用户名: 密码: 验证码:
高效可回收多酸复合型催化剂制备、调变及深度脱硫催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料油中的含硫化合物燃烧后产生的SOx,其中最主要的是SO2。S02是大气环境的主要污染源,是形成酸雨的直接原因。酸雨会造成树木死亡、粮食减产、水质酸化、建筑物腐蚀,进而使生态环境恶化。而且,燃油中的含硫化合物燃烧后的生成物会使汽车尾气转化器中的催化剂中毒,进而影响了催化转化器性能的发挥,导致汽车尾气中三种主要有害物质HC、CO、NOx的排放量增加。鉴于燃油中含硫化合物燃烧所产生的危害,世界各国对燃油中硫含量的标准越加苛刻。因此,生产低硫“清洁燃料”已成为必然趋势。在燃油硫化物去除的众多方法中,氧化脱硫(oxidative desulfurization,ODS)以反应条件温和(常温、常压)、无需氢源、工艺流程简单、脱硫率高、设备投资少、运行费用低、不产生二次污染等优点而成为燃油脱硫的研究热点之一。杂多化合物(HPCs)以其独特的晶格结构及催化性能而被广泛应用于氧化脱硫领域。本文通过多种途径,制备出具有深度脱硫催化活性的高效可回收杂多化合物复合型催化剂,综合运用FT-IR、XRD、ICP-OES、 TEM、VSM、TGA-DSC、元素分析等检测手段对制备的催化剂进行分析表征,同时对各催化剂脱硫性能作出系统评价。研究主要内容分为以下六个方面:
     一、以六种金属盐和磷钨酸为原料制备了Keggin结构杂多酸盐Mx/nH0.6PW(Zr0.6H0.6PW、Al0.8H0.6PW、Zn1.2H0.6PW、 Feo.g H0.6PW、Ti0.6H0.6PW和Sno.6Ho.6PW)和Alx/3H3-xPW (AIPW、Al0.8H0.6PW、Al0.5H1.5PW、Alo.3H2.1PW和Al0.1H2.7PW)催化剂,并对催化剂进行了FT-IR、XRD和DSC/TGA表征。催化剂活性筛选结果表明:所制备的催化剂均具有极佳的催化氧化脱硫性能,各催化剂对模拟油品中二苯并噻吩(DBT)的催化活性大小顺序如下,不同金属原子取代的杂多酸盐催化活性大小顺序为:Al0.8H0.6PW> Ti0.6H0.6PW>Zr0.6H0.6PW> Sn0.6H0.6PW> Fe0.8H0.6PW>Zn1.2h0.6PW。不同铝原子和氢原子配比的杂多酸盐催化活性大小顺序为:Al0.5H1.5PW> Al0.8H0.6PW> Al0.3H2.1PW> AIPW> Al0.1H2.7PW。其中,Al0.5H1.5PW的催化活性要高于磷钨酸(HPW),确定Al0.5H1.5PW为最佳催化剂。并研究了以Al0.5H1.5PW为催化剂,过氧化氢为氧化剂,乙腈为萃取剂的燃油催化氧化萃取深度脱硫技术。实验考察了催化剂用量、氧硫比、催化剂与氧化剂预接触时间、反应温度和初始硫含量对脱硫效果的影响。实验结果表明,在催化剂用量为模拟油品质量的0.25%,O/S为10,催化剂与过氧化氢预接触8min,反应温度60℃,初始硫含量为500ppmw的条件下,反应到180min时,已几乎检测不到含硫化合物的存在。此外,催化剂用于真实汽、柴油的催化氧化脱硫实验也得到了很好的脱硫效果,稳定汽油脱硫完成后再进行3次连续萃取,硫含量从350ppmw降至11.2ppmw,脱硫率达96.8%。催化柴油脱硫完成后再进行3次连续萃取,硫含量从350ppmw降至8.9ppmw,脱硫率达97.5%。且催化剂重复使用5次后,脱硫效率未见明显降低。
     二、通过置换反应,将适宜的有机阳离子与杂多阴离子组装成新的具有特殊性能的有机-无机杂化型催化剂。本文合成了三种有机-无机杂化型催化剂,分别为:[π-C5H5NC16H33]3[PO4(WO3)4]、[π-C5H5NC16H33]3[PO4(WO3)4]和[π-C5H5NC16H33]3[PO4(WO3)4],经FT-IR分析以上三种有机-无机杂化型催化剂均具有Keggin特征结构。考察了这三种有机-无机杂化型催化剂在氧化脱硫体系中的催化性能。结果表明,这三种有机-无机杂化型催化剂脱硫活性顺序为:[π-C5H5NC16H33]3[PO4(WO3)4]>[π-C5H5NC16H33]3[PO4(WO3)4]>[π-C5H5NC16H33]3[PO4(WO3)4]。以[π-C5H5NC16H33]3[PO4(WO3)4]为最佳催化剂,过氧化氢为氧化剂,乙腈为萃取剂的燃油催化氧化萃取深度脱硫研究。实验考察了催化剂用量、氧硫比、催化剂与氧化剂预接触时间、反应温度和初始硫含量对脱硫效果的影响。结果表明,在最佳实验条件下,即催化剂用量为占模拟油品质量的0.25%、O/S为10、温度50℃、催化剂与氧化剂分别加入反应体系中,即反应时先将催化剂加入反应体系,然后迅速加入一定量的过氧化氢进行脱硫反应。实验结果显示,噻吩类含硫化合物被氧化难易顺序为:DBT>4,6-DMDBT> BT>TH。证明了氧化脱硫反应中,噻吩类硫化物氧化活性难易程度,不但受其本身硫原子电子云密度影响,还受到硫原子周围的空间位阻效应影响。在最佳实验条件下,反应至180min,催化剂对初始硫含量500ppmw的模拟油品中硫化物催化脱除效率可达99.9%。催化剂经三次再生,循环利用,对DBT的脱除率仍可维持在99.2%左右,具有良好的可再生性。此外,将催化剂用于稳定汽油、催化柴油的脱硫实验。在脱硫完成、萃取后,均可将初始硫含量为350ppmw的真实燃油硫含量降至15ppmw以下,满足美国环保局(EPA)的低硫燃油标准。
     三、通过离子交换法,将杂多化合物的阴离子固定在不同种类的离子交换树脂上,制备出以离子交换树脂为基体的杂多化合物复合型催化剂,分别为:HPW/D296、HPW/D201、HPW/D081、HPW/DOO1-CC和HPW/201×7,研究了上述催化剂对模拟油品中DBT的脱除性能。结果表明,催化脱硫活性顺序为:HPW/D296> HPW/D201> HPW/201×7> HPW/D081> HPW/D001-CC。以HPW/D296为最佳催化剂,过氧化氢为氧化剂,乙腈为萃取剂的燃油催化氧化萃取深度脱硫技术。实验考察了催化剂用量、氧硫比、催化剂与氧化剂预接触时间、反应温度和初始硫含量对脱硫效果的影响。在最佳实验条件:催化剂用量为占真实燃油质量的2.70%、O/S为28、温度60℃和催化剂与氧化剂预接触时间为8min,反应至180min,催化剂对初始硫含量为500ppmw的模拟油品中DBT的脱除效率为93.5%,且催化剂具有较好的再生催化效果。在最佳实验条件下,考察了催化剂对四种真实燃油的脱硫效果。结果显示催化剂对真实燃油的催化脱硫率顺序为:稳定汽油>催化柴油>-10号柴油>直馏柴油。随后,又对稳定汽油和催化柴油脱硫前后的质量(酸度、密度、水溶性酸碱、铜片腐蚀、机械杂质、辛烷值或十六烷值)及收率进行探讨,发现精制后的稳定汽油的辛烷值和柴油的十六烷值都有小幅提高,从而使燃油的安定性增强。催化剂对稳定汽油的脱硫率为85.1%,收率为96.5%;催化柴油的脱硫率为84%,收率为98.0%。
     四、制备并通过FT-IR、XRD、VSM、TEM和元素分析表征了可磁分离杂多化合物复合型纳米催化剂HPW/Fe3O4-SiO2,并将其用于燃油深度脱硫研究。结果表明,所制备的催化剂具有典型的“枣-核”型核壳结构,催化剂粒径在300nm左右。在最佳实验条件下:催化剂用量为占模拟油品质量的4.0%、O/S为20、催化剂与氧化剂预接触时间为8min和温度70℃下,催化剂对初始硫含量为500ppmw模拟油品中DBT的催化脱除效率为99.4%。此外,催化剂用于真实汽、柴油的催化氧化脱硫实验也得到了很好的脱硫效果,稳定汽油脱硫完成后再进行3次连续萃取,硫含量从350ppmw降至12.8ppmw,脱硫率达96.3%。催化柴油脱硫完成后再进行3次连续萃取,硫含量从350ppmw降至10.2ppmw,脱硫率达97.1%。催化剂在强磁场的吸引下,可从反应体系中迅速分离,且具有极好的再生催化性能。
     五、采用分散聚合法制得中空SiO2微粒,并将其氨基化后负载磷钨酸(HPW),最终制得氨基化中空Si02磷钨酸复合型催化剂NH4PW-SiO2,并对催化剂进行了N2吸脱附、FTIR、XRD、SEM和ICP-OES表征。研究了以NH4PW-SiO2为催化剂,过氧化氢为氧化剂,乙腈为萃取剂的燃油催化氧化萃取深度脱硫技术。实验考察了催化剂用量、氧硫比、催化剂与氧化剂预接触时间、反应温度和初始硫含量对脱硫效果的影响。实验结果表明,在催化剂用量为模拟油品质量的1.0%,O/S为15,催化剂与过氧化氢预接触4min,反应温度60℃,模拟油品初始硫含量为500ppmw的条件下,反应到180min时硫含量降至3.0ppmw,脱硫率达99.4%。催化氧化萃取时的脱硫率比单纯萃取时的脱硫率高45.1%,催化脱硫效果十分显著。此外,催化剂用于真实汽、柴油的催化氧化脱硫实验也得到了很好的脱硫效果,且催化剂重复使用5次后,脱硫效率未见明显降低。
     六、研究了典型噻吩类有机硫化物单组分模拟体系的催化氧化反应动力学,发现各有机硫化物的表观反应级数均为一级,且表观活化能顺序符合:DBT>4,6-DMDBT> BT> TH。并通过FT-IR动态监测过氧基团-0-0-的伸缩振动峰变化,探讨了催化氧化脱硫机理。结果表明,Keggin结构杂多酸(盐)催化剂或固载型Keggin结构杂多化合物复合型催化剂首先被H2O2氧化为强氧化性的过氧阴离子{PO4[WO(μ-O2)(O2)]4}3-,再通过过氧阴离子的强氧化性,将具有富电子的硫化物氧化成砜,通过萃取剂乙腈萃取脱除。
Sulfur-containing compounds in transportation fuels are the most notorious and undesirable contaminants because they are converted to toxic sulfur oxides (SOX), and SO2is the foremost sulfur oxides through combustion that result in air pollution and acid rain, poison the oxidation catalysts in the emission control system and sulfur compounds in the fuel combustion causes the car exhaust catalyst poisoning reformer, resulting in three major automobile exhaust of harmful nitric oxide (NOx), hydrocarbons and carbon monoxide. Thus, ultra-deep desulfurization from transportation fuels has become an increasingly important subject worldwide, due to urgently environmental problems and increasingly stringent regulations. Oxidative desulfurization (ODS) is considered to be one of the most promising desulfurization methods for its mild reaction condition, high efficiency, simple technology, low cost, low carbon and environment-friendly. Heteropoly compounds have the advantage of unique lattice structure and high catalysis properties. Heteropoly compounds is widely used in the field of oxidative desulfurization. In this thesis, several efficiency of catalytic activity recyclable heteropoly compound catalyst have been made. The prepared catalyst was characterized by FTIR, XRD, ICP-OES, TEM, VSM, DSC/TGA and elemental analysis. And we studied the catalysis of these catalysts in the ODS process. The content of this thesis contains the following five parts.
     I) Keggin-type polyoxometalate catalyst Mx/nHo.6PW(Zr0.6H0.6PW, Al0.8H0.6PW, Zn1.2H0.6PW, Fe0.8H0.6PW, Ti0.6H0.6PW and Sn0.6H0.6PW) and Alx/3H3-xPW (A1PW, Al0.8H0.6PW, Al0.5H1.5PW, Al0.3H2.1PW and Al0.1H2.7PW) was prepared by6metal salts and phosphotungstate. The prepared catalyst was characterized by FTIR, XRD and DSC/TGA. Catalytic activity screening was carried out on the catalyst, it was determined that the synthesized catalysts with different metal atoms substituted showed excellent desulfurization ability in the following order:Al0.8Ho.6PW> Ti0.6H0.6PW> Zr0.6H0.6PW> Sn0.6Ho.6PW> Fe0.8H0.6PW> Zn1.2H0.6PW, and with different proportions of Al atoms and H atoms showed excellent desulfurization ability in the following order:Al0.5H1.5PW> Al0.8H0.6PW> Alo.3H2.1PW> AlPW> Al0.1H2.7PW, it was determined that the best cata was Al0.5H1.5PW. The method of catalytic extraction fuel ultra-deep desulfurization was proposed using hydrogen peroxide as oxidant and MeCN as extractants. The effects of catalyst dosage, O/S molar ratio, pre-immersion time of the catalyst in H2O2solution, reaction temperature and initial sulfur content. Under the favourable operating conditions were recommended as follows:mass ratio of catalyst dosage and simulated diesel of0.25%, O/S molar ratio of10, pre-immersion time of the catalyst in H2O2solution being8min and temperature of60℃, the sulfur content of simulated diesel was nearly0ppmw at180min. In addition, Alo.5H1.5PW showed excellent desulfurization efficiency for gasoline and diesel. As stable gasoline, the catalytic-oxidation-extraction sulfur content can be reduced from350ppmw to11.2ppmw and desulfurization ratio reached to96.8%after3times MeCN extractant. As catalytic diesel, the catalytic-oxidation-extraction sulfur content can be reduced from350ppmw to8.9ppmw and desulfurization ratio reached to97.5%after3times MeCN extractant. And the catalyst recovered demonstrated almost the same activity the fresh after5cycles.
     Ⅱ) In this paper, a suitable organic cations assembled into new heteropoly anion having special performance0organic-inorganic heteropolyacids catalyst by displacement reaction. In this paper, organic-inorganic heteropolyacids were prepared, including [π-C5H5NC16H33]3[PO4(WO3)4],[π-C5H5NC16H33]3[PO4(WO3)4] and [π-C5H5NC16H33]3[PO4(WO3)4]. All the organic-inorganic heteropolyacids catalyst has Keggin-type structure by FT-IR analysis. Catalytic activity screening was carried out on the catalyst, it was determined that the synthesized catalysts showed excellent desulfurization ability in the following order:[π-C5H5NC16H33]3[PO4(WO3)4]>[π-C5H5NC16H33]3[SiO4(WO3)4]>[π-C5H5NC16H33]3[PO4(WO3)4]. It was determined that the best cata was [7π-C5H5NC16H33]3[PO4(WO3)4]. The method of catalytic extraction fuel ultra-deep desulfurization was proposed using hydrogen peroxide as oxidant and MeCN as extractants. The effects of catalyst dosage, O/S molar ratio, pre-immersion time of the catalyst in H2O2solution, reaction temperature and initial sulfur content. Under the favourable operating conditions were recommended as follows:mass ratio of catalyst dosage and simulated diesel of0.25%, O/S molar ratio of10, pre-immersion time of the catalyst in H2O2solution being0min and temperature of50℃, the sulfer content of simulated diesel can be reduced from500ppmw to0.5ppmw, with a desulfurization efficiency of99.9%at180min. It also shows that the oxidation reactivity of different sulfur compounds was in the order of DBT>4.6-DMDBT> BT> TH. The result shows the electron density of sulfur compounds on the sulfur atoms and the space steric hindrance were two important factors in the ODS. Moreover,[π-C5H5NC16H33]3[PO4(WO3)4] for real gasoline and diesel catalytic oxidative desulfurization obtained with good effect meet the EPA low-sulfur fuel standards. And the catalyst recovered demonstrated almost the same activity the fresh after3cycles.
     Ⅲ) To prepare ion exchange resin composite with heteropoly compounds catalyst several types of ion exchange resin has been used, including HPW/D296, HPW/D201, HPW/D081, HPW/D001-CC and HPW/201×7. Catalytic activity screening was carried out on the catalyst, it was determined that the synthesized catalysts showed excellent desulfurization ability in the following order:HPW/D296> HPW/D201> HPW/201×7> HPW/D081> HPW/D001-CC. It was determined that the best cata was HPW/D296. The method of catalytic extraction fuel ultra-deep desulfurization was proposed using hydrogen peroxide as oxidant and MeCN as extractants. The effects of catalyst dosage, O/S molar ratio, pre-immersion time of the catalyst in H2O2solution, reaction temperature and initial sulfur content. Under the favourable operating conditions were recommended as follows:mass ratio of catalyst dosage and simulated diesel of2.70%, O/S molar ratio of28, pre-immersion time of the catalyst in H2O2solution being8min and temperature of60℃, the sulfer content of simulated diesel can be reduced from500ppmw to32.5ppmw, with a desulfurization efficiency of93.5%at180min. And the catalyst recovered demonstrated almost the same activity the fresh after3cycles. Under the favourable operating conditions, it was determined that the synthesized catalysts showed excellent desulfurization ability for real fuel oil in the following order:stable gasoline> catalytic diesel>-10#diesel>straight-run diesel. Subsequently, the stable gasoline and catalytic diesel (acidity, density, water soluble acids and alkalis, corrosiveness to copper, mechanical admixtures, octane number and cetane number) after desulfurization, and the yield were discussed, refined found stable after octane number of gasoline and diesel fuel cetane number has slightly improved, thereby enhancing the stability of the fuel. The stable gasoline desulfurization efficiency85.1%and the recovery rate96.5%. The catalytic diesel desulfurization efficiency84.0%and the recovery rate98.0%.
     IV) The Keggin-type magnetic isolated heteropoly compound composite nanocatalyst (HPW/Fe3O4-SiO2) was synthesized and characterized by FT-IR, XRD, VSM, TEM and elemental analysis. The results show that the catalyst prepared with typical "pit" type core-shell structure, the catalyst particle size of about300nm. Under the favourable operating conditions were recommended as follows:mass ratio of catalyst dosage and simulated diesel of4.0%, O/S molar ratio of20, pre-immersion time of the catalyst in H2O2solution being8min and temperature of70℃, the sulfer content of simulated diesel can be reduced from500ppmw to3.0ppmw, with a desulfurization efficiency of99.4%at180min. In addition, HPW/FesO4-SiO2showed excellent desulfurization efficiency for gasoline and diesel. As stable gasoline, the catalytic-oxidation-extraction sulfur content can be reduced from350ppmw to12.8ppmw and desulfurization ratio reached to96.3%after3times MeCN extractant. As catalytic diesel, the catalytic-oxidation-extraction sulfur content can be reduced from350ppmw to10.2ppmw and desulfurization ratio reached to97.1%after3times MeCN extractant. And the catalyst recovered easily by strong magnetic field, and demonstrated almost the same activity the fresh after3cycles.
     V) Hollow silica were prepared by dispersion aggragation before uploading HPW. The prepared catalyst was characterized by N2adsorption/desorption FTIR, XRD and SEM The method of catalytic extraction fuel ultra-deep desulfurization was developed using hydrogen peroxide as oxidant and MeCN as extractants. The effects of catalyst dosage, O/S molar ratio, pre-immersion time of the catalyst in H2O2solution, reaction temperature and initial sulfur content were investigated. Under the favourable operating conditions recommended as follows:mass ratio of catalyst dosage and simulated diesel of1.0%, O/S molar ratio of15, pre-immersion time of the catalyst in H2O2solution being4min and temperature of60℃, the sulfur content of simulated diesel can be reduced from500ppmw to3.0ppmw, with a desulfurization efficiency of99.4%at180min. The overal desulfurization efficiency reaches99.3%, higher than that by mere extraction by45.1%, efficiency significantly. Moreover, NH4PW-SiO2for real gasoline and diesel catalytic oxidative desulfurization was obtained with good effect and the catalyst recovered demonstrates almost the same activity as the fresh after5cycles.
     VI) Based on the researeh of the catalytic oxidation reaetion kinetics of various typical organic sulfide single component imitation systems, it was determined that the apparent teaction series for level1, and the order of the apparent activation energy of organic sulfide is that DBT>4.6-DMDBT> BT> TH. Probing into the catalytic organic sulfide in desulfurization mechanism by FT-IR, and dynamic monitoring of over-stretching vibration of O-O changes. It was determined that Keggin-type negative ion is firstly oxidized as{PO4[WO(μ-O2)(O2)]4}3-by H2O2, and then electron-rich sulphones were extracted out from oil solution using MeCN as extracting agents.
引文
[1]Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams:a review [J]. Fuel,2003,82(6):607-631.
    [2]Brunet S, Mey D, Perot G, et al. On the hydrodesulfurization of FCC gasoline:a review[J]. Applied Catalysis A:General,2005,278(2):143-172.
    [3]Wilson G.B., Bell J.N.B. Studies on the tolerance to SO2 of grass populations in polluted areas. Ⅲ. investigations on the rate of development of tolerance [J]. New Phytologist,1985,100:63-77.
    [4]Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production[J]. Catalysis Today,2010,153(1):1-68.
    [5]Demonstration of advanced emission control technologies enabling diesel-powered heavy-duty engines to achieve low emission levels, Final Report 1999, Manufacturers of Emission Controls Association, Washington, DC 20036.
    [6]石亚华.石油加工过程中的脱硫.In:中国石化出版社;2009
    [7]刘影,徐忠贤.汽油脱硫意义及脱硫技术浅述[J].石油商技,2002,20(5):22-24.
    [8]Hua R, Li Y, Liu W, et al. Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector [J]. Chromatographic Science Series,2003,1019: 101-109.
    [9]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalyst Today,2003,86:211-263.
    [10]程型国.燃料油中含硫化合物的形态及分布研究[J].润滑油与燃料,2007,17(4):24-31.
    [11]Andari M, Abuseedo F., Stanislaus A., et al. Kinetics of individual sulfur compounds in deep desulfurization of Kuwait diesel oil [J]. Fuel,1996,75: 1664-1670.
    [12]Knudsen K.G., Cooper B.H., Topsoe H. Catalyst and process technologies for ultra low sulfur diesel [J]. Applied Catalysis A:General,1999,189:205-215.
    [13]Landau M.V. Deep hydrotreating of middle distillates from crude and shale oils [J]. Catalyst Today,1997,36:393-429.
    [14]Amorelli A., Amos Y.D., Halsing C.P., et al. Characterization of sulfur compounds in middle distillates and deeply hydrotreated products [J]. Hydrocarbon Processing,1992(70):93-101.
    [15]Kabe T., Tajima H. Deep desulfurization of methyl-substituted benzothiophenes and dibenzothiophenes in light gas oil [J]. Journal of Japan Petroleum Institute,1992, 36:467-471.
    [16]Quimby B.D., Giarrocco V, McCleary K.A. Fast analysis of oxygen and sulfur compounds in gasoline by GC-AED [J]. Journal of High Resolution Chromatography, 2005,15:705-709.
    [17]Garcia C.L., Becchi M, Grenier-Loustalot M.F., et al. Analysis of aromatic sulfur compounds in gas oils using GC with sulfur chemiluminescence detection and high-resolution MS [J]. Analytical Chemistry,2002,74:3849-3857.
    [18]Adam F., Bertoncini F., Brodusch N., et al. New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two-dimensional gas chromatography [J]. Journal of Chromatographic A,2007,1148: 55-64.
    [19]Qabazard H., Abu-Seedo F., Stanislaus A., et al. Comparison between the performance of conventional and high-metal Co-Mo and Ni-Mo catalysts in deep desulfurization of Kuwait atmospheric gas oil [J]. Fuel Science & Technology International,1995,13:1135-1151.
    [20]Al-Barood A., Stanislaus A. Ultra-deep desulfurization of coker and straightrun gas oils:effect of lowering feedstock 95% boiling point [J]. Fuel Processing Technology,2007,88:309-315.
    [21]Choi K.H., Sano Y., Korai Y, et al. An approach to the deep hydro-desulfurization of light cycle oil [J]. Applied Catalysis B:Environmental,2004,53: 275-283.
    [22]Kaufmann T.G., Kaldor A., Stuntz G.F., et al. Catalysis science and technology for cleaner transportation fuels [J]. Catalysis Today,2000,62:77-90.
    [23]Ali M F, Al-Malki A, El-Ali B, et al. Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques [J]. Fuel,2006,85(10): 1354-1363.
    [24]Jose N, Sengupta S, Basu J K. Optimization of oxidative desulfurization of thiophene using Cu/titanium silicate-1 by box-behnken design[J]. Fuel,2011,90(2): 626-632.
    [25]Sampanthar J T, Xiao H, Dou J, et al. A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel[J]. Applied Catalysis B: Environmental,2006,63(1):85-93.
    [26]Ng J H, Ng H K, Gan S. Recent trends in policies, socioeconomy and future directions of the biodiesel industry[J]. Clean Technologies and Environmental Policy, 2010,12(3):213-238.
    [27]Qian E W. Development of Novel Nonhydrogenation Desulfurization Process-Oxidative Desulfurization of Distillate[J]. Journal of the Japan Petroleum Institute, 2008,51(1):14-3114.
    [28]Murata S, Murata K, Kidena K, et al. A novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes[J]. Energy & Fuels,2004,18(1):116-121.
    [29]Chen T C, Shen Y H, Lee W J, et al. The study of ultrasound-assisted oxidative desulfurization process applied to the utilization of pyrolysis oil from waste tires[J]. Journal of Cleaner Production,2010,18(18):1850-1858.
    [30]朱庆云,李雪静,乔明,等.世界汽柴油标准及供需发展趋势浅析[J].中外能源,2011,16(10):87-91.
    [31]Waked A, Afif C. Emissions of air pollutants from road transport in Lebanon and other countries in the Middle East region[J]. Atmospheric Environment,2012.
    [32]Ma X, Sakanishi K, Mochida I. Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel[J]. Industrial & engineering chemistry research,1994, 33(2):218-222.
    [33]Shafi R, Hutchings G J. Hydrodesulfurization of hindered dibenzothiophenes:an overview[J]. Catalysis Today,2000,59(3):423-442.
    [34]Ho T.C. Deep HDS of diesel fuel:chemistry [J]. Catalysis Today,2004,98:3-18.
    [35]Schulz H., Bohringer W., Waller P., et al. Gas oil deep hydrodesulfurization: refractory compounds and retarded kinetics [J]. Catalysis Today,1999,49:87-97.
    [36]Houalla M, Broderick D.H., Spare A.V., et al. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfide Co-Mo3/γ-Al2O3 [J]. Journal of Catalysis,1980,61:523-527.
    [37]Nag N.K., Sapre A.V., Broderick D.H., et al. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfide Co-Mo3/γ-Al2O3:the relative reactivities [J]. Journal of Catalysis,1979,57:509-512.
    [38]Knudsen K.G., Cooper B.H., Topsoe H. Catalyst and process technologies for ultra low sulfur diesel [J]. Applied Catalysis A:General,1999,189:205-215.
    [39]Landau, M.V. Deep hydrotreating of middle distillates from crude and shale oils [J]. Catalysis Today,1997,36:393-429.
    [40]Ma X.L., Sakanishi K., Mochida I. Hydrodesulfurization reactivities of various sulfur compounds in vacuum gas oil [J]. Industrial and Engineering Chemistry Research,1996,35:2487-2494.
    [41]Ramirez J., Macias G., Cedeno L., et al. The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts:analysis of past and new evidences [J]. Catalysis Today,2004,98:19-30.
    [42]Perla C, Jorge R. Spectroscopic study of the electronic interactions in Ru/TiO2 HDS catalyst [J]. Journal of Catalysis,2009,268:39-48.
    [43]Guoran L., Wei L., Minghui Z., et al. Morphology and hydrodesulfurization activity of CoMo sulfide supported on amorphous ZrO2 nanoparticles combined with Al2O3 [J]. Applied Catalysis A:General,2004,273:233-238.
    [44]Kunming D., Xiaoming M., Hongbin Z., et al. Nove MWCNT-support for Co-Mo sulfide catalyst in HDS of thiophene and HDN of pyrrole [J]. Journal of Natural Gas Chemistry,2006,15:28-37.
    [45]Daniela G., Ludek L., Zdenek V., et al. Preparation of MoO3/MgO catalysts with eggshell and uniform Mo distribution by methanol assisted spreading:Effect of MoO3 dispersion on rate spreading [J]. Catalysis Communications,2006,7:276-280.
    [46]Mochida I., Choi K. An overview of Hydrodesulfurization and Hydrodenitrogentation [J]. Journal of Japan Petroleum Institute,2004,47:145-163.
    [47]Ninh T.K.T., Massin L., Laurenti D., et.al. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts [J]. Applied Catalysis B: Environment,2012,111-112:133-140.
    [48]Patrick D.C., Jean-Marie M., Claude P., et al. Deep HDS on doped molybdenum carbides:from probe molecules to real feedstocks [J]. Catalysis Today,2005,107-108: 520-530.
    [49]董昆明,林国栋,张鸿斌.碳纳米管负载Mo-Co-S基]HDS/HDN催化剂的制备及其表征研究[J].厦门大学学报(自然科学版),2006,45(1):63-68.
    [50]任靖,王安杰,李翔等.MCM-41-HY复合分子筛的合成及其在深度加氢脱硫中的应用[J].高等学校化学学报,2006,27:2353-2356.
    [51]上官菲菲,王海涛,段艳,等.纳米ZSM-5-MCM-41的制备及其在汽油芳构/加氢脱硫中的应用[J].精细石油化工,2013,30(4):45-50.
    [52]Colin-Luna J A, Medina-Mendoza A K, De los Reyes J A, et al. EFFECT OF Si/Al RATIO IN DEEP HYDRODESULFURIZATION OF Pt/Al-MCM41 CATALYTS[J]. REVISTA MEXICANA DE INGENIERIA QUIMICA,2013,12(2): 271-282.
    [53]Bakr A., Salem S.H, Naphtha desulfurization by adsorption [J]. Industrial and Engineering Chemistry Research,1994,33(2):336-340.
    [54]罗国华,徐新,佟泽民等.沸石分子筛选择吸附焦化苯中的噻吩[J].燃料化学学报,1999,27(5):476-480.
    [55]Bakr A., Salem S.H., Hamid H.S. Removal of sulfur compounds from naphtha solutions using solid adsorbents [J]. Chemical Engineering & Technology,1997,29(5): 342-347.
    [56]田薇薇,李会鹏,赵华.负载型磷钨酸对汽油模型化合物氧化脱硫研究[J].化学工业与工程,2011,28(3):5-8.
    [57]谢颖,黄克明,梁朝林.负载型柴油氧化脱硫催化剂的研究进展[J].石油化 工,2011,40(9):1018-1022.
    [58]代伟,郑绍成,马娜.CMK-3中孔炭分子筛负载磷钨酸催化氧化噻吩[J].炭素,2008,2:24-28.
    [59]Kim J.H., Ma X., Zhou A., et al. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents:A study on adsorptive selectivity and mechanism [J]. Catalysis Today,2006,111:74-93.
    [60]叶敬东,张传学,张清健等.脱除硫醇和硫醚的活性炭精脱硫剂及制备.CN1324686A.2001.
    [61]Seredych M., Rawlins J., Bandosz T.J. Investigation of the thermal regeneration efficiency of activated carbons used in the desulfurization of model diesel fuel[J]. Industrial and Engineering Chemistry Research,2011,50:14097-14104.
    [62]余谟鑫,姬乔娜,方媛,等.研究论文活性炭催化氧化脱除汽油和柴油中噻吩类硫化物的选择性[J].化工学报,2009,60(4).
    [63]Bohejin T, Wenqing H E, Xiaoyi L I, et al负载型多钒杂多酸催化剂在氧化脱硫反应中的应用[J].石油学报(石油加工,2011,27(1).
    [64]Salem A.S.H., Hamid H.S. Removal of sulfur compounds from naphtha solutions using solid adsorbents [J]. Chemical Engineering & Technology,1997,20(5): 342-347.
    [65]Jiang M., Ng F.T.T. Adsorption of benzothiophene on Y zeolites investigated by infrared spectroscopy and flow calorimetry [J]. Catalyst Today,2006,116:530-536.
    [66]Chica A., Strohmaier K., Iglesia E. Adsorption, desorption, and conversion of thiophene on H-ZSM5 [J]. Langmuir,2004,20(25):10982-10991.
    [67]Yang R.T., Hernandez-Maldonado A.J., Yang F.H. Desulfurization of Transportation Fuels with zeolites under ambient conditions [J]. Science,2003,301: 79-81.
    [68]宋华,王登,李国忠,等.丝光沸石催化燃料油氧化深度脱硫及反应动力学[J].化学反应工程与工艺,2010,5:014.
    [69]张艳维,杨爽,赵亮,等.钛硅分了筛的合成与应用[J].精细石油化工进展,2010(003):25-28.
    [70]Gao X., Mao H., Lu M., et al. Facile synthesis route to NiO-SiO2 intercalated clay with ordered porous structure:intragallery interfacially controlled functionalization using nickel-ammonia complex for deep desulfurization [J]. Microporous and Mesoporous Materials,2012,148:25-33.
    [71]Jeevanandam P., Klabunde K.J., Tetzler S.H. Adsorption of hydrocarbon using metal impregnated nanocrystalline aluminum oxide [J]. Microporous and Mesoporous Materials,2005,79:101-110.
    [72]王延飞,王晓兰,程键等.有机粘土吸附精制催化裂化柴油[J].石油炼制与化工,2004,35(12):53-56.
    [73]黎先财,魏国,曾晓放,等.活性炭的改性制备及其吸附脱硫性能[J].南昌大学学报:工科版,2009,31(3):215-217.
    [74]余谟鑫,李忠,夏启斌,等.表面负载不同金属离子的活性炭吸附二苯并噻吩[J].功能材料,2006,37(11):1816-1818.
    [75]宋丽娟,潘明雪,秦玉才,等.NiY分子筛选择性吸附脱硫性能及作用机理[J].高等学校化学学报,2011,32(3):787-792.
    [76]Yang R.T., Hemandez-Maldonado, Yang F.H. Desulfurization of transportation fuels with zeolites under ambient conditions [J]. Science,2003,301:79-81.
    [77]Ma X, Sun L, Song C. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications[J]. Catalysis today,2002,77(1):107-116.
    [78]Borgne S L, Quintero R. Biotechnological processes for the refining of petroleum[J]. Fuel processing technology,2003,81(2):155-169.
    [79]Kim H.Y., Kim T.S., Kim B.H. Degradation of organic sulfur compounds and the reduction of dibenzothiophene to biphenyl and hydrogen sulfide by desulfuribrio desulfuricans M6 [J]. Biotechnology Letters,1990,10:761-764.
    [80]Kodama K., Nakatani S., Umehara K., et al. Microbial conversion of petro-sulfur compounds.3. Isolation and identification of products from dibenzothiophene [J]. Agricultural and Biological Chemistry,1970,34(9):1320-1324.
    [81]Kodama K., Umehara K., Shimizu K., et al. Identification bacterial growth on substituted thiophenes of microbial products from dibenzothiophenes and its proposed oxidation pathway [J]. Agricultural and Biological Chemistry,1973,37(1):45-50.
    [82]赵腾飞.柴油生物脱硫技术进展[J].中外能源,2007,12(3):72-77.
    [83]陈晗.模拟柴油生物脱硫机理及动力学研究[D].杭州:浙江大学,2010.
    [84]白雪晶,熊小超,姜声华,等.脱硫菌Rhodococcus sp. LY822专一性脱硫活性及相关基因的研究[J].过程工程学报,2008,8(1):125-129.
    [85]Carolina H.O., Almudena A., Victoria E.S. Felix Garcia-Ochoa Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization:influence of media composition [J]. Enzyme and Microbial Technology,2005,37(2):157-166.
    [86]张通,吴琼,刘柯澜,等.微杆菌对乌海高硫煤中有机硫脱除的研究[J].煤炭学报,2009,34(7):957-960.
    [87]Folsom B R, Schieche D R, DiGrazia P M, et al. Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19[J], Applied and environmental microbiology,1999, 65(11):4967-4972.
    [88]Peter K, Vollhardt C, Schore N.E. Organic Chemistry [M], the 3td ed. New York: W H Freeman and Company,1999:1124-1128.
    [89]Peter K, Vollhardt C, Schore N.E. Organic Chemistry [M], the 3td ed. New York: W H Freeman and Company,1999:1124-1128.
    [90]刘植昌,胡建茹,高金森.离子液体用于催化裂化汽油烷基化脱硫的实验研究.石油炼制与化工,2006,37(1):22-26.
    [91]张泽凯,蒋晖,刘盛林,等.汽油烷基化脱硫反应中噻吩及其衍生物的烷基化性能[J].催化学报,2006,27(4):309-313.
    [92]Guo B, Wang R, Li Y. The performance of solid phosphoric acid catalysts and macroporous sulfonic resins on gasoline alkylation desulfurization[J]. Fuel Processing Technology,2010,91(11):1731-1735.
    [93]Hernandez-Maldonado A J, Yang R T. Desulfurization of commercial liquid fuels by selective adsorption via π-complexation with Cu (Ⅰ)-Y zeolite[J]. Industrial & engineering chemistry research,2003,42(13):3103-3110.
    [94]孙宗礼,汪恩阳,徐会林,等.柴油络合脱硫精制研究[J].石油与天然气化 工,2005,34(4):255-257.
    [95]张成中,黄崇品,李建伟,等.离子液体的结构及其汽油萃取脱硫性能[J].化学研究,2005,16(1):23-25.
    [96]王建龙,赵地顺,周二鹏,等.毗啶类离子液体在汽油萃取脱硫中的应用研究[J].燃料化学学报,2007,35(3):293-296.
    [97]Nie T., Ana F.M.C., Isable B., et al. Evaluation of the impact of phosphate salts on the formation of ionic-liquid-based aqueous biphasic systems [J]. The Journal of Chemical Thermodynamics,2012,54:398-405.
    [98]Asumana C, Haque M R, Wu X, et al. Desulfurization of Real Fuel Oils by Extraction with Ionic Liquids [J]. Separation Science and Technology,2013 (just-accepted).
    [99]唐晓东,崔盈贤,丁志鹏等.直馏柴油选择催化氧化脱硫催化剂的制备与评价[J].石油化工,2005,34(10):15-19.
    [100]Otsuki S., Nonaka T., Takashima N. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction [J]. Energy & Fuels,2000, 14(6):1232-1239.
    [101]唐晓东,刘亮,税蕾蕾等.直馏柴油催化氧化脱硫均相催化剂的制备与评[J].化工学报,2005,56(4):642-645.
    [102]唐晓东,崔盈贤,于志鹏等.直馏柴油选择催化氧化脱硫催化剂的制备与评价[J].石油化工,2005,34(10):922-926.
    [103]唐晓东,崔盈贤,何柏等.柴油气-液-固催化氧化脱硫研究[J].西南石油大学学报,2007,29(1):95-97.
    [104]税蕾蕾,唐晓东,刘亮等.柴油空气催化氧化脱硫的探索研究[J].工业催化,2003,11(9):1-4.
    [105]张娟,赵地顺,王春芳,等.在改性HZSM-5和氧气气氛下氧化二苯并噻吩[J][J].化学工程,2008,36(5):36-39.
    [106]Carolina H.O., Almudena A., Victoria E.S. Felix Garcia-Ochoa Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization:influence of media composition [J]. Enzyme and Microbial Technology,2005,37(2):157-166.
    [107]Zhao Y, Wang R. DEEP DESULFURIZATION OF DIESEL OIL BY ULTRASOUND-ASSISTED CATALYTIC OZONATION COMBINED WITH EXTRACTION PROCESS[J]. Petroleum & Coal,2013,55(1):62-67.
    [108]Wang B., Zhu J.P., Ma H.Z. Desulfurization from thiophene by SO42-/ZrO2 catalytic oxidation at room temperature and atmospheric pressure [J]. Journal of Hazardous Materials,2009,164(1):256-261.
    [109]戴咏川,亓玉台,赵德智,等.柴油在超声波/cu2+/H2O2中的氧化脱硫[J].燃料化学学报,2007,35(2):188-191.
    [110]韩雪松,赵德智,刘文豹,等.功率超声作用下柴油的深度氧化脱硫[J].辽宁石油化工大学学报,2005,25(4):23-26.
    [111]赵地顺,刘翠微,马四国.FCC汽油模型化合物光催化氧化脱硫的研究[J].高等学校化学学报,2006,27(4):692-696.
    [112]Shiraishi Y, Hirai T, Komasawa I. A deep desulfurization process for light oil by photochemical reaction in an organic two-phase liquid-liquid extraction system [J]. Industrial & engineering chemistry research,1998,37(1):203-211.
    [113]Hirai T, Ogawa K, Komasawa I. Desulfurization process for dibenzothiophenes from light oil by photochemical reaction and liquid-liquid extraction[J]. Industrial & engineering chemistry research,1996,35(2):586-589.
    [114]Zannikos F.E., Stournas S. Desulfurization of petroleum fractions of oxidation and solvent extraction [J]. Fuel processing Technology,1995,42(1):35-45.
    [115]Asghar M.D., Mohammad A.S., Mohammad A.N.,Oxidative desulfurization of non-hydrotreated kerosene using hydrogen peroxide and acetic acid [J]. Chinese Journal of Chemical Engineering,2009,17(5):869-974.
    [116]Yongchuan D.,Yutai Q., Dezhi Z., Huicheng Z. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuel [J]. Chemical Engineering Journal,2013,229:250-256.
    [117]Otsuki S., Nonaka T., Takashima N. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction [J]. Energy & Fuels,2000, 14(6):1232-1239.
    [118]张玲,李萍,张起凯等.微波作用下柴油脱硫新方法的研究[J].化工科技,2007,15(1):13-16.
    [119]Chen L., Guo S., Zhao D. Oxidative desulfurization of simulated gasoline over metal oxide-loaded molecular sieve [J]. Chinnes Journal of Chemical Engineering, 2007,15(4):520-523.
    [120]王云,李钢,王祥生等Ti-HMS催化氧化脱除模拟燃料中的硫化物[J].催化学报,2005,26(7):567-570.
    [121]程时富,刘月明,高金宝等.Ti-MWW催化氧化脱除轻油中苯并噻吩和二苯并噻吩[J].催化学报,2006,27(7):547-549.
    [122]伊万·科热夫尼科夫(作者),唐培堃(译者),李祥高(译者),王世荣(译者).精细化学品的催化合成:杂多酸化合物及其催化[M],北京:化学工业出版社,2005,11.
    [123]Yazu K, Yamamoto Y, Furuya T, et al. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil [J]. Energy & Fuel,2001,15(6):1535-1536.
    [124]Yazu K, Furuya T, Miki K. Tungstophosphoric acid-catalyzed oxidative desulfurization of light oil with hydrogen peroxide in a light oil/acetic acid biphasic system [J]. Chemistry Letters,2003,32(10):920-921.
    [125]Yazu K, Furuya T, Miki K. Immobilized tungstophosphoric acid-catalyzed oxidative desulfurization of diesel oil with hydrogen peroxide [J]. Journal of Japan Petroleum Institute,2003,46(6):379-382.
    [126]Yazu K, Sato S, Sugimoto Y, et al. Tungstophosphoric acid-catalyzed oxidative desulfurization of naphtha with hydrogen peroxide in naphtha/acetic acid biphasic system [J]. Journal of Japan Petroleum Institute,2007,50(6):329-334.
    [127]刘鹏飞,吕宏缨,齐世学.以硅钨杂多酸盐为催化剂对模拟柴油氧化脱硫的研究[J].烟台大学学报,2013,26(4):101-105.
    [128]Trakampruk W., Rujiraw orawut K. Oxidative desulfurization of Gas oil by polyoxometalates catalysts [J]. Fuel Processing Technoloyg,2009,90:411-414.
    [129]Jian Z., Anjie W., Xiang L., et al. Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMoi204o/Si02 [J]. Journal of Catalysis,2011,279(2): 269-275.
    [130]Otsuki S., Nonaka T., Takashima N. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction [J]. Energy & Fuels,2000, 14(6):1232-1239.
    [131]吕志凤,战风涛,李林,等.用H_2O_2-有机酸氧化脱除催化裂化柴油中的硫化物[J].石油大学学报(自然科学版),2001,25(3):26-29.
    [132]Haw K G, Bakar W A W A, Ali R, et al. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system[J]. Fuel Processing Technology,2010,91(9):1105-1112.
    [133]余国贤,陈辉,陆善祥,等.柴油催化氧化深度脱硫研究[J].高校化学工程学报,2006,20(4):616-621.
    [134]Yazu K, Yamamoto Y, Furuya T, et al. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oiI[J]. Energy & Fuels,2001,15(6):1535-1536.
    [135]Yazu K, Furuya T, Miki K. Immobilized tungstophosphoric acid-catalyzed oxidative desulfurization of diesel oil with hydrogen peroxide[J]. Journal of the Japan Petroleum Institute,2003,46(6):379-382.
    [136]Yazu K, Sato S, Sugimoto Y, et al. Tungstophosphoric Acid-catalyzed Oxidative Desulfurization of Naphtha with Hydrogen Peroxide in Naphtha/Acetic Acid Biphasic System[J]. Journal of the Japan Petroleum Institute,2007,50(6):329-334329.
    [137]Wang R, Zhang G, Zhao H. Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil[J]. Catalysis Today,2010,149(1):117-121.
    [138]Wang R, Yu F, Zhang G, et al. Performance evaluation of the carbon nanotubes supported Cs2.5H0.5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene[J]. Catalysis today,2010,150(1-2):37-41.
    [139]Wang H, Wang R. Performance evaluation of "ship-in-the-bottle" type heteropoly acid encaged Y-type zeolite as catalyst for oxidative desulfurization[J]. Collection of Czechoslovak Chemical Communications,2011,76(12):1595-1605.
    [140]马娟娟,王晓,刘丹,等.磷钨杂多酸盐离了液体催化氧化脱硫[J].石油化 工高等学校学报,2013,26(3):30-34.
    [141]Kozhevnikov IV. Catalysis by polyoxometalates:Catalysis for Fine Chemical Synthesis[J]. UK:John Wiley & Sons Ltd; 2002.
    [142]赵忠奎,李宗石,王桂茹,等.杂多酸催化剂及其在精细化学品合成中的应用[J].化学进展,2004,16(4):620-630.
    [143]王宇婷,韩智慧,韩春亮.杂多化合物在药物化学上的应用研究进展[J].河南教育学院学报(自然科学版),2004,4:019.
    [144]韩华俊,陈彤,王公应.负载杂多化合物催化酯类反应研究进展[J].工业催化,2006,14(1):1-4.
    [145]李丽,彭军,张龙.杂多化合物催化过氧化氢氧化烯烃环氧化反应研究进展[J].精细化工中间体,2006,36(5):24-29.
    [146]周广栋,甄开吉,王海水,等.杂多化合物及其负载型催化剂的研究进展[J].化学进展,2006,18(4):382-388.
    [147]李强,王蕾,闫瑞一,等.异丁烯制备甲基丙烯醛催化剂的研究进展[J][J].化学工业与工程,2007,24(5):433-438.
    [148]谢杨林,刘霞,冯长根.多金属氧酸盐抗肿瘤活性研究进展[J].肿瘤防治研究,2007,34(3):225-228.
    [149]宋华,徐骞,李正光.杂多化合物催化剂在异丁烷选择氧化中的研究进展[J].工业催化,2008,16(9):12-17.
    [150]王斌,黎白钰,张慎靖,等.绿色催化剂的应用及进展[J].河北化工,2008,31(7):29-30.
    [151]王帅帅,刘霞.新型稀土杂多配合物的合成及药学应用研究进展[J].中北大学学报(自然科学版),2010,31(5):492-697.
    [152]许娜,李长海.杂多酸催化剂在催化反应中的研究进展[J].科学与财富,2011(9):49-49.
    [153]王恩波,胡长文,许林.杂多酸化学导论[M],北京:化学工业出版社,1998,4.
    [154]胡长文,高丽娟,王恩波等.钨系Keggin结构杂多酸的酸强度及催化反应特性[J].东北师大学报(自然科学版),1995,(2):62-70.
    [155]Khenkin A M, Rosenherger A, Neumann R. Reaction of aldehydes with the H5V2M010O40 polyoxometalate and cooxidation of alkanes with molecular oxygen[J]. Journal of Catalysis,1999,182(1):82-91.
    [156]Tani M, Sakamoto T, Mita S, et al. Hydroxylation of benzene to phenol under air and carbon monoxide catalyzed by molybdovanadophosphoric acid[J]. Angewandte Chemie,2005,117(17):2642-2644.
    [157]Nomiya K, Yanagibayashi H, Nozaki C, et al. Hydroxylation of benzene catalyzedby selectively site-substituted vanadium(V) heteropolytungstates in the presence of hydrogen peroxide[J]. Journal of Molecular Catalysis A:Chemical,1996, 114(1-3):181-190.
    [158]Simoes M M Q, Santos I C M S, Balula M S S, et al. Oxidation of cycloalkanes with hydrogen peroxide in the presence of Keggin-type polyoxotungstates[J]. Catalysis Today,2004,91-92(0):211-214.
    [159]彭革,胡长文,王永慧等.微孔多酸CsxH5-xPW10V2040/SiO2的制备及氧化催化作用[J].高等学校化学学报,2002,23(3):478-480.
    [160]宋华,李国忠,李正光.磷钨酸季铵盐催化氧化汽油深度脱硫[J].燃料化学学报,2010,38(004):439-444.
    [161]Qiu J, Wang G, Zeng D, et al. Oxidative desulfurization of diesel fuel using amphiphilic quaternary ammonium phosphomolybdate catalysts[J]. Fuel Processing Technology.2009,90(12):1538-1542.
    [162]邱江华,王光辉,邱文杰,等.微波辐射磷钼酸镧盐催化柴油氧化脱硫研究[J].云南大学学报:自然科学版,2009,31(5):499-504.
    [163]Li J, Wang X, Zhu W, et al. Zn1.2H0.6PW12O40 nanotubes with double acid sites as heterogeneous catalysts for the production of biodiesel from waste cooking oil[J]. ChemSusChem,2009,2(2):177-183.
    [164]Shi W, Zhao J, Yuan X, et al. Effects of Br(?)nsted and Lewis Acidities on Catalytic Activity of Heteropolyacids in Transesterification and Esterification Reactions[J]. Chemical Engineering & Technology,2012,35(2):347-352.
    [165]王恩波,张澜萃,沈恩洪,等α-Keggin结构钼硅酸钾杂多蓝的合成与结构[J].中国科学B辑,1992,7:000.
    [166]王恩波,詹瑞云.镧系元素钼系双11系列杂多蓝的离析和性质研究[J].无机化学学报,1993,9(1):65-70.
    [167]Aubry C, Chottard G, Platzer N, et al. Reinvestigation of epoxidation using tungsten-based precursors and hydrogen peroxide in a biphase medium[J]. Inorganic Chemistry,1991,30(23):4409-4415.
    [168]Te M., Faribridge C., Ring Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H202 and formic acid/H2O2 systems [J]. Applied Catalysis A,2001, 219:267-280
    [169]李传峰,邵怀启,钟顺和.有机无机杂化膜材料的制备技术[J].化学进展,2004,16(1):83-89.
    [170]王秀华,翁履谦,王玲,等.硅烷偶联剂在有机-无机杂化纳米复合材料中的应用[J].有机硅材料,2004,18(3):30-33.
    [171]艾晓莉,胡小玲.有机-无机杂化膜的研究进展[J][J].化学进展,2004,16(4):654-659.
    [172]李照磊,高延敏.溶胶-凝胶法制备有机-无机杂化材料研究进展[J].胶体与聚合物,2008,26(3):28-30.
    [173]雷菊英.基于介孔氧化硅和多钛氧簇化合物的功能化材料的制备,结构表征及其应用研究[D].华东理工大学,2013.
    [174]王家芳,章文贡.溶胶-凝胶法合成有机/无机杂化材料进展--2.组分间以次价力作用的有机/无机杂化材料[J].高分子通报,2000,4(2):30-30.
    [175]孙丽宁,符连社,刘丰祎,等.无机/有机稀土配合物杂化发光材料研究进展[J].发光学报,2005,26(1):15-15.
    [176]王世敏,吴崇浩,赵雷,等.聚二甲基硅氧烷/Si02杂化材料的制备与性能研究[J].材料科学与工程学报,2003,21(2):205-207.
    [177]熊明娜,周树学,游波,等.丙烯酸树脂TiO2有机-无机杂化材料的力学,热学和光学性能研究[J].材料科学与工程学报,2005,23(2):191-195.
    [178]Xi Z., Zhou N., Sun Y, et al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide [J]. Science,2001,292:1139-1141.
    [179]Yongna Z., Hongying L., Lu W., et al. The oxidation of benzothiophene using the Keggin-type lacunary polytungstophosphate as catalysts in emulsion [J]. Journal of Molecular Catalysis A:Chemical,2102,332:59-64.
    [180]Celik Z, Gulfen M, Aydin A O. Synthesis of a novel dithiooxamide-formaldehyde resin and its application to the adsorption and separation of silver ions[J], Journal of hazardous materials,2010,174(1):556-562.
    [181]朱健鹏,李春虎,陈佳玲,等.高分子树脂为催化剂在温和条件下脱除汽油中含硫化合物的研究[J].青岛科技大学学报,2011,32(6).
    [182]Abu-Reziq R, Alper H, Wang D, et al. Metal supported on dendronized magnetic nanoparticles:highly selective hydroformylation catalysts[J]. Journal of the American Chemical Society,2006,128(15):5279-5282.
    [183]Ding S, Xing Y Radosz M, et al.. Magnetic nanoparticle supported catalyst for atom transfer radical polymerization[J]. Macromolecules,2006,39(19):6399-6405.
    [184]Chen D H, Liao M H. Preparation and characterization of YADH-bound magnetic nanoparticles[J]. Journal of Molecular Catalysis B:Enzymatic,2002,16(5): 283-291.
    [185]Tsang S C, Yu C H, Gao X, et al. Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier[J]. The Journal of Physical Chemistry B,2006, 110(34):16914-16922.
    [186]Yi D K, Lee S S, Ying J Y. Synthesis and applications of magnetic nanocomposite catalysts[J]. Chemistry of materials,2006,18(10):2459-2461.
    [187]Chen X, Zhao T, Zou J. A novel mimetic peroxidase catalyst by using magnetite-containing silica nanoparticles as carriers[J]. Microchimica Acta,2009, 164(1-2):93-99.
    [188]Lyon J L, Fleming D A, Stone M B, et al. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding[J]. Nano Letters,2004,4(4): 719-723.
    [189]金明善,翁永根,董和泉,等.改性杂多酸催化剂的制备及其在甲缩醛合成中的催化活性[J].复旦学报(自然科学版),2003,3:007.
    [190]张学杨,王睿.磷钨酸“瓶中船”型催化剂的合成,表征及催化分解NOx性能[J].无机化学学报,2013,29(2):249-256.
    [191]周广栋,甄开吉,王海水,等.杂多化合物及其负载型催化剂的研究进展[J].化学进展,2006,18(4):382-388.
    [192]赵忠奎,李宗石,王桂茹,等.杂多酸催化剂及其在精细化学品合成中的应用[J].化学进展,2004,16(4):620-630.
    [193]蔡铁军,陈亚中,彭振山,等M-Na-P-Mo-V/SiO_2系列催化剂对异丁烯氧化反应的催化性能[J].催化学报,2002,23(3):285-288.
    [194]王睿,吴丹,赵大传,等.实现NOx吸附分解的杂多化合物催化新体系研究[J].现代化工,2006,2:120-125.
    [195]高云艳,陈鲁园,张雪梅.负载型磷钼钒钴杂多酸盐催化氧化乙苯合成苯乙酮[J].精细与专用化学品,2012,20(2):47-50.
    [196]贺红举,范艳花,何建英,等.高岭土载体在杂多钨酸盐催化合成己二酸中的应用研究[J].化学世界,2013,54(4):193-196.
    [197]Bohejin T, Wenqing H E, Xiaoyi L I, et al.负载型多钒杂多酸催化剂在氧化脱硫反应中的应用[J].石油学报(石油加工,2011,27(1).
    [198]Yan X M, Lei J H, Liu D, et al. Synthesis and catalytic properties of mesoporous phosphotungstic acid/SiO< sub> 2 in a self-generated acidic environment by evaporation-induced self-assembly[J]. Materials Research Bulletin,2007,42(11): 1905-1913.
    [199]Zhou G T, Yao Q Z, Fu S Q, et al. Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite[J]. European Journal of Mineralogy,2010,22(2):259-269.
    [200]Fa-tang L., Cheng-guang K., Zhi-min S., et al. Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO·SnCl2 coordinated ionic liquid [J]. Journal of Hazardous Materials,2012,205-206:164-170.
    [201]Ming Z., Wenshuai Z., Suhang X., et al. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids [J]. Chemical Engineering Journal,2013,220:328-336.
    [202]Wenshuai Z., Wangli H., Huaming L., et al. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels [J]. Fuel Processing Technology,2011,92: 1842-1848.
    [203]Jean-Marie B., Maxence V., Laurent S., et al. From polyoxometalates to polyoxoperoxometalates an back again; potential applications. Journal of Molecular Catalysis A:Chemical,2006,250:177-189.
    [204]Yanyong L., Kazuhisa M., Toshiaki H,, et al. Syntheses of peroxo-polyoxometalates intercalated layered double hydroxides for propene epoxidation by molecular oxygen in methanol. Journal of Catalysis,2007,248: 277-287.
    [205]Luis C., Jorge F., Navarro A., et al. Oxidative desulfurization of synthetic diesel using supported catalysts Part II. Effect of oxidant and nitrogen-compounds on extraction-oxidation process. Catalysis Today,2006,116:562-568.
    [206]Luis C., Hilda G, Adriana F., et al. Oxidative desulfurization of synthetic diesel using supported catalysts Part III. Support effect on vanadium-based catalysts. Catalysis Today,2008,133-135:244-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700