用户名: 密码: 验证码:
氮氧小分子构建的手性表面在分子识别中的电化学研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学手性分析是电化学分析技术和手性识别方法的有机结合,根据电化学响应信号差异进行手性识别研究,具备了电化学方法的高灵敏、响应快、低成本,易于智能化和微型化等优点,同时还具备了手性识别方法的立体对映选择性,在医学及药学、食品安全、农业化学药品应用和环境安全检测等研究领域具有重要的研究意义。本文在国内外手性识别研究基础上,利用氮氧小分子构建手性电极表面,探讨了手性表面与生物分子和药物中间体的手性识别作用,主要研究工作如下:
     1.研究了DNA分子在1,2-二苯基乙二胺(DPEN)对映异构体构建的手性表面上的立体选择性吸附作用。通过共价键合将(1R,2R)-或(1S,2S)-DPEN修饰到金基底电极上形成手性表面。采用循环伏安技术表征并研究了手性表面的修饰过程及其电化学性质。通过原子力显微技术、循环伏安、电化学交流阻抗和石英晶体微天平技术分别研究了DNA分子在两种手性表面上的立体选择性吸附行为。实验结果表明,(1R,2R)-DPEN手性表面与DNA分子的作用强于(1S,2S)-DPEN手性表面,表面的手性对DNA分子的形态及吸附量产生了不同的影响。
     2.研究了L-半胱氨酸修饰的金电极(L-Cys-Au),在Zn(II)存在下对药物中间体扁桃酸(MA)对映异构体的手性识别作用。通过循环伏安和电化学交流阻抗技术研究发现,在Zn(II)存在下,L-Cys-Au与R-MA溶液反应后的电化学响应明显强于S-MA溶液,且Zn(II)是导致该手性识别的重要因素:L-Cys与MA对映异构体选择性形成锌金属配合物。利用该法制备的手性传感器能够简便、快速地识别不同构型的MA分子,且能检测MA对映异构体比例,进一步扩展了手性配体交换原理在类氨基酸物质中的应用。
     3.采用电化学聚合方法在玻碳电极表面制备了L-氨甲喋吟(L-Mtx)手性聚合膜,并采用差分脉冲和循环伏安技术,在优化的聚合条件下研究了该手性聚合膜的相关电化学性质。对比研究发现,在相同条件下,聚合膜的氧化峰电流和还原峰电流明显大于L-Mtx溶液,其值是L-Mtx溶液峰值的15倍左右。但实验表明L-Mtx聚合膜的电化学性质是不可逆的。该手性聚合膜的制备和性质研究为其在手性识别中的进一步应用研究打下了良好的实验基础。
Electrochemical chiral analysis combines electrochemical analytical technique and chiral recognition. The investigation of chiral recognition was based on the different responses of electrochemical signals. This analysis method possess the merits of electrochemical method, for example, high selectivity, quick response, lower cost, easy intelligentification and micromation, meanwhile, has the high steroselectivity of chiral recognition. Thus, electrochemical chiral analysis methods display great potential applications in the pharmacy and medicine industries, food safety, agrochemical applications and natural environment protection. Based on the current situation and significance of chiral investigation, chiral nitrogen-oxygen molecules were used to construct the chiral surfaces by different methods in our works. And these chiral surfaces were further investigated in the biomolecular recognition and chiral sensors by electrochemical methods.
     1. This work described an interesting phenomenon of the stereoselective adsorption behaviors of DNA on stable chiral surfaces which were modified with 1, 2-diphenylethylenediamine enantiomers on gold electrodes. The modification process and electrochemical characterization of the chiral surfaces were measured by cyclic voltammetry (CV). The stereoselective adsorption behaviors of DNA on the two chiral surfaces were investigated via atomic force microscopy (AFM), CV, electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM). All results confirmed that (1R,2R)-1,2-diphenylethylenediamine modified surface had stronger interaction with DNA molecules than (1S,2S)-1,2-diphenylethylenediamine modified surface, and the chirality of the surfaces created an different effect on the morphology and adsorption quantity of DNA.
     2. An obviously enantioselective strategy for the recognition of mandelic acid (MA) enantiomers in the presence of Zn(Ⅱ) ions on a L-cysteine (L-Cys) self-assembled gold electrode is described. The high recognition of MA was evaluated via electrochemical impedance spectroscopy and cyclic voltammetry. After the modified electrode interacted with R-or S-MA solution containing Zn(II) ions for 10 min, larger electrochemical response signals were observed for R-MA. Time dependencies of the enantioselective interaction for the modified electrode with the solitary Zn (Ⅱ) solution and MA enantiomers solutions containing Zn(II) were also investigated. The results showed that the enantioselective recognition was caused by the selective formation of Zn complex with L-Cys and MA enantiomers. In addition, the enantiomeric composition of R-and S-MA enantiomer mixtures could be monitored by measuring the current responses of the sample.
     3. In this part, a novel chiral film electrode was constructed based on electropolymerization of L-methotrexate on a glassy carbon electrode. The electrochemical properties of this chiral film were investigatied via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The condition of electropolymerization was optimized by DPV. In a certain potential range, the chiral film showed good electrochemical activity. However, the L-methotrexate solution has weak electrochemical activity on the bare glassy carbon electrode. The current values of the chiral film were obviously larger than that of L-methotrexate solution. The work will offer valuable reference to the further studies of this chiral film electrode in chiral recognition, especially in chiral catalysis.
引文
[1]翁文,韩景立,陈友遵,等.手性传感器研究进展[J].化学进展,2007,19(11),1820-1825.
    [2]Lim, I-I. S.; Mott, D.; Engelhard, M. H. Interparticle chiral recognition of enantiomers:a nanoparticle-based regulation strategy [J].Anal. Chem.2009,81, 689-698.
    [3]尤田耙.手性化合物的现代研究方法[M].合肥:中国科学技术大学出版社,1993,13-16.
    [4]Apichit, S.-A.; Koros, W. J.; Rousseau, R. W. Chiral separationusing anovel combinationof cooling crystallizationand amembrane barrier:Resolution of DL-glutamic acid [J]. Chem. Eng. Sci.2009,64,1980-1984.
    [5]Liu, J.P.; Coffey, H.; Detlefsen, D. J.; et al. Chiral recognition and racemic resolution of drug enantiomers by electrophoresis based on host-guest complexation [J]. J. Chromatogr. A.1997,763,261-269.
    [6]尤启冬,林国强.手性药物:研究与应用[M].北京:化学工业出版社,2003,3-5.
    [7]Rat'ko, A. A.; Stefan, R.-I.; Staden, J. F.; et al. Macrocyclic antibiotics as chiral selectors in the design of enantioselective, potentiometric membrane electrodes for the determination of L- and D-enantiomers of methotrexate [J]. Talanta 2004, 64,145-150.
    [8]Murphy-Poulton, S.F.; Boyle, F.; Gu, X. Q; et al. Thalidomide enantiomers: Determination in biological samples by HPLC and vancomycin-CSP [J]. J. Chromatogr. B.2006,831,48-56.
    [9]Meyring, M.; Chankvetadze, B.; Blaschke, G. Simultaneous separation and enantioseparation of thalidomide and its hydroxylated metabolites using high-performance liquid chromatography in common-size columns, capillary liquid chromatography and nonaqueous capillary electrochromatography [J].J. Chromatogr. A.2000,876,157-167.
    [10]林国强,陈耀全,陈新滋,等.手性合成:不对称反应及其应用[M].北京:科学出版社,2000,3-4.
    [11]Stefan van Staden, R.-I.; Rat'ko, A. A. Enantioselective, potentiometric membrane electrodes based on cyclodextrins:Application for the determination of R-baclofen in its pharmaceutical formulation [J]. Talanta 2006,69, 1049-1053.
    [12]Kuo C.Y.; Wu, H.L.; Wu, S.M. Enantiomeric analysis of methotrexate in pharmaceuticals by cyclodextrin-modified capillary electrophoresis [J]. Anal. Chim. Acta 2002,471,211-217.
    [13]El-Hady, D. A.; Seliem, M. M.; Gotti, R; et al. Novel voltammetric method for enantioseparation of racemic methotrexate determination of its enantiomeric purity in some pharmaceuticals [J]. Sensor. Actuat. B-Chem.2006,113, 978-988.
    [14]Wcislo, M.; Compagnone, D.; Trojanowicz, M. Enantioselective screen-printed amperometric biosensor for determination of D-amino acids [J]. Bioelectrochem.2007,71,91-98.
    [15]Barba, C.; Flores, G.; Herraiz, M. Stereodifferentiation of some chiral aroma compounds in wine using solid phase microextraction and multidimensional gas chromatography [J]. Food Chem.2010,123,846-851.
    [16]Rubio-Barroso, S.; Santos-Delgado, M.J.; Martin-Olivar, C. et al. Indirect chiral HPLC determination and fluorimetric detection of D-amino acids in milk and oyster samples [J]. J. Dairy Sci.2006,89 (1),82-89.
    [17]Gil-Diaz, M.; Santos-Delgado, M.J.; Rubio-Barroso, S. et al. Free D-amino acids determination in ready-to-eat cooked ham irradiated with electron-beam by indirect chiral HPLC [J]. Meat Sci.2009,82 (1),24-29.
    [18]Jutta, Z.; Lutz-Ingo, D.; Klaus-Werner, B. D-amino acids in organisms and food [J]. Nutr. Res.1994,14(3),445-463.
    [19]Devos, C.; Sandra, K.; Sandra, P. Capillary gas chromatography inductively coupled plasma mass spectrometry (CGC-ICPMS) for the enantiomeric analysis of D,L-selenomethionine in food supplements and urine [J]. J. Pharm. Biomed. Anal.2002,27,507-514.
    [20]Flores, G.; Ruiz del Castillo, M. L.; Blanch, G. P.; et al. Efect of sample freezing on the SPME performance in the analysis of chiral volatile compounds in foods [J]. Food Chem.2006,96,334-339.
    [21]Bordajandi, L.R.; Ramos, L.; Gonzalez, M.J. Chiral comprehensive two-dimensional gas chromatography with electron-capture detection applied to the analysis of chiral polychlorinated biphenyls in food samples [J]. J. Chromatogr. A.2005,1078,128-135.
    [22]Li, Z.Y.; Wu, T.; Li, Q.L; et al. Characterization of racemization of chiral pesticides in organic solvents and water [J]. J. Chromatogr. A.2010,1217, 5718-5723.
    [23]Fisk, A.T.; Moisey, J.; Hobson, K.A.; et al. Chlordane components and metabolites in seven species of A rctic seabirds from the northwater polynya: relationships with stable isotopes of nitrogen and enantiomeric fractions of chiral components [J]. Environ. Pollut.2001,113,225-238.
    [24]Kaniewska, M.; Sikora, T.; Kataky, R.; et al. Enantioselectivity of potentiometric sensors with application of different mechanisms of chiral discrimination [J]. J. Biochem. Biophys. Meth.2008,70,1261-1267.
    [25]Ellington, J. J.; Evans, J. J.; Prickett, K. B.; et al. High-performance liquid chromatographic separation of the enantiomers of organophosphorus pesticides on polysaccharide chiral stationary phases [J]. J. Chromatogr. A.2001, 928,145-154.
    [26]Vetter, W.; Bester, K. Gas chromatographic enantioseparation of chiral pollutants-techniques and results [J]. Chiral Anal.2006,131-213.
    [27]Martinez-Giron, A. B.; Crego, A. L.; Gonzalez, M. J.; et al. Enantiomeric separation of chiral polycyclic musks by capillary electrophoresis:Application to the analysis of cosmetic samples [J]. J. Chromatogr. A.2010,1217, 1157-1165.
    [28]Gomara, B.; Garcia-Ruiz, C.; Marina, M. L. Enantioselective separation of the sunscreen agent 3-(4-methylbenzylidene)-camphor by electrokinetic chromatography:Quantitative analysis in cosmetic formulations [J]. Electrophoresis.2005,26,3952-3959.
    [29]Bicchi, C.; D'Amato, A.; Rubiolo, P. Cyclodextrin derivatives as chiral selectors for direct gas chromatographic separation of enantiomers in the essential oil, aroma and flavour fields [J]. J. Chromatogr. A.1999,843,99-121.
    [30]Ozoemena, K. I.; Stefan, R.-I. Enantioselective potentiometric membrane electrodes based on a-,β-and γ-cyclodextrins as chiral selectors for the assay of L-proline [J]. Talanta 2005,66,501-504.
    [31]Ozoemena, K. I.; Stefana, R.-I.; Staden, J. F. Van; et al. Enantioanalysis of S-perindopril using different cyclodextrin-based potentiometric sensors [J]. Sensor. Actuat. B-Chem.2005,105,425-429.
    [32]Okuno, H.; Kitano, T.; Yakabe, H.; et al. Characterization of overoxidized polypyrrole colloids imprinted with L-lactate and their application to enantioseparation of amino acids [J].Anal. Chem.2002,74,4184-4190.
    [33]Huanga, J.Y.; Wei, Z.X.; Chen, J.C. Molecular imprinted polypyrrole nanowires for chiral amino acid recognition [J]. Sensor. Actuat. B-Chem.2008,134, 573-578.
    [34]Sekine, S.; Watanabe, Y.; Yoshimi, Y.; et al. Influence of solvents on chiral discriminative gate effect of molecularly imprinted poly(ethylene glycol dimethacrylate-co-methacrylic acid) [J]. Sensor. Actuat. B-Chem.2007,127, 512-517.
    [35]Dimitrova, P.; Bart, H.-J. Non-ionic surfactant modified ligand exchange chromatography using copper (II) complex of N, N-dimethyl-L-phenylalanine as the chiral additive for enantioselective amino acids separation [J]. Anal. Chim. Acta 2010,663(1),109-116.
    [36]Zhou, Y.X.; Nagaoka, T.; Yu, B.; et al. Chiral ligand exchange potentiometric aspartic acid sensors with polysiloxane films containing a chiral Ligand N-carbobenzoxy-aspartic acid [J]. Anal. Chem.2009,81,1888-1892.
    [37]Matsunaga, M.; Nakanishi, T.; Asahi, T.; et al. Highly enantioselective discrimination of amino acids using copper deposition on a gold electrode modified with homocysteine monolayer [J]. Electrochem. Commun.2007,9, 725-728.
    [38]Wang, Y.X.; Yin, X.L.; Shi, M.H.; et al. Probing chiral amino acids at sub-picomolar level based on bovine serum albumin enantioselective films coupled with silver-enhanced gold nanoparticles [J].Talanta 2006,69, 1240-1245.
    [39]Zhang, L.J.; Song, M.F.; Tian, Q.; et al. Chiral separation of l,d-tyrosine and l,d-tryptophan by ct DNA [J]. Sepa. Purif. Technol.2007,55,388-391.
    [40]Matsunaga, M.; Ueno, T.; Nakanishi, T.; et al. Enantioselective potential response of a human serum albumin-modified ITO electrode for tryptophan [J]. Electrochem. Commun.2008,10,1844-1846.
    [41]Kang, Y.-J.; Oh, J.-W.; Kim, Y.-R.; et al. Chiral gold nanoparticle-based electrochemical sensor for enantioselective recognition of 3,4-dihydroxyphenylalanine [J]. Chem. Commun.2010,46,5665-5667.
    [42]Stefana, R.-I.; Balab, C.; Aboul-Enein, H. Y. Biosensor for the enantioselective analysis of S-captopril [J]. Sensor. Actuat. B-Chem.2003,92, 228-231.
    [43]Hazzazi, O.A.; Attard, G. A.; Wells, P.B. Molecular recognition in adsorption and electro-oxidation at chiral platinum surfaces [J]. J. Mol. Catal. A-Chem. 2004,216,247-255.
    [44]Nakanishi, T.; Matsunaga, M.; Nagasaka, M.; et al. Stereospecificity in redox reactions of catechins at gold electrodes modified with self-assembled monolayers of homocysteine [J]. Electrochim. Acta 2008,53,6209-6214.
    [45]Fu, Y.Z.; Wang, L.L; Chen, Q.; et al. Enantioselective recognition of chiral mandelic acid in the presence of Zn(II) ions by 1-cysteine-modified electrode [J]. Sensor. Actuat. B-Chem.2010, Doi:10.1016/j.snb.2010.11.038
    [46]Wang, L.L; Fu, Y.Z.; Zhou, J.; et al. Stereoselective Interaction between DNA and Stable Chiral Surfaces Modified with 1,2-Diphenylethylenediamine Enantiomers [J]. Electroanal.2011,23(2),529-535.
    [47]Guo, H. S.; Kim, J. M.; Chang, S. M.; et al. Chiral recognition of mandelic acid by l-phenylalanine-modified sensor using quartz crystal microbalance [J]. Biosens. Bioelectron.2009,24,2931-2934.
    [48]Zhang, X.T.; Song, W.H.; Harris, P. J. F.; et al. Electrodeposition of chiral polymer-carbon nanotube composite films [J].Chem. Phys. Chem.2007,8, 1766-1769.
    [49]黄艳,陈华,周祚万,手性聚苯胺的研究进展[J].材料导报,2008,5(22),38-62.
    [50]Humblot, V.; Raval, R. Chiral metal surfaces from the adsorption of chiral and achiralmolecules [J].Appl. Surf. Sci.2005,241,150-156.
    [51]Matsunaga, M.; Yamamoto, D.; Nakanishi, T.; et al. Chiral discrimination between alanine enantiomers by field effect transistor with a homocysteine monolayer-modified gate [J]. Electrochim. Acta.2010,55,4501-4505.
    [52]Kima, W. S.; Lee, H. Y.; Kawai, T.; et al. Analytical studies of penicillamine enantiomer surfaces:The molecularly flat surface and the functionality [J]. Sensor. Actuat. B-Chem.2008,129,126-133.
    [53]Yuan, Q.-H.; Yan, C.-J.; Yan, H.-J.; et al. Scanning tunneling microscopy investigation of a supramolecular self-Assembled three-dimensional chiral prism on a Au(111) surface [J].J. Am. Chem. Soc.2008,130,8878-8879.
    [54]Xu, C.H.; Ng, S. C.; Sze On Chan, H. Self-assembly of perfunctionalized cyclodextrins on a quartz crystal microbalance for real-time chiral recognition [J]. Langmuir 2008,24,9118-9124.
    [55]Gan, H.; Tang, K. J.; Sun, T. L.; et al. Selective adsorption of DNA on chiral surfaces:supercoiled or relaxed conformation [J]. Angew. Chem.2009,121, 5386-5390.
    [56]Sun, T. L.; Han, D.; Rhemann, K.; et al. Stereospecific interaction between immune cells and chiral surfaces [J]. J. Am. Chem. Soc.2007,129,1496-1497.
    [57]Kitaev, V. Chiral nanoscale building blocks from understanding to applications [J].J. Mater. Chem.2008,18,4745-4749.
    [59]Kuhn, A.; Anson, F.C. Effects of chirality during electrochemical oxidation of 2,3 butanediol stereoisomers [J].J. Electroanal. Chem.1996,410,243-246.
    [60]Gao, J.; Njue, C.K.; Mbindyo, J.K.N.; et al. Mechanism of stereoselective production of trans-1-decalone by electrochemical catalysis in microemulsions [J]. J. Electroanal. Chem.1999,464,31-38.
    [61]Zhang, S.; Ding, J. J.; Liu, Y.; et al. Development of a highly enantioselective capacitive immunosensor for the detection of a-Amino acids [J].Anal. Chem. 2006,78,7592-7596.
    [62]Kurzawski, P.; Bogdanski, A.; Schurig, V.; et al. Direct determination of the enantiomeric purity or enantiomeric composition of methylpropionates using a single capacitive microsensor [J]. Anal. Chem.2009,81,1969-1975.
    [63]Gautier C., Burgi T., Chiral N-Isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared [J], J. Am. Chem. Soc.2006,128,11079-11087.
    [64]Wang. F.; Matsuda, K.; Mustafizur Rahman, A. F. M.; et al. Simultaneous discrimination of handedness and diameter of single-walled carbon nanotubes (SWNTs) with chiral diporphyrin nanotweezers leading to enrichment of a single enantiomer of (6,5)-SWNTs [J]. J. Am. Chem. Soc.2010,132, 10876-10881.
    [65]Mirri, G.; Bull, S. D.; Horton, P. N.; et al. Electrochemical method for the determination of enantiomeric excess of binol using redox-active boronic acids as chiral sensors [J]. J.Am. Chem. Soc.2010,132,8903-8905.
    [66]Pasteur, L. Memoire sur la fermentation de l'acide tartrique [J]. Compt. Rend. Acad. Sci. Paris.1858,46,615-618.
    [67]Trojanowicz, M.; Kaniewska, M. Electrochemical chiral sensors and biosensors [J]. Electroanal.2009,21,229-238.
    [68]Hofstetter, O.; Hertweck, J. K.; Hofstetter, H. Detection of enantiomeric impurities in a simple membrane-based optical immunosensor [J]. J. Biochem. Bioph. Meth.2005,63,91-99.
    [69]Tran, C. D.; Oliveira, D. Fluorescence determination of enantiomeric composition of pharmaceuticals via use of ionic liquid that serves as both solvent and chiral selector [J].Anal. Biochem.2006,356,51-58.
    [70]Tang, K. J.; Gan, H.; Li, Y.; et al. Stereoselective interaction between DNA and chiral surfaces[J]. J. Am. Chem. Soc.2008,130,11284-11285.
    [71]Champoux, J. J. DNA topoisomerases:structure, function, and mechanism [J]. Annu. Rev. Biochem.2001,07,369-413.
    [72]Tsumoto, K., Yoshikawa, K.RNA switches the higher-order structure of DNA [J].Biophys. Chem.1999,82,1-8.
    [73]Fujino, K.; Yoshitake, T.; Kehr, J.; et al. Simultaneous determination of 5-hydroxyindoles and catechols by high-performance liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine [J].J. Chromatogr. A.2003,1012,169-177.
    [74]Kai, M.; Iida, H.; Nohta, H.; et al. Fluorescence derivatizing procedure for 5-hydroxytryptamine and 5-hydroxyindoleacetic acid using 1,2-diphenylethylenediamine reagent and their sensitive liquid chromatographic determination [J].J. Chromatogr. B.1998,720,25-31.
    [75]Imai, Y.; Kawaguchi, K.; Harada, T.; et al. Solid-state optical properties of a chiral supramolecular fluorophore consisting of chiral (1R,2R)-1,2-diphenylethylenediamine and fluorescent carboxylic acid derivatives [J]. Tetrahedron Lett.2007,48,2927-2930.
    [76]Busacca, C. A.; Campbell, S.; Dong, Y.; et al. Stereoselective Synthesis of (1R, 2S,3R)-Camphordiamine [J]. J. Org. Chem.2000,65,4753-4755.
    [77]Bromidge, S.; Wilson, P. C.; Whiting, A. A parallel combinatorial approach to locating homochiral lewis acid catalysts for the asymmetric aza-siels-alder reaction of an imino dienophile [J]. Tetrahedron Lett. 1998,39,8905-8908.
    [78]Sterk, D.; Stephan, M. S.; Mohar, B. Transfer hydrogenation of activated ketones using novel chiral Ru(Ⅱ)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes [J]. Tetrahedron Lett.2004,45,535-537.
    [79]Sergejew, T. F.; Hartmann, R. W. Effect of a diphenylethylenediamine platinum complex on steroidogenesis in rats [J]. J. Steroid. Biochem. Molec. Biol.1996, 58,243-248.
    [80]Xiong, X. Q.; Liang, F.; Yang. L; et al. Synthesis and biological studies of N-alkylated cyclic diamines [J]. Chem. Biodivers.2007,4,43-51.
    [81]Noji, M.; Gohchi, Y.; Kidani, Y. Preparation of antitumor platinum(II) complexes of 1,2-diphenylethylenediamine isomers and their interactions with DNA and its purine moieties [J] Chem. Biol. Interact.1984,51,37-48.
    [82]Nakanishi, T.; Yamakawa, N.; Asahi, T.; et al. Chiral discrimination between thalidomide enantiomers using a solid surface with two-dimensional chirality [J]. Chiralty 2004,16,36-39.
    [83]Zhang, J.; Li, B.; Cui, X.F.; et al. Spontaneous chiral resolution in supramolecular assembly of 2,4,6-tris(2-pyridyl)-1,3,5-triazine on Au(111) [J]. J. Am. Chem. Soc.2009,131,5885-5890.
    [84]Linares, M.; Minoia, A.; Brocorens, P.; et al. Expression of chirality in molecular layers at surfaces:insights from modeling [J]. Chem. Soic.Rev.2009, 38,806-816.
    [85]Roe, S.; Ritson, D. J.; Garner, T.; et al. Tuneable DNA-based asymmetric catalysis using a G-quadruplex supramolecular assembly [J]. Chem. Commun. 2010,46,4309-4311.
    [86]Yuan, Q.H.; Yan, C.J.; Yan, H.J.; et al. Scanning tunneling microscopy investigation of a supramolecular self-assembled three-dimensional chiral prism on a Au (111) surfac[J]. J. Am. Chem. Soc.2008,130,8878-8879.
    [87]Cichelli, J.; Zharov, I.Chiral permselectivity in nanoporous opal films surface-modified with chiral selector moieties [J]. J. Mater. Chem.2007,17, 1870-1875.
    [88]He, J. X.; Sato, H.; Yang, P. J.; et al. Creation of a stereoselective solid surface by self-assembly of a chiral metal complex onto a nano-thick clay film [J]. Electrochem.Commun.2003,5,388-391.
    [89]Nishino, T.; Umezawa, Y. Single-molecule chiral recognition on a surface by chiral molecular tips [J]. Anal.Chem.2008,80,6968-6973.
    [90]Bustos, E.; Garcia, J. E.; Bandala, Y.; et al. Enantioselective recognition of alanine in solution with modified gold electrodesusing chiral PAMAM dendrimers G4.0 [J].Talanta 2009,78,1352-1358.
    [91]Zhang, S.; Ding, J. J.; Liu, Y.; et al. Development of a highly enantioselective capacitive immunosensor for the detection of a-Amino acids [J], Anal. Chem. 2006,78,7592-7596.
    [92]Sauerbrey, G. The use of quartz oscillators for weighing thin layers and for microweighing [J]. Z. Phys.1959,155,206-222.
    [93]Bustos, E.; Godinez, L. A.; Reyes, G. R.; et al. Chiral recognition of alanine across modified carbon electrodes with 3,4-dihydroxyphenylalanine [J]. Electrochim. Acta.2009,54,6445-6450.
    [94]Heli, H.; Sattarahmady, N.; Jabbari, A.; et al. Adsorption of human serum albumin onto glassy carbon surface-applied to albumin-modified electrode: Mode of protein-ligand interactions [J]. J. Electroanal. Chem.2007,610, 67-74.
    [95]Liao, Y.H.; Yuan, R.; Chai, Y.Q.; et al. Study on an amperometric immunosensor based on Nafion-cysteine composite membrane for detection of carcinoembryonic antigen [J].Anal. Biochem.2010,402,47-53.
    [96]Alfonta, L.; Katz, E.; Willner, I. Sensing of acetylcholine by a tricomponent-enzyme layered electrode using faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods [J].Anal. Chem.2000,72,927-935.
    [97]Feng, K. J.; Li, J. S.; Jiang, J. H.; et al. QCM detection of DNA targets with single-base mutation based on DNA ligase reaction and biocatalyzed deposition amplification [J]. Biosens. Bioelectron.2007,22,1651-1657.
    [98]Su, W. C.; Zhang, W. G.; Zhang, S.; et al. A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor [J]. Biosens. Bioelectron.2009,25,488-492.
    [99]Stefan, R.I.; Bokretsion, R.G.; van Staden, J.F.; et al. Simultaneous determination of L- and D-methotrexate using a sequential injection analysis/amperometric biosensors system [J]. Biosens. Bioelectron.2003,19, 261-267.
    [100]Domenech, A.; Koshevoy, I.O.; Penno, D.; et al. Electrochemical chiral recognition by microparticle coatings of Pd complexes with bridging cyclometalated phosphines [J]. Electrochim. Acta.2008,53,3416-3426.
    [101]Stefan, R.I.; Bala, C.; Aboul-Enein, H.Y. Biosensor for the enantioselective analysis of S-captopril [J]. Sensor. Actuat. B-Chem.2003,92,228-231.
    [102]Stefan, R.I.; Nejem, R.M.; van Staden, J.F.; et al. Determination of D-2-hydroxyglutaric acid in urine samples using enantioselective, potentiometric membrane electrodes based on antibiotics [J]. Sensor. Actuat. B-Chem.2005,106,791-795.
    [103]Tang, K.W.; Yi, J.M.; Huang, K.L.; et al. Biphasic recognition chiral extraction:a novel method for separation of mandelic acid enantiomers [J]. Chirality 2009,21,390-395.
    [104]Martin, A.; Cocero, M.J. Separation of enantiomers by diastereomeric salt formation and precipitation in supercritical carbon dioxide:Application to the resolution of mandelic acid [J]. J. Supercrit. Fluids 2007,40,67-73.
    [105]Pham, X.H.; Kim, J.M.; Chang, S.M.; et al. Enantioseparation of D/L-mandelic acid with L-phenylalanine in diastereomeric crystallization [J].J. Mol. Catal. B:Enzym.2009,60,87-92.
    [106]Aneja, R.; Luthra, P. M.; Ahuja, S. High-performance liquid chromatography separation of enantiomers of mandelic acid and its analogs on a chiral stationary phase [J]. Chirality 2010,22,479-485.
    [107]Xu, M.H.; Lin, J.; Hu, Q.S.; et al. Fluorescent sensors for the enantioselective recognition of mandelic acid:signal amplification by dendritic branching [J]. J. Am. Chem. Soc.2002,124,14239-14246.
    [108]Xu, L.; Yang, Y.Y.; Wang, Y.Q.; et al. Chiral salen Mn(III) complex-based enantioselective potentiometric sensor for L-mandelic acid [J]. Anal. Chim. Acta.2009,653,217-221.
    [109]He, J.X.; Sato, H.; Yang, P.J.; et al. Creation of a stereoselective solid surface by self-assembly of a chiral metal complex onto a nano-thick clay film [J]. Electrochem. Commun.2003,5,388-391.
    [110]Ozoemena, K.I.; Stefan, R.I. Enantioselective, potentiometric membrane electrodes based on maltodextrins. Their applications for the determination of L-proline [J]. Sensor. Actuat. B-Chem.2004,98,97-100.
    [111]Yang, W.R.; Gooding, J.J.; Hibbert, D.B. Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper [J]. J. Electroanal. Chem.2001,516,10-16.
    [112]Yang, N.J.; Wang, X.X.; Wan, Q.J. Electrochemical reduction of Zn(Ⅱ) ions on L-cysteine coated gold electrodes [J]. Electrochim. Acta 2006,51,2050-2056.
    [113]Hyun, M.H.; Han, S.C.; Whangbo, S.H.; New ligand exchange chiral stationary phase for the liquid chromatographic resolution of a-and β-amino acids [J]. J. Chromatogr. A 2003,992,47-56.
    [114]Dimitrova, P.; Bart, H.-J. Non-ionic surfactant modified ligand exchange chromatography using copper (Ⅱ) complex of N, N-dimethyl-L-phenylalanine as the chiral additive for enantioselective amino acids separation [J]. Anal. Chim.Acta.2010,663,109-116.
    [115]Bauer, T.; Gajewiak, J. a-Hydroxy carboxylic acids as ligands for enantioselective diethylzinc additions to aromatic and aliphatic aldehydes [J]. Tetrahedron 2004,60,9163-9170.
    [116]Zhang, R.H.; Hong, Q.M.; Yang, J.M.; et al. Syntheses, spectroscopies and structures of zinc complexes with malate [J]. Inorg. Chim. Acta 2009,362, 2643-2649.
    [117]Zhang, J.; Song, S.P.; Wang, L.H.; et al. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA [J]. Nat. Protoc.2007,2,2888-2894.
    [118]Trasatti, S.; Petrii, O. A. Real surface area measurements in electrochemistry [J]. Pure &Appl. Chem.1991,63,711-734.
    [119]Hoogvliet, J.C.; Dijksma, M.; Kamp, B.; et al. Electrochemical pretreatment of polycrystalline gold electrode to produce a reproducible surface roughness for self-assembly:a study in phosphate buffer pH 7.4 [J]. Anal. Chem.2000,72, 2016-2021.
    [120]Jarzqbek, G.; Borkowska, Z. On the real surface area of smooth solid electrodes [J]. Electrochim. Acta 1997,42,2915-2918.
    [121]Zhang, W.; Yang, T.; Zhuang, X.M.; et al. An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing [J]. Biosens. Bioelectron.2009,24,2417-2422.
    [122]Mohamed, S.E.; Takeo, O. Molecular-level design of binary self-assembled monolayers on polycrystalline gold electrodes [J]. Electrochim. Acta 2004,49, 2189-2194.
    [123]Alfonta, L.; Bardea, A.; Khersonsky, O.; et al. Chronopotentiometry and faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports:routes for enzyme sensors, immunosensors and DNA sensors [J]. Biosens. Bioelectron. 2001,16,675-687.
    [124]Zhuo, Y.; Yuan, R.; Chai, Y.Q.; et al. A reagentless amperometric immunosensor based on gold nanoparticles/thionine/Nafion-membrane-modified gold electrode for determination of a-fetoprotein [J]. Electrochem. Commun.2005,7,355-360.
    [125]Huang, X.Q.; Chai, Y.Q.; Yuan, R.; et al. Studies on the interaction between DNA and azure by AC impedance methods [J]. J. Southwest China Normal Univer. (Nat. Sci.) 2003,28,933-936.
    [126]Fu, Y.Z.; Yuan, R.; Xu, L.; et al. Indicator free DNA hybridization detection via EIS based on self-assembled gold nanoparticles and bilayer two-dimensional 3-mercaptopropyltrimethoxysilane onto a gold substrate [J]. Biochem. Eng. J.2005,23,37-44.
    [127]Liu, Q.; Wu, K.K.; Tang, F.; et al. Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations [J]. Chem. Eur. J.2009,15,9889-9896.
    [128]Lu, X.N.; Chen, Y.; Guo, L.; et al. Chiral separation of underivatized amino acids by ligand-exchang capillary electrophoresis using a copper(II)-L-lysine complex as selector [J]. J. Chromatogr. A.2002,945,249-255.
    [129]Rmaile, H. H.; Schlenoff, J. B. Optically active polyelectrolyte multilayers as membranes for chiral separations [J]. J. Am. Chem. Soc.2003,125,6602-6603.
    [130]孙登明,张振新,马伟,等.聚L-苏氨酸修饰电极的制备及循环伏安法测定多巴胺[J].药物分析杂志2006,26(3),377-380.
    [131]Huang, J.X.; Egan, V.M.; Guo, H.L.; et al. Enantioselective discrimination of d-and 1-phenylalanine by chiral polyaniline thin films [J].Adv. Mater.2003,15, 1158-1161.
    [132]Rat'ko, A.A.; Stefan, R.-I.; van Staden, J.F.; et al. Macrocyclic antibiotics as chiral selectors in the design of enantioselective, potentiometric membrane electrodes for the determination of L-and D-enantiomers of methotrexate [J]. Talanta 2004,64,145-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700