用户名: 密码: 验证码:
大孔树脂吸附黄柏总生物碱的理论和应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出现于20世纪60年代的大孔树脂吸附技术,以其操作工序简单,溶剂单一,污染小,且产品的纯度高等独特的优越性,广泛应用于中药有效成分的分离纯化。人们对该项技术做了大量的理论和应用研究,如大孔树脂型号的筛选,吸附工艺研究,大孔树脂柱的放大,动力学和热力学研究,但缺乏系统性;且吸附的对象多是单一成分,对总有效部位的探讨较少。鉴于此,课题选择黄柏总生物碱作为研究对象,系统探讨大孔树脂对它的吸附,为总生物碱有效部位的开发和工业化生产奠定基础,同时也为大孔树脂吸附技术分离纯化中药其它有效成分提供一条思路。论文选择黄柏药材,方面因为其价廉易得,另一方面,该药材的药效物质基础研究比较成熟,最后,本课题组做了大量相关的前期基础研究工作。各项工作总结如下:
     (1)采用高效液相色谱法同时测定了黄柏药材中盐酸小檗碱、盐酸巴马汀、盐酸药根碱的含量。色谱条件为:Diamonsil 5μmC18柱(250 mm×4.6mm);流动相为乙腈-1g/L磷酸(50:50),内含1g/L十二烷基磺酸钠;流速:1mL/min;检测波长:265nm。测定结果为:盐酸小檗碱11.4mg/g药材,盐酸巴马汀5.85 mg/g药材;盐酸药根碱0.82mg/g药材,三种小檗碱型生物碱的质量占到药材中总生物碱的39.28%。
     (2)采用紫外分光光度法测定了黄柏药材中总生物碱的含量。药材中总生物碱的制备方法为:取黄柏药材粉末(过40目筛)1.00g,置索氏提取器中,加90mL的甲醇加热提取至提取液无色为止,将提取液转移至100mL的量瓶中,加甲醇定容至刻度。紫外检测波长为265nm,测得总生物碱的含量以盐酸小檗碱计为46mg/g药材。
     (3)通过正交实验优化了黄柏总生物碱的提取工艺。较佳的工艺条件为:乙醇浓度60%,溶媒倍量8BV,提取时间1h,提取次数3次。在此条件下,总生物碱的得量为38mg/g药材,转移率为81.88%。
     (4)选取9种大孔树脂进行初筛,以黄柏提取液中总生物碱的吸附率和解吸率为指标,筛选出效果较好的3种树脂:AB-8、HP20、LD605;对这3种树脂复筛,同时以盐酸小檗碱的解吸量作为考察指标,综合各种指标发现AB-8是一种理想的树脂,可用于黄柏总生物碱的分离纯化,具有较好的推广应用价值;国内生产AB-8树脂的厂家很多,性能参数差别较大。其中天津欧瑞生物科技有限公司生产的AB-8树脂在吸附黄柏总生物碱方面效果较好,将作为后续研究的对象,进行重点讨论。
     (5)对AB-8树脂吸附黄柏总生物碱和盐酸小檗碱的动力学和热力学分别进行了探讨,两者的动力学和热力学特性非常相似。黄柏提取液中的总生物碱在AB-8树脂上的吸吸附过程趋近于一级动力学过程;在总生物碱起始浓度为0.686mg/mL,温度27℃条件下,吸附速率常数K1=2.176 h-1;过程同时受液膜扩散和颗粒内扩散控制;在较低的温度、pH值,较高的起始浓度、振荡速度下,有利于吸附;盐酸小檗碱在AB-8树脂上的吸附过程也趋向于一级动力学过程,但吸附速率比黄柏提取液中总生物碱要慢;过程速率同时受液膜扩散和颗粒内扩散控制;吸附速率常数随温度的降低而升高,随初始浓度、溶液pH、振荡速度的增加而增大。实验同时发现,黄柏提取液中的盐酸小檗碱和原料药中盐酸小檗碱两者的动力学过程存在明显的差异,后者用一级动力学方程拟合较好而前者不然;在吸附的起始阶段,前者速率较后者要快很多,说明提取液中盐酸巴马汀、盐酸药根碱等其它生物碱的存在影响了盐酸小檗碱在AB-8树脂上的吸附,使其速率加快。总生物碱和盐酸小檗碱的热力学性质基本一致,吸附等温线实验表明:平衡吸附量随着浓度的增加而增加,随着温度的升高而降低,说明低温较有利于吸附;吸附等温线用Langmuir和Freundlich模型都能较好的拟合,说明二者在AB-8树脂上都是单分子层吸附;吸附是放热的物理吸附;在几个实验温度下,吸附都能自发的进行。
     (6)在动力学和热力学研究的基础上,建立了大孔树脂柱的放大模型,该模型包括5个部分:①物料衡算方程(连续性方程);②动力学方程;③相平衡方程(吸附等温线方程);④边界条件;⑤初始条件。求解该模型得到数值解,并通过实验验证了该模型,实验测得的数据和模型模拟得出的数据吻合很好,说明建立的数学模型准确可靠,可用于大孔树脂柱的放大。
     (7)对AB-8树脂动态吸附黄柏提取液中的总生物碱以及盐酸小檗碱进行了工艺考察,得到吸附总生物碱较佳的条件为:上样量50mL样品/mL树脂,上样浓度0.684mg/mL,上柱流率2BV/h,杂质洗脱剂水的用量为3BV,洗脱剂采用40%的乙醇,用量为6BV,按照此工艺条件,得到总生物碱的纯度为40.06%,比上柱之前的纯度提高了2.56倍。吸附盐酸小檗碱的工艺条件为:上样量55mL样品/mL树脂,上样浓度0.576mg/mL,洗脱剂的种类为40%的乙醇,用量为6BV。
Macroporous resin adsorption technology, first appearing in the 1960s, is widely used in the separation and purification of active ingredients for its unique advantages, such as simple operational procedures, single-solvent, low pollution, and high purity of the product. Numorous work has been conducted on the application of this techneque in traditional Chinese medicine analysis both from the theoretical and applied aspects. However, these researches are still not very systematic and too preliminary. In view of this, we will comprehensively explore the adsorption behavior of the total alkaloids on macroporous resin which may lay the foundation for the industrial production of alkaloids and provide a thread for separating other effective parts of traditional Chinese medicine. In this paper, Cortex Pheullodendri Chinensis is selected as reserch object. On the one side because it is cheap and easy to get,'on the other side, the material basic research is more mature. Finally, a lot of work has been done to this medicine.The studies are summarized as follows:
     (1)Using high performance liquid chromatography method to determine berberine hydrochloride, palmatine chloride and jatrorrhizine hydrochloride 's content simultaneously in Cortex Pheullodendri Chinensis. Chromatographic conditions are:Diamonsil 5μm C18 column (250 mm×4.6mm) is used, mobile phase is acetonitrile-lg/L phosphoric acid (50:50) (containing lg/L sodium dodecyl sulfate) with flow rate 1mL/min, detection wavelength is 265nm. Determination results are as follows:berberine hydrochloride is 11.4mg/g herbs, palmatine chloride is 5.85 mg/g herbs, jatrorrhizine hydrochloride is 0.82mg/g herbs. The quality of three kinds of berberine-type alkaloid is accounted for 39.28% to total alkaloids.
     (2) Using ultraviolet spectrophotometry to determine total alkaloid content in Cortex Pheullodendri Chinensis. Sample preparation is as follows: taking Cortex Pheullodendri Chinensis powder 1.OOg to Soxhlet extractor, 'then adding 90mL methanol and heating until extraction liquid is colorless. The extract liquid is transferred to container of 100mL, adding methanol to the scale volume. Selecting UV detection wavelength is 265nm. The total alkaloid content of Cortex Pheullodendri Chinens is counted as 46mg/g herbs.
     (3) Extraction process of total alkaloid in Cortex Pheullodendri Chinensis was optimized by orthogonal experiments. Better process conditions are:60% ethanol as extraction solvent with 8BV, distilling 3 times, 1h per time. Under these conditions, the extraction amount of total alkaloids was 38mg/g herbs. Transfering rate is 81.88%.
     (4) Nine kinds of macroporous resin was selected for screening. Three kinds of resin AB-8, HP20, LD605 have a good effect both in total alkaloid adsorption and desorption. This three kinds of resin were used for furthere selected, the desorption amount of berberine hydrochloride as an inspection-target. The result shows AB-8 is an ideal kind of resin for separating and purificating total alkaloids. AB-8 resin'performance parameters produced by different manufacturers vary in domestic. The AB-8 resin which produced by Ou Rui bio-technology Co., Ltd., Tianjin shows a good effect in absorpting total alkaloids in Cortex Pheullodendri Chinensis and will be served as study object for further research.
     (5)Adsorption kinetics and thermodynamics of total alkaloids and berberine hydrochloride on AB-8 resin were discussed. Both the dynamic and thermodynamic properties are very similar. The adsorption process of total alkaloids on AB-8 resin tends to be the first order kinetics process. At the conditions of starting concentration 0.686mg/mL, temperature 27℃, the adsorption rate constant k1=2.176 h-1. Process is controled both by film diffusion and in-particle diffusion. A lower temperature, pH, a higher initial concentration, oscillation speed are favourable to adsorp. Adsorption process of berberine hydrochloride on AB-8 resin also tends to be the first order kinetics process. But the adsorption rate is slower than the total alkaloid's. Process is controled both by film diffusion and in-particle diffusion. Adsorption rate rises with the decreasing of temperature and increasing of initial concentration, solution pH, oscillation speed. Experiment also found that the kinetics of berberine hydrochloride in Cortex Pheullodendri Chinensis extraction liquid and in bulk drug were significantly different. The latter fits well first order kinetics equation but the former not. In initial stage, the former's adsorption rate is much faster than the latter's, which indicates palmatine chloride and jatrorrhizine hydrochloride and other 'alkaloids'presence affecting and promoting berberine hydrochloride adsorption on AB-8 resin. Thermodynamic properties of the two are basically the same. The isotherm adsorption experiment shows that equilibrium adsorption capacity increases with the concentration. Lower temperature is more favorable to the adsorption. The isotherm adsorption data fits well Langmuir and Freundlich isotherm which indicate the two are monolayer adsorption on AB-resin.The adsorption is spontaneous exothermic process of physical characters.
     (6) On the base of dynamics and thermodynamics study, amplification model of macroporous resin column was established, which includes five parts:①mass balance equation (continuity equation);②kinetics equation;③equilibrium equation (isotherm adsorption equation);④boundary conditions;⑤initial conditions. Solving this model obtains numerical solutions and experiment was done to verificate whether the model is exact. The measured data and model simulated data are coincided, indicating the establishment of the mathematical model is accurate, reliable, and can be used for amplification of macroporous resin column.
     (7)The technical conditions of dynamic adsorption of total alkaloids and berberine hydrochloride on AB-8 resin were optimized. The former is:sample volume is 50mL samples/mL resin, sample concentration is 0.684mg/mL, flow rate is 2BV/h, the amount of impurities eluant is 3BV, eluant is 40% ethanol with 6BV. In these conditions, the purity of total alkaloids is 40.06% and increases 2.56-fold prior to before purification. Berberine hydrochloride adsorption conditions are: sample volume is 55mL samples/mL resin, concentration is 0.576mg/mL, eluant·is 40% ethanol with 6BV.
引文
[1]蔡伟玲,尤国伟.评“黄柏润肾燥”说[J].时珍国医国药,1999:10(9):719.
    [2](魏)吴普等述.(清)孙星衍及孙冯翼辑神农本草经[M],北京:人民卫生出版社,1982,第1版:41.
    [3]刘寿山.中药研究文献摘要[M],北京:科学出版社,1963,第1版:608-614.
    [4]吴贻谷,宋立人.中华本草[M],上海:上海科学技术出版社,1998,第1版:3775~3777.
    [5]加来天民.薬効学[M],東京:医歯薬出版株式會社,1956,第1版:320.
    [6]崔万胜.川黄柏化学成分及对肾阳虚小鼠药理作用的研究.沈阳药科大学硕士学位论[D].
    [7]周海燕.关黄柏化学成分的研究.沈阳药科大学硕士学位论文[D].
    [8]郭书好,周明辉,李素梅.川黄柏果挥发油的化学成分研究[J].暨南大学学报(自然科学版),1998;19(3):61~63.
    [9]梁龙,李光玉.秃叶黄皮树化学成分研究[J].中药材,1995;18(2):85~86.
    [10]Shendan H, Bhandafi P. Canthin-6-one from the root bark of Phallodendrom Chinense[J].Planta med,1992; 58(3):299.
    [11]郭书好,周明辉,李素梅.川黄柏叶中黄酮成分的研究[J].暨南大学学报(自然科学版),1998;19(5):68~72.
    [12]苏荣辫,金武柞,中岛修平等.黄皮树果实中的酰胺类化合物[J].植物学报,1994;36(10):817~820.
    [13]郭书好,周明辉,李素梅.川黄柏果挥发油的化学成分研究[J].暨南大学学报(自然科学版),1998;19(3):61~63.
    [14]马蓉蓉,唐意红,马春辉等.HPLC-UV同时测定不同产地黄柏中小檗碱和巴马汀的含量[J].黑龙江医药,2007;20(6):560~562.
    [15]夏荃,李灿明.HPLC测定黄柏生品与不同炮制品3种生物碱的含量.中成药,2008;30(7)1018~1020.
    [16]丁睛,徐德然.HPLC法同时测定黄柏中盐酸药根碱、盐酸巴马汀及盐酸小檗碱的含量[J].西北植物学报,2004;24(11):213.
    [17]周德庆,郭志雄,罗泽渊等.HPLC法测定黄柏中黄柏碱的含量[J].中成药,2003;2(12)1002~1004.
    [18]赵陆华,蔡星瀛,董善士等.HPLC法测定黄连、黄柏及其中成药中小檗碱型生物碱的含量[J].中国药科大学学报,1989;20(2):82~85.
    [19]钟国跃,于超,赵志礼.中药质量评价方法新探——“有限成分组合质量标准”论[J].中国中药杂志,2002;27(9):719.
    [20]钟国跃,黄小平,陈仕江等.黄连(味连)“有限成分组合质量标准”的研究[J].世界科学技
    术——中医药现代化,2004;6(6):72.
    [21]李峰,贾彦竹.黄柏的临床药理作用[J].中医药临床杂志,2004;16(2):191.
    [22]王德全,胡俊英.黄柏胶囊抗炎疗效临床分析[J].中华实用中西杂志,2004;4(17)839.
    [23]李宗友.黄柏和辽宁椹木的丁醇提取物刺激PI3激酶和ERK2引起的HepH2细胞中糖原含量的增加[J].国外医学中医中药分册,1999;21(3):44.
    [24]陈锦英,何建民,何秋.中草药对致肾盂肾炎大肠杆菌粘附特性的抑制作用[J].天津医药,1994;22(10):579~581.
    [25]吴达荣,郑有顺.黄柏对螺门螺杆菌的抑菌临床研究[J].华南药讯,1995;4:30.
    [26]梁荣,陈光新,张问渠.等汉方药对痤疮丙酸杆菌脂酶活性的抑制作用[J].国外医学-中医中药分册,1991;13(5):44.
    [27]杨淑芝,张晓坤.太黄等中药抗厌氧菌的作用研究[J].辽宁中医杂志,1997;24(4):127.
    [28]Mori H., Fuehigami M., Inoue N. et al. Principle of the bark of Phello-dendron amurense to suppress the cellular immune response[J]. Planta Med,1994; 60(5):445~449.
    [29]Mori H., Fuehigami M., Inoue N. et al. Principle of the bark of Phello-dendron amurense to suppress the cellular immune response:Effect of Phellodendronon cellular and humoral immune response[J]. Planta Med,1995; 61(1):45~49.
    [30]吕燕,邱全瑛.黄柏对小鼠DTH及其体内几种细胞因子的影响[J].北京中医药大学学报,1999;22(6):48~50.
    [31]廖静,鄂征等.中药黄柏的光敏抗癌作用研究[J].首都医科大学学报,1999;20(3):153.
    [32]张志军.黄拍提取物的抗溃疡效果[J].国外医学—中医中药分册,1994;16(1):29.
    [33]孔令东,杨澄.黄柏炮制品清除氧自由基和抗脂质过氧化作用[J].中国中药杂志,2001;26(4):245.
    [34]丘珍,王嘉英,吕红斌.行气消肿类中药对体外培养的软骨细胞代谢的影响[J].中国运动医学杂志,1998;17(1):34~37.
    [35]Kawaguchi H., Kim M., Ishida M. el. Several antifeedants from Phel-lodandron amurence
    against Retienditermes speratus[J]. Agen.Biol Chem.,1989; 53(10):2635~2644.
    [36]Su R H., Kim M., yamamol T. et al. Antifeeding coustuenis of Phellodandron Chinense against Retienditermes speratus[J]. J. Pesticide Sci,1990;15(4):567~572.
    [37]苏荣辫,金武柞,中岛修平等.黄皮树果实中的酰胺类化物[J].植物学报,1994;36(10):817~820.
    [38]高学敏.中药学[M],北京:中国中医药出版社,2007,第2版:258.
    [39]奉建芳,罗杰英.高速离心法等制备中药口服液比较研究[J].中成药,1996;18(2):728.
    [40]金伟,王亚威.虻虫抗凝血物质的提取与鉴定[J].中医药学报,2000;28(3):58~59.
    [41]张慧丽,孙印石,郑毅男.葡聚糖凝胶LH-20柱层析法分离人参皂苷Re的研究[J].吉林农业大学学报,2005:27(3):293~295.
    [42]郭立玮,金万勤,彭国平.21世纪的植物药深加工现代化技术——膜分离[J].南京中医药大学学报,2000;16(2):65~671.
    [43]王世岑,郑殿宝.超滤法提取黄芩苷的初步考察[J].中成药研究,1988;31:51
    [44]王世岑.超滤法一次提取黄芩苷的工艺研究[J].中成药,1994;16(3):21.
    [45]邓少伟.用大孔吸附树脂分离川芎总提物[J].中草药,1999;30(1):23~25.
    [46]袁海龙,李仙逸,赵艳玲.大孔吸附树脂-HPLC法测定金花丸中栀子苷的含量[J].中药材,2000;23(20):63.
    [47]刘友平,鄢丹,秦春梅.大孔吸附树脂纯化中药有效成分的影响因素[J].中药新药与临床药理,2003;14(3):212~214.
    [48]Ho Y, Sandlin J. High-speed preparative counter-rent chromatography with a coil planlet centrifuge [J]. J.Chro-matogr A,1982:244:247~251.
    [49]袁黎明,吴平,夏滔等.高速逆流色谱制备分离中药黄柏中的生物碱[J].色谱,2002;20(2):185~186.
    [50]Fuquan Y, Ito Y. Preparative separation of lappaconitine, ran 2a conitine, N-Deceyllappacon-itine and No deacety lrana conitine from crude alkaloids of sample A-Conitum sinomon tanum Nakai by high-speed countet-current chromatography [J].J Chroma togr A,2002; 943:219~225.
    [51]陈存社,刘玉峰,周志兰.高速逆流色谱分离纯化芦荟中的活性物质[J].色谱,2003;21(4):435.
    [52]冯顺卿,李药兰,邱玉明等.高速逆流色谱分离长瓣金莲花中的黄酮类物质[J].色谱,2003;21(6):627.
    [53]刘华,葛发欢.分子蒸馏技术在天然产物分离和其他领域中的应用[J].中药材,1999;22(3):152~156.
    [54]王军武,许松林,徐世民等.分子蒸馏技术的应用[J].化工进展,2002;21(7):499~501.
    [55]张忠义,雷正杰,王鹏等.超临界CO2-分子蒸馏对干姜有效成分的萃取与分离[J].中药材,2001;24(8):576~576.
    [56]郭晓玲,冯毅凡,梁汉明等.川芎超临界CO2萃取物化学成分的GC-MS分析[J].中国医药工业杂志,2005;36(8):472~474.
    [57]颜继忠,褚建军,金洁.高速逆流色谱分离黄柏中的小檗碱和巴马亭[J].浙江工业大学学报,2004;32(4):416~417.
    [58]武可泗,王宏涛,王立伦.黄柏提制盐酸小蘖碱的工艺研究[J].陕西中医学院学报,1994;17(3):41~43.
    [59]陈月圆,李典鹏,高江林.黄柏中总生物碱的提取及测定方法研究[J].广西植物,2003;23(6): 565~567.
    [60]杨永波,姚琳,郑霞等.大孔吸附树脂分离纯化黄柏中盐酸小檗碱的工艺研究[J].黑龙江中医药,2009;(1):56~57.
    [61]任晓锋,余婷婷,陈钧.大孔吸附树脂分离纯化黄连、关黄柏中季铵总碱的工艺研究[J].时珍国医国药,2008;19(4):949~951.
    [62]Irving Langmuir. The adsorption of gases on plane surfaces of glass. mica and platinum [J]. J. Am. Chem. Soc.1918; 40:1361-1403.
    [63]鮫島實三郎.化学通論[M],東京:岩波書店,1935,第1版:177.
    [64]飯島俊一郎.化学の総合研究[M],東京:学燈社,1959,第1版:286.
    [65]《化学工程手册》编辑委员会编.《化学工程手册,第17篇,吸附及离子交换》[M],化学工业出版社,1985,第1版:160.
    [66]Wheeler A.. Reaction rates and selectivity in catalyst pores[J].Advances in Catalysis,1951; 3:249.
    [67]Johnson M.F.L., Stewart W.E..Pore Structure and Gaseous Diffusion in Solid Catalysts[J].J.of Catalysis,1965;4:248.
    [68]Wakao N., Smith J.M.. Diffusion in Catalyst Pellets[J]. Chem. Eng.Sci.,1962; 17: 825.
    [69]Schneider P, Gelbin D.. Direct transport parameters measurements versus their estimation from mercury penetration in porous solids[J]. Chem.Eng.Sci.,1985; 40: 1093.
    [70]张玉格,王补森等.复合树脂及其交换动力学[J].高等学校化学学报,1992;13(3):410.
    [71]黄玉明,黄国兰.大孔网状树脂对三丁基氯化锡的吸附特性研究[J].离子交换与吸附,1995;11(6):512.
    [72]Jansson-Charrier, M., Saucedo, I., Guibal, E, et. Approach of uranium sorption mechanisms on chitosan and glutamate glucan by IR and C-13-NMR analysis [J]. Reactive and Functional Polymers,1995; 27,209~221.
    [73]LI Xiangbin, ZHAO Yuechun, XIA Qibin, et. A NEW MODEL FOR ESTIMATION OF DIFFUSION COEFFICIENT OF PHENOL DESORPTION WITHIN POLYMERIC RESIN UNDER ULTRASOUND [J]. CHINESE JOURNAL OF REACTIVE POLYMERS.2002; 11(1):1~10.
    [74]G. E. Boyd, L. S. Myers Jr., A. W. Adamson. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites.Ⅲ. Performance of Deep Adsorbent Beds under Non-equilibrium Conditions [J]. J. Am. Chem. Soc,1947; 69 (11):2849~2859.
    [75]Glueckauf, E. Theory of Chromatography. Part 10. Formulae for Diffusion Into Spheres [J]. Trans. Faraday Soc.,1955; 51,1540.
    [76]Giddings J. C..Dyamics of Chromatography [M]. New York:Marcel Decker,1965: 24.
    [77]Klinkenberg A..The Nature of Eddy Diffusion[J].Chem.Eng.Sci.,1956; 5:258.
    [78]Yang C.,G.T.Tsao.Packed-bed adsorption theories and their application to affinity chromatography[M],Heidelberg:Springer Berlin,1982:1~18.
    [79]叶振华.化工吸附分离过程原理[M],北京:化学工业出版社,1988.
    [80]Chase H.A. Proceedings of the NATO advanced study institute on:science and technology [M], Cluwer Academic Publisher,1989.
    [81]Tien C.,G.Thodos.Ion Exchange Kinetics for Systems of Nonlinear Equilibrium Relationships[J]. AIChE J,1959; 5:373.
    [82]Cooper R S.. Slow particle diffusion in ion exchange columns[J].Ind Eng. Chem Fundam.,1965;4:308~313.
    [83]Rosen J.B.. Kinetics of a fixed-bed system for solid diffusion into spherical particles[J]. Chem Phys.,1952:20:387~394.
    [84]Rosen J.B. General numerical solution for solid diffusion in fixed beds[J].. Chem Eng.,1954;46(8):1590~1594.
    [85]Morton E.L.,Murrill P.W.. Analysis of Liquid Phase. Adsorption Fractionation in Fixed Beds[J]. AIChE J.,1967; 13:965.
    [86]Sweed N.H.,Wilhlem R.H..Parametric Pumping Separations via Direct Thermal Mode[J]. Chem Eng.,1969;8:221~231.
    [87]Brauch V.,Schlunder E.U..The scale-up of activated carbon col-umns for water purification[J].Chem Eng.Sci.,1975;30:539~548.
    [88]Svedbery V.G..Numerical solution of mul ticolumn adsorption processes under periodic countercurrent operation[J]. Chem Eng.Sci.,1976; 31:345~353.
    [89]Klaus R.,Aiken R.C,Rippin D.W.T.Simulated Binary Isothermal Adsorption on Activated Carbon in Periodic Counter-Current Column Operation[J].AIChE J,1977; 23:579~587.
    [90]Chen J.W.Cao LLC.Catalytic Cracking Technology and Engineering[J].Ind.Eng,Chem. 1968;7:26.
    [91]Yoshida H., Kataoka T, Ruthven DM. Analytical solution of the breakthrough curve for rectangular isotherm systems[J].Chem.Eng.Sci.,1984:39:1489-1497.
    [92]Cooper RS,Liberman DA.Fixed-bed adsorption kinetics with pore diffusion control[J]. Ind Eng Chem Fundam,1970;9:620~623.
    [93]Rasmuson A.,Neretnieks I..Exact solution of a model for diffusion in particles and longitudinal dispersion in packed beds[J].AIChE J,1980; 26:686~690.
    [94]Rghavan N.S.,Ruthven D.M.. Numerical Simulation of a Fixed-Bed Adsorption Column by the Method of Orthogonal Collocation[J]. AIChE J.1983; 29(6):922.
    [95]Teh-Liang CHEN, JAMES TSAI..AN HSU size is dependent on the magnitude of effective intraparticle[J]. AIChE J.1987; 33:1387.
    [96]Gu Tingyue, Jen Tsai Gow, G T Tsao. AIChE J. New Approach to a General Nonlinear Multicomponent Chromatography Model[J],1990; 36(5):784.
    [97]Gu Tingyue, Gow-Jen Tsai, George T. Tsao.Displacement Effect in Multicomponent Chromatography[J].AIChE J.1990;36(8):1156-1162.
    [98]叶常燊,王中来.固定床吸附的动力学模型及吸附剂形状因子的影响[J].离子交换与吸附,2000;16(5):392~399.
    [99]李忠,液相色谱分离过程放大机理和数学模型的研究[D].华南理工大学博士学位论文.1999.
    [100]宋应华.吸附法分离提纯红霉素的基础研究[D].华东理工大学博士学位论文.2006.
    [101]李湘.二苯并呋喃在活性炭上吸附的相平衡和动力学[D].华南理工大学博士学位论文.2004,
    [102]戈早川,周建明.胶束薄层扫描法测定黄连及其制剂中的小檗碱、巴马洒和药根碱[J].分析化学研究简报,2003:32(1):99~101.
    [103]ji XH, Li Y, Liu Hw, et al. Determination of the alkaloid content in different parts of some Mahonia plants by HPCE[J].Pharmaceutica Aeta H e]vetiae,2000:74:387~ 391.
    [104]Chen YR.wen KC,Her GR.Analysis of coptisine,berberineand palmatine in adulterated Chinese medicine by capillary electrophoresis electrospray ion trap mass spectrometry[J]. Chromatogr A,2000;866:273~280.
    [105]刑俊波,王晓娟.高效液相色谱法测定黄柏及其制剂中盐酸小檗碱含量的研究[J].中医药学刊,2003;21(11):1978~1979.
    [106]黄罗生,徐德然.黄连解毒片中黄连黄柏提取工艺的优选[J].中成药,2000;22(2):122.
    [107]尹蓉莉,扬军宣,李化.黄柏中盐酸小檗碱提取实验方法的改进[J].基层中药杂志,2000:14(6):72.
    [108]杨云,冯卫生.中药化学成份提取分离手册[M],北京:中国中医药出版社,1998,300.
    [109]徐国钧,徐珞珊.常用中药材品种整理和质量研究[M],南方协作组.第一册.福州:福建科学技术出版社,1994.603.
    [110]邢俊波,刘云.正交设计优选黄柏中小檗碱的提取工艺[J],时珍国医国药,2003;14(3):169.
    [111]肖崇厚.中药化学[M],上海科学技术出版社,2002,第1版:142.
    [112]黄建明,郭济贤,陈万生等.大孔树脂对草乌生物碱的吸附性能及提纯工艺[J].复旦学报(医学版),2003:30(3):267.
    [113]任海或,查丽杭,秦川等.大孔树脂分离提取麻黄碱的研究[J].离子交换与吸附,2002;18(2):97.
    [114]赵大洲,戴胜军.大孔树脂分离夏天无总生物碱的研究[J].中成药,2006;28(2):182.
    [115]邹节明,陆浩,何斌等.苦玄参、黄芩与黄柏的大孔树脂提取研究[J].中草药,2003;34(3):223.
    [116]高红宁,金万勤,郭立玮.微滤——大孔树脂法精制苦参中氧化苦参碱和苦参总黄酮[J].西北药学杂志,2004;19(1):12.
    [117]魏英勤,房海燕,袁久荣.正交设计法优化黄连提取液大孔树脂洗脱条件[J].制剂技术,2003:12(6):46.
    [118]陆志科,谢碧霞.大孔树脂对竹叶黄酮的吸附分离特性研究[J].经济林研究,2003;21(3): 1~4.
    [119]朱洪梅,韩永斌,顾振新等.大孔树脂对紫甘薯色素的吸附与解吸特性研究[J].农业工程报,2006;22(5):153~155.
    [120]Crank J.The Mathematics of Diffusion [M], Oxford:Clarendon Press,1975.
    [121]Guan. Jianyu. Hu. Xi jun. Simulation and analysis of pressure swing adsorption ethanol drying process by the electrical analogue[J]. Separation and Purification Technology, 2003; 31 (1):31~35.
    [122]C. H.Liaw, J. S. P.Wang, R.A. G reenkorn, K. C. C hao. Kinetics of fixed-bed adsorption:A new solution [J]. AIChe Journal,1979:25 (2):376 ~ 381.
    [123]Frost A. A. R., G. Pearson. Kinetics and Mechanism [M], New York:John Wiley,1961.
    [124]Weber Jr WJ, Morris JC, Kinetics of Adsorption on Carbon from Solution [J]. Sanit Eng. Div. Am. Soc. Civ. Eng.,1963; 89:31.
    [125]侯新朴.《物理化学》[M],北京:人民卫生出版社,2003,第5版:295.
    [126]H. Freundlich. Colloid and Capillary Chemistry [M], London:Methuen,1926.
    [127]PayneG. F., ShulerM. L.. Selective adsorption of plant products [J]. Biotechnology and Bioengineering,1988; 31(6):922.
    [128]J.M.Smith著,王建华,许学书等译.《化工动力学》[M],北京:化学工业出版社,1990:344.
    [129]李汝辉著.《传质学基础》[M],北京:北京航空学院出版社,1987:12.
    [130]王春红.《吸附树脂吸附动力学研究》[D].天津大学,2000.
    [131]宣波.小檗碱对大鼠实验性心肌梗塞的保护作用[J].中国药理学通报,1995;11(3):22.
    [132]许桂芝,王凤琴,李凡等.黄连素治疗顽固性室性心律失常38例疗效分析[J].吉林医学,1994;15(3):168.
    [133]林菁.小檗碱对K562细胞生长的抑制作用[J].福建医学院学报,1996;30(4):309.
    [134]王志红,林菁.盐酸小檗碱对HL-60细胞增殖与分化的影响[J].中国药理学通报,2004;20(11):1305.
    [135]任晓锋,余婷婷,陈钧.大孔吸附树脂分离纯化黄连、关黄柏中季铵总碱的工艺研究[J].时珍国医国药,2008;19(4):949.
    [136]徐晓宏,张铁军,廖茂梁等.大孔吸附树脂分离纯化黄连总生物碱的工艺研究[J].中草药,2007;38(8):1167.
    [137]Garcla-Delgado R A, Cotouelo-Minguez L M, Rodfiguez J J, Equilibrium Study of Single-Solute Adsorption of Anionic Surfactants with Polymeric XAD Resins [J]. Sep. Sci. and Technol.,1992:27 (7):975~987.
    [138]王际达,林炳昌.用特征线—差分方法模拟含扩散的非线性色谱过程[J].计算机与应用化学,1997;14(1):55~59.
    [139]MA Z, GUIOCHON G. Application of orthogonal collocation on finite elements in the simulation of nonlinear chromatography[J]. Computers Cheni Engng.,1991; 15(6): 415~426.
    [140]SERENO C, RODRIGUES A, VILLADSEN J. Moving finite element method with polynomial approximation of any degree [J]. Computers Chem Engng.,1991:15(6):25~28.
    [141]SLANEYAJ. BHMIDIMARRI R. Adsorpt ion of pentachlorophenol (PCP) by activated carbon in fixed beds:Application of homogeneous surface diffusion model [A]. Environmental Contamination and Restoration Proceedings of the 1998 19th Biennial Conference of the International Association on Water quality[C], Vancouver,1998.
    [142]徐艳,刘少霞,孙娟.超声—酶法提取黄柏中小檗碱的工艺研究[J].时珍国医国药,2007;18(6):1460.
    [143]马建红,聂继红,邢建国.关黄柏提取工艺的优化[J].新疆医科大学学报,2006;29(4):
    [144]崔建芳,张观德,王慕邹.麻黄中麻黄生物碱的气相色谱测定法[J].药学学报,1995;20(1):59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700