Zhou, Y.; Bao, Q. L.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Chem Mater 2009,21,2950.
    [30]Peng, H. L.; Chan, C. K.; Meister, S.; Zhang, X. F.; Cui, Y. Chem Mater 2009,21,247.
    [31]Mukherji, A.; Seger, B.; Lu, G. Q.; Wang, L. Z. Acs Nano 2011, 5, 3483.
    [32]Wang, W. S.; Wang, D. H.; Qu, W. G.; Lu, L. Q.; Xu, A. W. J Phys Chem C 2012, 116, 19893.
    [33]Zhang, Y. H.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Acs Nano 2012, 6, 9777.
    [34]Wang, X. H.; Li, J. G.; Kamiyama, H.; Moriyoshi, Y.; Ishigaki, T. J Phys Chem B 2006,110, 6804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700