用户名: 密码: 验证码:
负载在Y载体上的贵金属催化剂芳烃加氢性能和耐硫性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着环保法规的日益严格及对能源效率的深入认识,柴油中的芳烃加氢研究受到极大关注。贵金属催化剂由于有较高的加氢活性而成为研究的热点,但贵金属对硫极其敏感,提高贵金属催化剂的抗硫性是研究的重点。本文研究了硫存在下负载在超稳Y(USY)载体上的金属催化剂的加氢性能和抗硫性能。考察了含硫物种对Pd-Pt/HDAY(SiCl4脱铝的氢型Y载体)催化剂芳烃加氢性能及加氢产物分布的影响。以四氢萘加氢为探针反应,在固定床上评价了催化剂的活性和抗硫性。结果表明Pd-Pt/HDAY催化剂具有较好的加氢活性和抗硫性。含有噻吩与含有4,6-二甲基二苯并噻吩的物料反应体系中,催化剂的失活速率有较大差别。通过对反应后催化剂的X射线能量散射分析得出催化剂的失活是由HDAY分子筛对噻吩和4,6-二甲基二苯并噻吩的择形效应造成的。
     对反应后的产物进行分析,结果表明,产物中除十氢萘外,还有十氢萘的异构产物,开环产物,裂解产物。含有噻吩的物料中,裂解产物的选择性较小,开环产物的选择性与含4,6-二甲基二苯并噻吩的物料体系相似。三种物料中,催化剂的积碳量有所差别,造成裂解产物选择性的不同。
     研究了载体的酸量对催化剂芳烃加氢活性和抗硫性的影响。采用水蒸汽脱铝获得了不同酸量的Y型分子筛-USY1、USY2、USY3、USY4。以上述分子筛为载体制备了金属含量、金属组成、金属分散度相近的催化剂,研究了载体酸量对催化剂抗4,6-二甲基二苯并噻吩能力的影响。载体酸量较小的Pd-Pt/USY4催化剂和酸量较大的Pd-Pt/USY1催化剂抗硫性较低,表明载体的酸量过大或过小不利于提高催化剂的抗硫性。Pd-Pt/USY1催化剂抗硫性较低归因于酸量大时,相应酸性位上含硫物种的吸附增强,表面高浓度的含硫物种对金属活性位的毒化能力增强;Pd-Pt/USY4催化剂抗硫性较低与金属中心缺电子效应较小和酸性位浓度低有关。
     探讨了酸性位对芳烃加氢的贡献以及对产物分布的影响,另外考察了十氢萘的顺反异构化机理。以USY分子筛为载体,用吸附吡啶的方法获得了酸性位被毒化的催化剂。研究了不同金属含量的催化剂酸性位毒化前后四氢萘加氢活性和耐硫性的影响。对于同一金属含量的催化剂,未毒化前催化剂的活性和耐硫性始终高于毒化后催化剂的活性,说明载体的酸性有利于提高催化剂的加氢活性和耐硫性。溢流氢对芳烃加氢的贡献可以简单的表示为酸性位毒化前后催化剂的TOF值之差。酸性位和金属之间有一定的关系。考察了金属含量、载体酸性、四氢萘的转化率对十氢萘顺反异构化的影响。金属含量对十氢萘的顺反异构比影响不大,四氢萘对十氢萘的反顺异构化有一定的抑制作用,载体的酸性对十氢萘的顺反异构比有较大影响,酸性位是十氢萘反顺异构化的主要活性中心,十氢萘异构化机理主要为碳正离子机理。
     以萘、蒽、芘加氢为模型反应研究了Pd-Pt/USY催化剂多环芳烃加氢性能以及硫对芳烃加氢的抑制作用。结果显示,催化剂具有深度加氢的能力。以萘与蒽、萘与芘的混合体系为模型反应研究了它们之间竞争加氢的问题。萘与蒽之间竞争加氢的结果表明,蒽抑制萘加氢,而萘抑制了蒽加氢产物1-ring物质向0-ring物质的转化。这说明,对于分子动力学直径相当的混合体系中,多环物质抑制环少的物质的加氢。对于动力学直径相差较大的萘与芘体系,萘的转化率始终高于芘的转化率,并且单和混合体系中萘和芘的转化率变化程度不大。单纯以环的数目判断多环芳烃的加氢活性是不充分的,除此之外,分子能否扩散进入分子筛孔道内也是影响加氢活性的重要因素。噻吩对催化剂催化萘、蒽加氢有抑制作用。结果显示,噻吩对催化剂催化多环芳烃生成全氢物质的抑制作用比生成部分加氢物质的抑制作用更显著。
     采用离子交换法制得Y~(3+)改性的USY载体,用TPR、NH_3-TPD等表征了载体和催化剂的性质。在金属含量、金属组成相近的前提下,研究了载体改性前后催化剂的四氢萘加氢活性和耐硫性。实验结果表明,少量Y~(3+)的添加可以使负载金属催化剂的加氢抗硫性能得以改善;过量Y~(3+)的添加不利于提高金属催化剂的活性和抗硫性。
In recent years, a considerable attention had been focused on aromatics hydrogenation of diesel due to the increasingly stringent environmental legislation and the recognition of the importance of energy efficiency. Noble metal catalysts were highly active for aromatics hydrogenation. However,they were extremely sensitive to sulfur, it was paramount to improve the sulfur tolerance of the catalyst. In this work, fundamental research was conducted with tetralin hydrogenation utilizing USY supported noble metal catalysts in the presence of sulfur.
     The influence of sulfur compound on hydroconversion of tetralin and on product distribution over Pd-Pt/HDAY catalyst was investigated. The activity and thiotolerance for the hydrogenation of tetralin were examined in a high-pressure fixed-bed continuous-flow stainless steel catalytic reactor. The thiotolerance was tested with feeds containing 200 ppm sulfur in the form of 4, 6-dimethyldibenzothiophene and thiophene, respectively. It was found that thiophene was more effective for deactivating the catalyst than the former one. The diffusion barrier of the pores for the sulfur compound is likely the major reason for the different deactivation rate of catalysts.
     The products other than decalins were mainly decalin isomers (iso-DECS), ring-open (RO) hydrocarbons and their hydrogenated derivatives. The selectivities of RO and iso-DECS in the two feeds with sulfur are almost the same to each other and to that of the clean feed, while there are significant differences in the selectivities of cracking product. The differences in product distribution observed are explained by the different poisoning ability for acid sites on which secondary acid-catalyzed reactions, mainly cracking and dealkylation, leading to lighter products occurs.
     The effects of acid site amount on tetralin hydrogenation activity and sulfur tolerance were studied. USY supports with different acid amount were obtained by steaming dealumination, and the noble metal catalysts with same metal content and same metal dispersion were prepared by an ion-exchange method. Hydrogenation activity and sulfur tolerance of catalysts was examined. It was shown that Pd-Pt/USY1 catalyst with very high acid amount and Pd-Pt/USY4 catalyst with low acid amount showed noticeable decrease in sulfur tolerance. The low sulfur tolerance of Pd-Pt/USY4 was related to its low acid amount and insignificant electron-deficiency of metal particles. The noticeable decrease in sulfur tolerance of Pd-Pt/USY1 catalyst was because the acid sites were more easily poisoned by sulfur when acid amount increased.
     The contribution of acid sites to aromatic hydrogenation and influence to the distribution of products was studied. Neutralization with pyridine of acid sites on catalysts with different metal content was performed in order to evaluate the contributions of acid sites to activity. The activity and thiotolerance of fresh catalysts were higher than that poisoned by pyridine in same metal content, indicating that acid sites were favor to increasing the activity of catalysts. The contribution of acid site to turn over frequency (TOF) was roughly estimated by subtracting the TOF of the samples before and after acid site neutralization.
     Influence of metal content, support acidity and tetralin on stereoisomerization of decalin was explored. It was shown that support acidity played a predominate role in stereoisomerization of decalin. The mechanism for stereoisomerization of decalin on proton-form zeolites involved a carbenium ion.
     The deep hydrogenation of polycyclic arenes on Pd-Pt/USY catalyst has been investigated. It was shown that catalyst promoted deep hydrogenation of polycyclic arenas. Competitive hydrogenation of naphthalene and anthracene system as well as naphthalene and pyrene system was examined. For the naphthalene and anthracene with same kinetic diameter, a strong inhibition existed in this reaction system. The results showed that the polycyclic arenes inhibits the hydrogenation of arenas with less number of aromatic rings. However, for naphthalene and pyrene the hydrogenation activity of naphthalene was obviously higher than that of pyrene. It is because that pyrene can not diffuse to the supercage of Y. Although its hydrogenation may occur on the active sites in mesopores and on the outer surface of the crystallites, a low hydrogenating activity than naphthalene was reasonable. Inhibition of polycyclic arenas hydrogenation activity by sulfur was investigated. It showed that sulfur has stronger inhibiting for hydrogenation of deeply hydrogenated compounds than that with less number of aromatic rings.
     Modified USY by adding yttrium was prepared by an ion exchange method. TPR and NH_3-TPD were employed to investigate the character of catalysts and supports. At the same metal content and metal composition, activity and sulfur tolerance of catalysts were analysed. The results showed that the activity and sulfur tolerance of the catalyst could be improved by adding a low content of yttrium, while it could be decreased when content of yttrium was high.
引文
[1]闵恩泽,环境友好石油炼制技术的进展,化学进展,1998,10:207~214
    [2]汪燮卿,从第15届世界石油大会看炼油工业的发展趋势,石油炼制与化工,1998,29:1~6
    [3] Corma A, Martinez A, Soriay V M. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts. J. Catal., 1997, 169: 480~489
    [4] Stanislaus A, Cooper B H. Aromatic hydrogenation catalysis: a review. Catal. Rev. Sci. Eng., 1994, 36: 75~123
    [5] Cooper B H, Donnis B B L. Aromatic saturation of distillates: an overview. Appl. Catal. A: General, 1996, 137: 203~223
    [6]李大东,蒋富康,清洁燃料生产技术的新进展,中国工程科学,2003,5:6~14
    [7]张德义,21世纪初炼油工业展望,炼油技术与工程,2003,33:1~6
    [8] Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today, 2003, 86: 211~263
    [9]部分国家车用燃料标准汇总,中国石化股份有限公司科技开发部,2000,8:22
    [10]侯芙生,中国石化总公司加氢裂化协作组第二届年会报告论文集,炼油设计编辑部出版,1997.1
    [11] Kent L, Chasey T A. Polycyclic aromatic structure distributions by high resolution mass spectrometry. Energy & Fuel, 1991, 5: 386~394
    [12] Wilson M F, Fisher I P, Kriz J F. Hydrogenation of aromatic compounds in synthetic crude distillates catalyzed by sulfided Ni-W/gamma-Al2O3. J. Catal., 1985, 95: 155~166
    [13] Ijam M J, Al-Qatami S Y, Arif S F. Bicyclic aromatic hydrocarbons of Kuwait gas oil. ACS Div. Petrol. Chem., Preprints, 1990, 35: 821~826
    [14] Arribas M A, Mart?nez A. The influence of zeolite acidity for the coupled hydrogenation and ring opening of 1-methylnaphthalene on Pt/USY catalysts. Appl. Catal. A: General, 2002, 230: 203~217
    [15] Gully A, Ballard W P. Advances in Petroleum Chemistry and Refinery. Interscience, London, 1963, 7: 241~282
    [16] Jaffe S B. Kinetics of heat release in petroleum hydrogenation. Ind. Eng. Chem. Proc. Des. Dev., 1974, 13: 34~39
    [17] Frye C G., Weitkamp A W. Equilibrium hydrogenation of multi-ring aromatics. J. Chem. Eng. Data, 1969, 14: 372~376
    [18] Dutta R P, Schobert H H. Hydrogention/dehydrogention of polycyclic aromatic hydrocarbons using ammoium tetrathiomolybdate as catalyst precursor. Catal. Today, 1996, 31: 65~77
    [19] Le Page J F. Applied heterogeneous catalysis. Houston: Gulf Publishing Company, 1987, 293
    [20] Dufresne P, Bigeard P H, Billon A. New developments in hydrocracking: Low pressure high-conversion hydrocracking. Catal. Today, 1987, 1: 367~384
    [21] Girgis M J, Gates B C. Reactivities, reaction networks, and kinetics in high pressure catalytic hydroprocessing. Ind. Eng. Chem. Res., 1991, 30: 2021~2058
    [22] Marchal N, Mignard S, Kasztelan S. Aromatics saturation by sulfided Nickel-Molybdenum hydrotreating catalysts. Catal. Today, 1996, 29: 203~207
    [23] Toppinen S, Rantakyla T K, Salmi T, et al. Kinetics of the liquid phase hydrogenation of Di- and Trisubstituted alkylbenzenes over a nickel catalyst. Ind. Eng. Chem. Res., 1996, 35: 4424~4433
    [24] Keane M A, Patterson P M. The role of hydrogen partial pressure in the gas-phase hydrogenation of aromatics over supported nickel. Ind. Eng. Chem. Res., 1999, 38: 1295~1305
    [25] Kiperman S L. Some problems of chemical kinetics in heterogeneous hydrogenation catalysis. Stud. Surf. Sci. Catal., 1986, 27: 1~52
    [26]黄开辉,万惠霖,催化原理,第一版,北京:科学出版社,1983.513
    [27] Lindfors L P, Salmi T. Kinetics of toluene hydrogenation on a supported nickel catalyst. Ind. Eng. Chem. Res., 1993, 32: 34~42
    [28] Rahaman M V, Vannice M A. The hydrogenation of toluene and o-,m-,and pxylene over palladium. I. Kinetic behavior and o-xylene isomerization. J. Catal., 1991, 127: 251~266
    [29] Smeds S, Murzin D, Salmi T. Kinetics of ethylbenzene hydrogenation on Ni/Al2O3. Appl. Catal. A: General, 1995, 125: 271~291
    [30] Lin S D,Vannice M A. Hydrogenation of aromatic hydrocarbons over supported Pt catalysts. II: Toluene hydrogenation. J. Catal., 1993, 143: 554~562
    [31] Lin S D, Vannice M A. Hydrogenation of aromatic hydrocarbons over supported Pt catalysts. III: reaction models for metal surfaces and acidic sites on oxide supports. J. Catal., 1993, 143: 563~572
    [32] Sapre A V, Gate B C. Hydrogenation of aromatic hydrocarbons catalyzed by sulfided CoO-MoO3/γ-Al2O3. Reactivities and reaction networks. Ind. Eng. Chem. Process Des. Dev., 1981, 20: 68~73
    [33] Huang T C, Kang B C. Kinetic study of naphthalene hydrogenation over Pt/Al2O3 catalyst. Ind. Eng. Chem. Res., 1995, 34: 1140~1148
    [34] Korre S C, Klein M T, Quann R J. Polynuclear aromatic hydrocarbons hydrogenation. 1. Experimental reaction pathways and kinetics. Ind. Eng. Chem. Res., 1995, 34: 101~117
    [35] Kokayeff P. Catalytic hydroprocessing of petroleum and distillates. Marcel Dekker, New York, 1994, 253~278
    [36] Bouchy M, Dufresne P, Kasztelan S. Hydrogenation and hydrocracking of a model light cycle oil feed. 1. Properties of a sulfided nickel-molybdenum hydrotreating catalyst. Ind. Eng. Chem. Res., 1992, 31: 2661~2669
    [37] Bouchy M, Peureux-Denys S, Dufresne P, et al. Hydrogenation and hydrocracking of a model light cycle oil feed. 2. Properties of a sulfided nickel-molybdenum hydrocracking catalyst. Ind. Eng. Chem. Res., 1993, 32: 1592~1602
    [38] Jongpatiwut S, Li Z, Resasco D E, et al. Competitive hydrogenation of poly-aromatic hydrocarbons on sulfur-resistant bimetallic Pt-Pd catalysts. Appl. Catal. A: General, 2004, 262: 241~253
    [39] Ito K, Kogasaka Y, Kurokawa H, et al. Preliminary study on mechanism of naphthalene hydrogenation to form decalins via tetralin over Pt/TiO2. Fuel Process Technol., 2002, 79: 77~80
    [40] Lylykangas M S, Rautanen P A, I Krause A O. Liquid-phase hydrogenation kinetics of multicomponent aromatic mixtures on Ni/Al2O3. Ind. Eng. Chem. Res., 2002, 41: 5632~6539
    [41] Vradman L, Landau M V, Herskowitz M. Hydrodearomatization of petroleum fuel fractions on silica supported Ni-W sulfide with increased stacking number of the WS2 phase. Fuel, 2003, 82: 633~639
    [42] Leyrit P, Cseri T, Machal N, et al. Aromatic reduction properties of molybdenum sulfide clusters in HY zeolite. Catal. Today, 2001, 65: 249~256
    [43] Lecrenay E, Sakanishi K, Mochida I, et al. Hydrodesulfurization acticity of CoMo and NiMo catalysts supported on some acidic binary oxides. Appl. Catal. A: General, 1998, 175: 237~243
    [44] Ramirez J, Ruiz-Ramirez L, Cedeno L. Titania-alumina mixed oxides as supports for molybdenum hydrotreating catalysts. Appl. Catal. A: General, 1993, 93:163~180
    [45] Mignard S, Marchal N, Kasztelan S. Effect of H2S and NH3 on aromatics hydrogenation over sulfided Pt and NiMo based hydrotreating catalysts. Bull. Soc. Chim. Belg., 1995, 104: 259~263
    [46] Kwart H, Schuit G C A, Gates B C. Hydrodesulfurization of thiophenic compounds- reaction mechanism. J. Catal., 1980, 61: 128~134
    [47] V?lter J, Hermann M, Heise K. Comparative hydrogenation and adsorption of benzene and methylbenzenes on cobalt and phodium catalysts. J. Catal., 1968, 12: 307~313
    [48] Moreau C, Aubert C, Durand R, et al. Structure-activity relationships in hydroprocessing of aromatic and heteroaromatic model compounds over sulphided NiO-MoO3/γ-Al2O3 and NiO-WO3/γ-Al2O3 catalysts: Chemical evidence for the existence of two types of catalytic sites. Catal. Today, 1988, 4: 117~131
    [49] Kwart H, Katzer J, Horgan J. Hydroprocessing of phenothiazine catalyzed by cobalt-molybdenum/gamma.-aluminum oxide. J. Phys. Chem., 1982, 86: 2641~2646
    [50] Petrot G. The reactions involved in hydrodenitrogenation. Catal. Today, 1991, 10: 447~472
    [51] Delmon B, Froment G F. Remote control of catalytic sites by spillover species: A chemical reaction engineering approach. Catal. Rev. Sci. Eng., 1996, 38: 69~100
    [52] Pajonk G M. Contribution of spillover effects to heterogeneous catalysis. Appl. Catal. A: General, 2000, 202: 157~169
    [53] Tops?e H, Clausen B S. Importance of Co-Mo-S type structures in hydrodesulfurization. Catal. Rev. Sci. Eng., 1984, 26: 395~342
    [54] Tops?e N Y, Tops?e H. Characterization of the structures and active sites in sulfides cobalt-molybdenum/alumina and nickel-molybdenum/alumina catalysts by nitric oxide chemisorption. J. Catal., 1983, 84: 386~401
    [55] Voorhoeve R J H, Stuiver J C M. The mechanism of the hydrogenation of cyclohexene and benzene on nickel-tungsten sulfide catalysts. J. Catal., 1971, 23: 243~252
    [56] Schuit G C A, Gates B C. Chemistry and engineering of catalytic hydrodesulfurization. AIChE J., 1973, 19: 417~438
    [57] Sakanishi K, Ohira M, Mochida I, et al. The reactivities of polyaromatic hydrocarbons in catalytic hydrogenation over supported noble metals. Bull. Chem. Soc. Jpn., 1989, 62: 3994~4001
    [58] Koussathana M, Vamvouka N, Tsapatsis M, et al. Hydrogenation of aromatic compounds over noble metals dispersed on doped titania carriers. Appl. Catal. A: General, 1992, 80: 99~113
    [59] Vaarkamp M, Reesink B H, Berben P H. WO98/35754, PCT/NL 98/00090, 1998
    [60] Pawelec B, Mariscal R, Navarro R M, et al. Hydrogenation of aromatics over supported Pt-Pd catalysts. Appl. Catal. A: General, 2002, 225: 223~237
    [61] Barrio V L, Arias P L, Cambra J F, et al. Aromatics hydrogenation on silica-alumina supported palladium-nickel catalysts. Appl. Catal. A: General, 2003, 242: 17~30
    [62] Fujikawa T, Idei K, Usui K. Aromatic hydrogenation of distillate over B2O3-Al2O3 supported Pt-Pd catalysts. Sekiyu Gakkaish, 1999, 42: 271~274
    [63] Wang J, Huang L M, Li Q Z. Influence of different diluents in Pt/Al2O3 catalyst on the hydrogenation of benzene, toluene and o-xylene. Appl. Catal. A: General, 1998, 175: 191~199
    [64] Barbier J, Lamy-Pitara E, Marecot P, et al. Role of sulfur in catalytic hydrogenation reactions. Adv. Catal., 1990, 37: 279~318
    [65]扈林杰,李大东,负载贵金属芳烃饱和催化剂抗硫性能研究,Ⅰ:载体酸性的影响,石油学报(石油加工),1999,15:41~45
    [66] Sachtler W M H, Zhang Z. Zeolite supported transition-metal catalysts. Adv. Catal., 1993, 39: 129~220
    [67] Sachtler W M H, Stakheev A Y. Electron-deficient palladium clusters and bifunctional sites in zeolites. Catal. Today, 1992, 12: 283~395
    [68]闵恩泽,李成岳,绿色石化技术的科学与工程基础,北京:中国石化出版社,2002. 250~274
    [69] Chen Y. Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy particles. Catal. Today, 1998, 44: 3~16
    [70] Molnar A, Smith G V, Bartok M. New catalytic materials from amorphous metal alloys. Adv. Catal., 1989, 36: 329~283
    [71]张荣斌,李凤仪,石秋杰,NiB/Al2O3非晶态合金催化剂抗硫性能研究,江西科学,2002,20:71~74
    [72]李凤仪,张荣斌,石秋杰等,稀土在负载型非晶态NiB/Al2O3合金上作用研究,稀土,2000,21:38~42
    [73] Wang W J, Qiao M H, Yang Y, et al. Selective hydrogenation of cyclopentadiene to cyclopentene over an amorphous NiB/SiO2 catalyst. Appl. Catal. A: General, 1997, 163: 101~109
    [74] Liu B, Qiao M H, Wang J Q, et al. Amorphous Ni-B/SiO2 catalyst prepared by microwave heating and its catalytic activityin acrylonitrile hydrogenation. J. Chem. Technol. Biotech., 2003, 78: 512~517
    [75]石秋杰,陈昭萍,罗来涛等,海泡石对非晶态NiB合金催化剂的改性研究,物理化学学报,2000,16:501~506
    [76] Wang S T, Lee J F, Chen J M, et al. Preparation and characterization of MCM-41 and silica supported nickel boride catalysts. J. Mol. Catal. A, 2001, 165: 159~167
    [77] Qiao M H, Xie S H, Dai W L, et al. Ultrafine Ni-Co-W-B amorphous alloys and their activities in benzene hydrogenation to cyclohexane. Catal. Lett., 2001, 71: 187~192
    [78] Mamede A S, Giraudon J M, Lofberg A, et al. Hydrogenation of toluene over beta-Mo2C in the presence of thiophene. Appl. Catal. A: General, 2002, 227: 73~82
    [79] Da Costa P, Lemberton J L, Potvin C, et al. Tetralin hydrogenation catalyzed by Mo2C/Al2O3 and WC/Al2O3 in the presence of H2S. Catal. Today, 2001, 65: 195~200
    [80]李伟,张明慧,陈志飞等,NiMoNx/γ-Al2O3催化剂用于油品重芳烃饱和加氢,石油化工,2002,31:505~509
    [81] Gallezot P. Catalytic activity of very small particles of Platinum and Palladium supported in Y-type zeolites. In: Imelik B, Naccache C, Ben Taarit Y, et al, Eds. Catalysis by zeolite, Elsevier Science Publishing Co., Amsterdam, 1980, 5: 277~234
    [82] Yoshimura Y, Toba M, Farag H, et al. Ultra deep hydrodesulfurization of gas oils over sulphide and/or noble metal catalysts. Catal. Surv. Asia, 2004, 8: 47~60
    [83] Yasuda H, Yoshimura Y. Hydrogenation of tetralin over zeolite-supported Pt-Pd catalysts in the presence of dibenzothiophene. Catal. Lett., 1997, 46: 43~48
    [84] Matsubayashi N, Yasuda H, Immamura M, et al. EXAFS study on Pt-Pd catalysts supported on USY zeolite. Catal. Today, 1998, 45: 375~380
    [85] Koussathana M, Vamvouka D, Economou H, et al. Slurry-phase hydrogenation of aromatic compounds over suppotred noble metal catalysts, Appl. Catal. A: General, 1991, 77: 283~301
    [86] Fujikawa T, Tsuji K, Mizuguchi H, et al. EXAFS characterization of bimetallic Pt-Pd/SiO2-Al2O3 catalysts for hydrogenation of aromatics in diesel fuel. Catal. Lett., 1999, 63: 27~33
    [87] Lin T B, Jan C A, Chang J R. Aromatics reduction over supported platinum catalysts. Ind. Eng. Chem. Res., 1995, 34: 4284~4289
    [88] Navarro R M, Pawelec B, Trejo J M, et al. Hydrogenation of aromatics on sulfur tolerant Pt-Pd bimetal catalysts. J. Catal., 2000, 189: 184~194
    [89] Lee J K, Rhee H K. Sulfur tolerance of zeolite Beta-supported Pt-Pd catalysts of the isomerization of n-hexane. J. Catal., 1998, 177: 208~216
    [90] Coq B, Figueras F. Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance. J. Mol. Catal., 2001, 173: 117~134
    [91] Rousset J L, Stievano L, Cadete Santos Aires F J, et al. Hydrogenation of toluene overγ-Al2O3-supported Pt, Pd and Pt-Pd model catalysts obtained by laser vaporization of bulk metals. J. Catal., 2001, 197: 335~343
    [92] Rousset J L, Stievano L, Cadete Santos Aires F J, et al. Characterization and reactivity of Pt-Pd bimetallic supported catalysts obtained by laser vaporization of bulk alloy. Appl. Surf. Sci., 2000, 164: 163~168
    [93] Rousset J L, Stievano L, Cadete Santos Aires F J, et al. Hydrogenation of tetralin in the presence of sulfur overγ-Al2O3-supported Pt, Pd and Pt-Pd model catalysts. J. Catal., 2001, 202: 163~168
    [94] Lárgentiere P C, Figoli N S. Pd-W and Pd-Co bimetallic catalysts sulfur resistance for selective hydrogenation. Ind. Eng. Chem. Res., 1997, 36: 2543~2546
    [95] Jacobs G, Ghadiali F, Pisanu A, et al. Increased sulfur tolerance of Pt/KL catalysts prepared by vapor-phase impregnation and containing a Tm promoter. J. Catal., 2000, 191: 116~127
    [96] Figoli N S, Largentiere P C, Arcoya A, et al. Modification of the Properties and Sulfur Resistance of a Pd/SiO2 Catalyst by La Addition. J. Catal., 1995, 155: 95~105
    [97] Yoshimura Y, Yasuda H, Sato T, et al. Sulfur-tolerant Pt-Pd/Yb-USY zeolite catalysts used to reformulate diesel oils. Appl. Catal. A: General, 2001, 207: 303~307
    [98] Bihan L L, Yoshimura Y. Control of hydrodesulfurizaiton and hydrodearomatization properties over bimetallic Pd-Pt catalysts supported on Yb-modifed USY zeolite. Fuel, 2002, 81: 491~494
    [99] Tailleur R G, Ravigli J, Samuel Q, et al. Catalyst for ultra-low sulfur and aromatic diesel. Appl. Catal. A: General, 2005, 282: 227~235
    [100] Venezia A M, La Parola V, Pawelec B, et al. Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3 catalysts: support acidity effect. Appl. Catal. A: General, 2004, 264: 43~51
    [101] Pawelec B, Cano-Serrano E, Campos-Martin J M, et al. Deep aromatics hydrogention in the presence of DBT over Au-Pd/γ-Al2O3 catalysts. Appl. Catal. A: General, 2004, 275:127~139
    [102] Hu L, Xia G, Qu L, et al. Strong effect of transitional metals on the sulfur resistance of Pd/HY-Al2O3 catalysts for aromatic hydrogenation. J. Mol. Catal., 2001, 171: 169~179
    [103] Hu L, Xia G, Qu L, et al. The effect of chromium on sulfur resistance of Pd/HY-Al2O3 catalysts for aromatic hydrogenation. J. Catal., 2001, 202: 220~228
    [104] Barrio V L, Arias P L, Cambar J F. Hydrodesulfurization and hydrogenation of model compound on silica-alumina supported bimetallic systems. Fuel, 2003, 82: 501~509
    [105] Tétényi P, Galsán V. Hydro-dehydrogenation of six-member hydrocarbon cycles on supported platinum-cobalt bimetallic catalysts. Appl. Catal. A: Genenral, 2002, 229: 181~192
    [106] Simon L J, Kooyman P J, van Ommen J G, et al. Hydrogenation of aromatic compounds over noble metals dispersed on doped titania carriers. Appl. Catal. A: Genenral, 1992, 80: 99~113
    [107] Guillon E, Lynch J, Uzio D, et al. Characterisation of bimetallic platinum systems: application to the reduction of aromatics in the presence of sulphur. Catal. Today, 2001, 65: 201~208
    [108] Techner S T, Mazabrard A R, Pajonk G, et al. Hydrogen spillover in catalytic reactions: I. Activation of alumina. J. Colloid Interface Sci., 1977, 58: 88~89
    [109] Ceckiewicz S, Delmon B. Cooperative action of Pt/γ-Al2O3 catalysts andγ-Al2O3 diluent in the hudrogenation of benzene. J. Catal., 1987, 108: 294~303
    [110] Chou P, Vannice M A. Benzene hydrogenation over supported and unsupported palladium, I. kinetic behavior. J. Catal., 1987, 107: 129~139
    [111] Lin S D, Vannice M A. Hydrogenation of aromatic hydrocarbons over supported Pt catalysts, I. benzene hydrogenation. J. Catal., 1993, 143: 539~553
    [112] Wang J, Li Q Z, Yao J D. The effect of metal-acid balance in Pt-loading dealuminated Y zeolite catalysts on the hydrogenation of benzene. Appl. Catal. A: General, 1999, 184: 181~188
    [113] Simon L J, Ommen J G van, Jentys A, et al. Sulfur tolerance of Pt/mordenites for benzene hydrogenation, Do Br?nsted acid sites participate in hydrogenation? Catal. Today, 2002, 73: 105~112
    [114] Tri T M, Massardier J, Gallezot P, et al. Additives and support effects on Pt catalysts studied by the competitive hydrogenation of bezene and toluene. In: Imelik B, Naccache C, Coudurier, et al, Eds. Metal-support and Metal Additives Effects in Catalysis. Elsevier Scientific Pub. Co., Amsterdam, 1982, 11: 141~148
    [115] Figueras F, Gomez R, Primet M. Adsorption and catalytic properties of Palladium supported by Silica, Alumina, Magnesia, and amorphous and crystalline Silica-Aluminas Molecular sieves. In: Meier W M, Uytterhoeven J B, Eds. Advances in Chemistry Series. American chemical society, Washington, D. C., 1973, 121: 480~489
    [116] Phuong T T, Massardier J, Gallezot P. Competitive hydrogenation of benzene and toluene on groupⅧmetals: Correlation with the electronic structure. J. Catal., 1986, 102: 456~459
    [117] Szymanski R, Charcosset H, Gallezot P, et al. Characterization of platinum-zirconium alloys by competitive hydrogenation of toluene and benzene. J. Catal., 1986, 97: 366~373
    [118] Gallezot P, Dakta I, Massardier J, et al. Unusual catalytic behavior of very small Platinum particles encaged in Y zeolites. Proceedings of the sixth international congress on catalysis, London, 1976. In: Bond G C, Wells P B, Tompkins F C, eds. The Chemistry Society, London, 1977, 2: 696~707
    [119] Michele C. Ionization potentials and electron affinities of metal clusters. J. Catal., 1975, 37: 187~190
    [120] Marginean P, Olariu A. Metal/oxide support effects in the H2-H2O deuterium exchange reaction catalyzed by nickel. J. Catal., 1985, 95: 1~12
    [121] Garten R L, Sinfelt J H. Structure of Pt-Ir catalysts: M?ssbauer spectroscopy studies employing 57Fe as a probe. J. Catal., 1980, 62: 127~139
    [122] Gonzo E, Boudart M. Catalytic hydrogenation of cyclohexene, 3. Gas-phase and liquid-phase reaction on supported palladium. J. Catal., 1978, 52: 426~471
    [123] Boudart M. Catalysis by supported metals. Advances in Catalysis and Related Subjects. Academic Press, Inc. New York, 1969, 20: 153~166
    [124] Foger K, Anderson J R. Reactions of neopentane and neohexane on platinum/Y-zeolite and platinum/silica catalysts. J. Catal., 1978, 54: 318~335
    [125] Guenin M, Silva P N Da, Frety R. Influence of chlorine towards metal-support and metal-sulfur support interactions. Appl. Catal. A: General, 1986, 27: 313~323
    [126] Poondi D, Vannice M A. Competitive hydrogenation of benzene and toluene on palladium and platinum catalysts. J. Catal., 1996, 161: 742~751
    [127] Song C,Ma X L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl. Catal. B, 2003, 41: 207~238
    [128] Song C. Designing sulfur-resistant, noble-metal hydrotreating catalysts. Chemtech, 1999, 29: 26~30
    [129] Okamoto Y, Nitta Y, Imanaka T, et al. Surface state, catalytic activity and selectivity of nickel catalysts in hydrogenation reactions. 2. Surface characterization of Raney-nickel and Urushibara nickel catalysts by X-ray photoelectron spectroscopy. J. Chem. Soc., Faraday Trans. 1 1980, 76: 998~1007
    [130]孟祥春,高分散Pd(-Pt)/H-Y催化剂的芳烃加氢抗硫性能研究:[博士学位论文],天津:天津大学,2005
    [131] Proke?ováP, ?ilkováN, Mintova S, et al. Catalytic activity of micro/mesoporous composites in toluene alkylation with propylene. Appl. Catal. A: General, 2005, 281: 85~91
    [132] van Donk S, Janssen A H, Bitter J H. Generation, characterization, and impact of mesopores in zeolite catalysts. Catal. Rev. Sci. Eng., 2003, 45: 297~319
    [133] Tromp M, van Bokhoven J A, Oostenbrink M T G, et al. Influence of the generation of mesopores on the hydroisomerization activity and selectivity of n-Hexane over Pt/mordenite. J. Catal., 2000, 190: 209~214
    [134] Schuster C, H?lderich W F. Modification of faujasites to generate novel hosts for“ship-in-a-bottle”complexes. Catal. Today, 2004, 60: 193~207
    [135] Kloetstra K R, Zandbergen H W, Jansen J C. Overgrowth of mesoporous MCM-41 on faujasite. Micropor. Mater., 1996, 6: 287~293
    [136] Karlsson A, Stocker M, Schmidt R. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Micropor. Mesopor. Mater., 1999, 27: 181~192
    [137] Zhang Z T, Han Y, Xiao F S, et al. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. J. Am. Chem. Soc., 2001, 123: 5014~5021
    [138] Poladi R H P R, Landry C C. Synthesis, characterization, and catalytic properties of a microporous/mesoporous material, MMM-1. J. Solid. State. Chem., 2002, 167: 363~369
    [139] Huang L, Guo W, Deng P, et al. Investigation of synthesizing MCM-41/ZSM-5 composites. J. Phys. Chem. B, 2000, 104: 2817~2823
    [140] Guo W, Huang L, Deng P, et al. Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture. Micropor. Mesopo. Mater., 2001, 44~45: 427~434
    [141] Proke?ov? P, Mintova S, Cejka J, et al. Preparation of nanosized micro/mesoporous composites. Mater. Sci. Eng. C, 2003, 23: 1001~1005
    [142] Mavrodinova V, Popova M, Valchev V, et al. Beta zeolite colloidal nanocrystals supported on mesoporous MCM-41. J. Colloid Inter. Sci., 2005, 286: 268~273
    [143] Liu Y, Zhang W Z, Pinnavania T J. Steam-stable aluminosilicate mesostructures assembled from zeolite Y seeds. J. Am. Chem. Soc., 2000, 122: 8791~8792
    [144] Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angew. Chem. Int . Ed., 2001, 40: 1255~1258
    [145]张涛,国外柴油质量发展趋势和技术进展,金陵石油化工,1997,3:30~35
    [146] Egorova M, Prins R. Competitive hydrodesulfurization of 4,6-dimethyldibenzo- thiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphtha- lene over sulfided NiMo/γ-Al2O3. J. Catal., 2004, 224: 278~287
    [147] Stork W H J. Performance testing of hydroconversion catalysts. Am. Chem. Soc. Sym. Ser., 1996, 634: 379~400
    [148] Reinhoudt H R, Troost R, van Langeveld A D, et al. Testing and characterization of Pt/ASA and PtPd/ASA for deep HDS reactions. In: Delmon B, Froment G F, Grange P, eds. Hydrotreatment and hydrocracking of oil fractions. Amsterdam: Elsevier, 1999, 251~258
    [149] Robinson W R A M, van Veen J A R, de Beer V H J, et al. Development of deep hydrodesulfurization catalysts, II, NiW, Pt and Pd catalysts tested with (substituted) dibenzothiophene. Fuel Process Tech., 1999, 61: 103~116
    [150] Bej S K, Maity S K, Turaga U T. Search for an efficient 4,6-DMDBT hydrode-sulfurization catalyst: a review of recent studies. Energy Fuels, 2004, 18: 1227~1237
    [151] Frank J P, Le Page J F. Catalysts for the hydrogenation of heavy gas oils into middle distillates. Proc. 7th. Int. Congr. Catal. Amsterdam:Elsevier Press, 1981, 792~803
    [152] Hensen E J M,de Beer V H J,van Veen J A R,et al. On the sulfur tolerance of supported Ni (Co) Mo sulfide hydrotreating catalysts. J. Catal., 2003, 215: 353~357
    [153] Nishijima A, Kameoka T, Sato T, et al. Catalyst design and development for upgrading aromatic hydrocarbons. Catal. Today, 1998, 45: 261~269
    [154] McVicker G B, Daage M, Touvelle M S, et al. Selective Ring Opening of Naphthenic Molecules. J. Catal., 2002, 210: 137~148
    [155] Santikunaporn M, Herrera Jose E, Jongpatiwut S, et al. Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts J. Catal., 2004, 228: 100~113
    [156] Kubcika D, Kumar N, M?ki-Arvel P, et al. Ring opening of decalin over zeolites. II. Activity and selectivity of platinum-modified zeolites. J. Catal., 2004, 227: 313~327
    [157] Kustov L M, Stakheev A Yu, Vasina T V, et al. Dual-function catalysts for ring opening of cyclic compounds. Stud. Surf. Sci. Catal., 2001, 138: 307~314
    [158] Corma A, González-Alfaro V, Orchillés A V. Decalin and Tetralin as Probe Molecules for Cracking and Hydrotreating the Light Cycle Oil. J. Catal., 2001, 200: 34~44
    [159] Fujikawa T, Chiyoda O, Tsukagoshi M, et al. Development of a high activity HDS catalyst for diesel fuel: from basic research to commercial experience. Catal. Today, 1998, 45:307~312
    [160] Chiou J F, Huang Y L, Lin T B, Chang J R. Aromatics reduction over supported platinum catalysts. 1. Effect of sulfur on the catalyst deactivation of tetralin hydrogenation. Ind. Eng. Chem. Res., 1995, 34: 4277~4283
    [161] Costa Augusto C C, Zotin J L, da Costa Faro A. Effect of sulfur or nitrogen poisoning on the activity and selectivity of Y-zeolite-supported Pt-Pd catalysts in the hydrogenation of tetralin. 2001, Catal. Lett., 75: 37~43
    [162] Jan C A, Lin T B, Chang J R. Aromatics reduction over supported platinum catalysts. 3. Effects of catalyst precursors and pretreatment conditions on the performance of palladium-promoted platinum catalysts. Ind. Eng. Chem. Res., 1996, 35: 3893~3898.
    [163] Lin S D, Song C, Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiophene. Catal. Today, 1996, 31: 93~104
    [164] Corma A, Martínez A, Martínez-Soria V. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts. J. Catal., 1997, 169: 480~489
    [165]唐天地,陈久岭,李永丹,碳纳米纤维负载Pd-Pt催化剂的萘加氢耐硫性能,化学物理学报,2005,18:1~3
    [166]唐天地,陈久岭,李永丹,碳纳米纤维的酸处理及其负载Pd-Pt的催化萘加氢活性,物理化学学报,2005,21:730~734
    [167]唐天地,陈久岭,李永丹,碳纳米纤维在浓硝酸-浓硫酸溶液中表面氧化对其负载的Pd-Pt催化剂颗粒分散状态的影响,高等学校化学学报,2006,27:129~133
    [168] Meng X C, Wu Y X, Li Y D. Tailoring the pore size of zeolite Y as the support of diesel aromatic hydrogenation. J. Porous Mater., 2006, 13: 365~371
    [169] Knudesen K G, Cooper B H, Tops?e H. Catalyst and process technologies for ultra low sulfur diesel. Appl. Catal. A: General, 1999, 189: 205~215
    [170] Beyer H K, Bwlenykaja I M, Hange F, et al. Preparation of high-silica faujasutes by treatment with silicon tetrachloride. J. Chem. Soc., Faraday Trans., 1985, 81: 2889~2901
    [171] American Society for Testing and materials, D 3942-97, Standard test method for determination of the unit cell dimension of a faujasite-type zeolite, West Conshohocken, 1997
    [172] Karge H G, Hunger M, Beyer H K. Characterization of zeolites-infrared and nuclear magnetic resonance spectroscopy and X-ray diffraction. In: Weitkamp J, Puppe L, eds. Catalysis and zeolites: fundamentals and applications. Berlin: Springer, 1999, 310
    [173] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid system. Pure Appl. Chem., 1985, 57: 603~609
    [174]辛勤,梁长梅,固体催化剂分析方法,石油化工,2001,30:157~167
    [175] Ward J W. Infrared studies of zeolite surfaces and surface reaction. In: Rabo J A, eds. Zeolite chemistry and catalysis. Washington, D. C.: American chemical Society, 1976, 118~284
    [176] Huang T C, Kang B C. Hydrogenation if naphthalene with platinum-aluminum borate catalysts. Chem. Eng. J., 1996, 63: 27~36
    [177] Kuehne M A, Kung H H, Miller J T. Effect of steam dealumination on H-Y acidity and 2-methylpentane cracking activity. J. Catal., 1997, 171: 293~304
    [178] Flanigen E M. Structural analysis by infrared spectroscopy. In: Rabo J A, eds. Zeolite chemistry and catalysis. Washington: American Chemical Society, 1976, 95
    [179] Karge H G, Geidel E. Vibrational spectroscopy. In: Karge H G, Weitkamp J, eds. Molecular sieves. Vol 4. Berlin: Springer, 2004, 51
    [180] Anderson M W, Klinowski J. Zeolites treated with silicon tetrachloride vapor. Part 1- preparation and characterization. J. Chem. Soc., Faraday Trans. I, 1986, 82: 1449~1469
    [181] Gallezot P. The Sate and Catalytic Properties of Platinum and Palladium in Faujasite-type Zeolites. Catal. Rev. Sci. Eng., 1979, 20: 121~154
    [182] Gallezot P. Preparation of Metal Clusters in Zeolites. Molecular Sieves, 2002, 3: 257~305
    [183] Zhang Z, Wong T T, Sachtler W M H. The effect of Ca2+ and Mg2+ ions on the formation of electron-deficient palladium-proton adducts in zeolite Y. J. Catal., 1991, 128: 13~22
    [184] Jiang H J, Tzou M S, Sachtler W M H. Dispersion and catalysis of platinum in bimetal/zeolite catalysts. Appl. Catal. A: General, 1988, 39: 255~265
    [185] Tzou M S, Teo B K, Sachtler W M H. Formation of Pt particles in Y-type zeolites: the influence of coexchanged metal cations. J. Catal., 1988, 113: 220~235
    [186] Chou P, Vannice M A. Benzene hydrogenation over supported and unsupported palladium. II. reaction model. J. Catal., 1987, 107: 140~153
    [187] Sugioka M, Sado F, Matsumoto Y, et al. New hydrodesulfurization catalysts: noble metals supported on USY zeolite. Catal. Today, 1996, 29: 255-259
    [188] Arribas M A, Concepción P, Martínez A. The role of metal sites during the coupled hydrogenation and ring opening of tetralin on bifunctional Pt(Ir)/USY catalysts. Appl. Catal. A: General, 2004, 267: 111~119
    [189] Albertazzi S, Castellón E R, Livi M, et al. Hydrogenation and hydrogenolysis/ring-opening of naphthalene on Pd/Pt supported on zirconium-doped mesoporous silica catalysts. J. Catal., 2004, 228: 218~224
    [190]张海娟,柴油芳烃加氢饱和新型催化材料的研究:[博士学位论文],天津:天津大学, 2006
    [191]刘世宏,王当憨,潘承璜,X射线光电子能谱分析,北京:科学出版社,1998. 335,354
    [192] Lai W C, Song C. Conformnational isomerization of cis-decahydronapthalene over zeolite catalysts. Catal. Today, 1996, 31: 171~181
    [193] Benseradj F, Sadi F, Chater M. Hydrogen spillover studies on diluted Rh/Al2O3 catalyst. Appl. Catal. A: General., 2002, 228: 135~144
    [194] Dalla Betta R A, Boudart M. Well-dispersed platinum on Y zeolite: preparation and catalytic activity. In: Hightower J W, eds. Proc. 5th Int. Cong. Catal. Amsterdam: North Holland, 1973, 1329~1341
    [195] Homeyer S T, Karpinski Z, Schatler W M H. Effect of zeolit protons on palladium-catalyzed hydrocarbon reactions. J. Catal., 1990, 123: 60~73
    [196] Schatler W M H, Stakheev A Y. Electron-deficient palladium clusters and bifunctional sites in zeolites. Catal. Today, 1992, 12: 283~295
    [197] Weitkamp A W. In: Eley D D, Pines H, Weisz P B, eds. Advances in Catalysis and Related Subjects, vol. 18. Academic Press, New York, 1968, 1
    [198] Joyal C L M, Butt J B. Chemisorption and disproportionation of carbon monoxide on palladium/silica catalysts of differing percentage metal exposed. J. Chem. Soc., Faraday Trans. 1, 1987, 83: 2757~2764
    [199] Onal I, Butt J B. Structure-sensitive interactions of Pt/SiO2 with small molecules. Activation by oxygen and deactivation by carbon monoxide for methylcyclopropane hydrogenolysis. J. Chem. Soc., Faraday Trans. 1, 1982, 78: 1887~1898
    [200] Kubi?ka D, Kumar N, M?ki-Arvela P, et al. Ring opening of decalin over zeolites. I. Activity and selectivity of proton-form zeolites. J. Catal., 2004, 222: 65~79
    [201] Futamura S, Koyanagi S, Kamiya Y. The hydrogenlysis of diarlymethane: Mechanism for hydrogen transfer from solvents and additive effects of hydrogen shuttlers and organic radical sources. Fuel, 1988, 67: 1436~1440
    [202] Futamura S, Koyanagi S, Kamiya Y. Additive Effects of Solvent-Refined Coal Fractions and Aromatic Compounds on the Hydrogenolysis of Diarylmethanes. Energy Fuels, 1989, 3: 381~385
    [203] Wei X Y, Ogata E, Niki E. FeS2-catalyzed hydrocracking ofα,ω-diarylalkanes. Bull. Chem. Soc. Jpn., 1992, 65: 1114~1119
    [204] Wei X Y, Ogata E, Niki E. FeS2-catalyzed hydrocracking of diarylme thanes. Sekiyu Gakkaishi, 1992, 35: 358~361
    [205] Sun L B, Zong Z M, Kou J H, et al. Activated Carbon-Catalyzed Hydrogenation of Polycyclic Arenes. Energy Fuels, 2004, 18: 1500~1504
    [206] Szostak R. Molecular Sieves: principles of synthesis and identification. New York: Van Nostrand Reinhold, 1989, 309
    [207] Pu S B, Kim J B, Seno M, et al. Isopropylation of polynuclear aromatic hydrocarbons on Al-containing M41S mesoporous catalysts. Micropor. Mater., 1997, 10: 25~33
    [208] Cho S J,Yie J E,Ryoo R. Effect of multivalent cations on agglomeration of Ru clusters supported on Y zeolite. Catal. Lett., 2001, 71: 163~167
    [209] L'Argentiére P C, Ca?on M, Fígoli N S, et al. AES and XPS studies of the influence of Ni addition on Pd/Al2O3 catalytic activity and sulfur resistance. Appl. Surf. Sci., 1993, 68: 41~47
    [210] L'Argentiére P C, Ca?on M, Fígoli N S. XPS studies of the effect of Mn on Pd/Al2O3. Appl. Surf. Sci., 1995, 89: 63~68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700