用户名: 密码: 验证码:
面向空间曲线路径跟踪的多UUV协调编队控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早期的编队控制只要求UUV间的相对位置或距离达到期望值,对单个UUV的路径没有加以限制,而多UUV在进行海底管线检测、协作建立海底地图等特殊任务时,UUV必须沿着指定的路径运动,显然,传统的编队控制律不能解决此类特殊的编队问题。本文针对同构的某型无人水下航行器(Unmanned Underwater Vehicle, UUV)在完成路径跟踪(直线路径和曲线路径)的基础上对多UUV的协调编队控制进行了研究。主要研究内容如下:
     首先,依据多UUV的协调路径跟踪控制任务,提出了一种具有“时空解耦”特性的多UUV分散控制体系结构。该体系结构将空间任务(路径跟踪)和时间任务(协调编队)解耦。第一步,UUV执行各自的路径跟踪控制律,完成空间上的控制任务,即保证各UUV运动收敛到指定路径上;第二步,通过UUV之间的信息交换设计协调控制律,调整UUV的前向运动速度,完成时间上的控制任务。另外,介绍了多UUV系统协调编队时水声通信的应用;在通信拓扑结构表示上提出了图论表示法。该部分内容为后续章节控制策略和控制器的设计奠定了理论基础。
     其次,基于上述设计的体系结构,研究了空间直线路径跟踪下多UUV的协调编队控制问题。在路径跟踪控制器设计中,忽略横摇的影响,基于视距导航法建立了单个UUV的路径跟踪误差模型,将UUV的位置误差跟踪控制分别转化为UUV的航速误差艏向角误差和纵倾角误差的渐近稳定控制,并结合级联控制方法和反馈线性化控制方法分别对其设计了控制器,该方法设计的控制器简单,易于工程实现。针对领航者法中因领航者失效造成全局崩溃的问题,提出了基于图论的分散式队形控制方法,该方法提供了UUV之间的状态信息反馈通道,UUV根据所得状态信息,可交互式调整自身的速度来设计速度协调控制器。相对于领航者法中领航者不能得到跟随者的状态反馈信息,其更能有效的保证UUV间的信息交互和队形控制。
     再次,由于直线路径跟踪控制是在平衡点附近的邻域内的镇定控制,要求位置上实现跟踪即可,而曲线路径跟踪控制中不仅要求位置上实现跟踪,而且速度的矢量方向必须沿路径的切向方向。两者的控制器设计要求不同,为此,提出了基于虚拟参考目标点“牵引”的路径跟踪控制策略,对UUV设计的动力学路径跟踪控制器和运动学路径跟踪控制器分别实现了速度和位置的跟踪,并利用Lyapunov直接法和输入-状态稳定性定理证明了路径跟踪子系统的稳定性、以及系统状态和控制输入的有界性,该方法提高了路径跟踪控制的精度。针对水下声通信受到通信带宽的限制问题,提出了只交换单变量协调状态的信息交换方式,该信息交换方式相应地减少了UUV间的通信量,满足了水下声通信带宽窄的限制条件。在速度协调控制器设计中,利用图论描述多UUV间的通信拓扑形式,建立协调误差模型,通过对虚拟参考目标点的整体协调控制,且.考虑了UUV执行机构的饱和特性,设计了含有双曲正切函数的协调编队控制器,从而保证了系统的控制品质。
     最后,针对理想环境的局限性,研究了具有环境约束的多UUV的协调路径跟踪控制问题,主要考虑了海流干扰对单个UUV路径跟踪控制的影响和水声通信约束对多UUV间协调控制的影响。针对UUV路径跟踪过程中未知海流的干扰,基于Lyapunov稳定性理论设计了一种海流观测器来估计未知恒定海流流速,并应用LaSalle不变集原理对路径跟踪控制子系统进行了收敛性分析,证明了该闭环子系统是全局渐近稳定的。针对多UUV间通信的通信约束(即通信延迟)问题,提出了基于逻辑通信的控制策略,通信中每个UUV通过估计模块来估计群集中其它UUV的协调状态,并同步更新状态信息逐步实现多UUV间的协调。
The early formation control of multiple UUVs requires only the relative position or distance information among the UUVs to be the expected values, the path of single UUV wasn't restricted and when multi-UUV perform special tasks, such as subsea pipeline inspection, seabed maps'establishment, UUV must follow a specified path. Obviously, the traditional formation controller can not solve such a special formation problem. In this paper, formation coordinated control is discussed based on the path following (straight path and curved path) for a certain type of UUV. The main contents are as follows:
     Firstly, based on the coordinated path following control tasks of multi-UUV, we propose a decentralized control structure which has the time-space decoupling characteristic. Using this set-up, path following (in space) and inter-vehicle coordination (in time) are almost decoupled. The first step, a path following control law is derived that drives each vehicle to its assigned path, which is aimed at achieving space task. The second step, through the exchange of information among UUVs to design a coordinated controller aimed at achieving time task. In addition, the application of under acoustic communication is described, and graph theory notation is applied to communication topology. It has laid a theoretical foundation for controllers designed.
     Secondly, the problem of coordinated formation control of multi-UUV under the straight line path following is discussed based on the above architecture. For the path following control problem of a single UUV, the line-of-sight method is proposed to establish the space movement error models of UUV. Then the problem of position error's stabilization control is turned into the asymptotic stability design of the speed error, heading error and pitch error. These controllers are designed based on feedback linearization which is convenient for engineering realization, respectively. To solve the problem of the leader failure caused the global collapse in the leader-follower method, a decentralized formation control method which is based on graph theory is proposed. This method provides the feedback channels of status messages between the multi-UUV. Vehicle coordination is achieved by adjusting the speed of each of the vehicles along its path, according to information on the status of the remaining vehicles only. Relative to the leader-follower, in which the leader can not get the followers' status feedback information, this method has more effective information exchange between the multi-UUV and formation control.
     Then, the problem of coordination formation control of curve path following is discussed because of the limitations that straight line path following can not meet in practical applications. In the spatial curve path following control, the roll degree of freedom can not be ignored, and need to be considered during the manoeuvre motion. So, the "pulling" control strategy, which is based on virtual reference target, is presented. The dynamics path following controller and the kinematics path following controller have achieved the position and the speed tracking of the UUV, respectively. The Lyapunov direct method and the input-to-state stability theorem proved the stability of path following subsystem and the bound of system status and control inputs in the design of speed coordination controller. This method improves the path following control precision. To solve the underwater acoustic communication bandwidth constraints problem, only to exchange one variable coordination state of information exchange is presented. This method is corresponding to reduce the amount of communication to meet the narrow bandwidth of underwater acoustic communication constraints. Using graph theory describes the communication topology of multi-UUV and established coordination error model in the formation control. Moreover, the actuators saturation of UUV has been considered, and the formation controller contains double curve tangent function to ensure the quality of the control system.
     Finally, the problem of multi-UUV's coordination path following control which has limitations of environment is discussed, considering the impacts of ocean current interference and limitation of acoustic communication. The nonlinear adaptive path following controller is designed based on backstepping under disturbance of ocean current, which compensates for the disturbance of unknown currents. LaSalle's invariance principle is applied to prove a set of global convergence of path following subsystem. The available nonlinear part is eliminated in feedback linearization, which is avoided in this method. In the case of acoustic communication limited, logic-based communications strategy is proposed based on consensus of multi-agent, so that each UUV achieve the purpose of coordination between mulli-UUV by updating their own status estimate information. The results of simulation has shown the effectiveness of the controllers of path following and coordination formation under the condition of limited environment.
引文
[1]曾一非.海洋工程环境.上海:上海交通大学出版社,2007,1页
    [2]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社,2000,9,234-235页
    [3]Hughes S P. Preliminary optimal robot design for the laser interferometer space antenna (LISA). In:Proceedings of the 25th Annual AAS Guidance and Control Conference. Breckenridge, USA:Rocky Mountain Section,2002.61-78P
    [4]谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社,2005,6,14页
    [5]马伟明.无人水下航行器进展.北京:电子业出版社,2009,1-3页
    [6]徐玉如,肖坤.智能海洋机器人技术进展.自动化学报,2007,33(5):518-521页
    [7]孙碧娇,何静.美海军无人潜航器关键技术综述.鱼雷技术,2006,14(4):7-10页
    [8]冯正平.国外自治水下机器人发展现状综述.鱼雷技术,2005,13(1):5-9页
    [9]燕奎臣,李一平,袁学庆.远程自治水下机器人研究.机器人,2002,24(4):50-51页
    [10]钱东.美国海军水下站中心NUWC.鱼雷技术,2003,11(2):50-51页
    [11]李开生,王文友.军用无人潜器的发展及其关键技术.鱼雷技术,2004,12(1):6-8页
    [12]A. Pedro Aguiar, Joao Pedro Hespanha. Positon tracking of underactuated vehicles. Proceedings of the American Control Conference Denver,2003:1988-1993P
    [13]K. Y. Pettersen, H. Nijmeijer. Semi-global practical stabilization and disturbance adaptation for an underactuated ship. Modeling, Identification and Control.2001, 22(2):89-101P
    [14]K. Y. Pettersen, H. Nijmeijer. Global practical stabilization and tracking for an underactuated ship-a combined averaging and backstepping approach. IAFC System Structure and Control. Nantes,1998,59-64P
    [15]周岗,姚琼荟,陈冰冰等.船舶直线航迹控制系统全局局渐近稳定的充分条件.海军工程大学学报,2006,18(3):52-56页
    [16]周岗,姚琼荟,陈冰冰等.基于输入输出线性化的船舶全局直线航迹控制.控制理论与应用,2007,24(1):117-121页
    [17]周岗,姚琼荟,陈冰冰等.不完全驱动船舶直线航迹控制稳定性研究.自动化学报,2007,33(4):378-384页
    [18]周岗,姚琼荟,陈冰冰等.类船舶直线航迹控制系统全局渐近稳定的充分条件及推论.自动化学报,2007,33(11):1204-1208页
    [19]卜仁祥,刘正江,胡江强.基于动态非线性滑动模态的欠驱动船舶直线航迹控制.清华大学学报,2007,47(S2):1880-1883页
    [20]毕风阳.欠驱动自主水下航行器的非线性鲁棒控制策略研究.哈尔滨:哈尔滨工业大学博士学位论文,2010:73-111页
    [21]A. Pavlov, E. Borhaug, E. Panteley. Straight line path following for formations of underactuated surface vessels. Proceedings of IFAC NOLCOS,2007:654-659P
    [22]E. Borhaug, A. Pavlov, Kristin, Y. Pettersen. Straight Line Path Following for Formations of Underactuated Underwater Vehicles. Proceedings of the 46th IEEE Conference on Decision and Control,2007:2905-2912P
    [23]Jiang Zhongping. Global tracking control of underactuated ships by Lyapunov's direct method. Automatica,2002,38(2):301-309P
    [24]K. Y. Pettersen, H. Nijmeijer. Underactuated ship tracking control:theory and experiments. International Journal of Control,2001,74(14):1435-1446P
    [25]E. Lefeber. Tracking control of nonlinear mechanical systems. PhD Thesis. Netherlands, University of Twente,2000
    [26]马岭,崔维成.基于模糊混合控制的自治水下机器人路径跟踪控制.控制理论与应用,2006,23(3):341-346页
    [27]P.Encarnacao, A.Pascoal, M.Arcak. Path-following for marine vehicles in the presence of unknown currents. Proceedings of the 6th IFAC Symposium on Robot Control,2001,2:507-512P
    [28]P.Encarnacao, A.Pascoal.3D path-following for autonomous underwater vehicles. Proceedings of the 39th IEEE Conference on Decision and Control,2000,3: 2977-2982P
    [29]L.Lapierre, D.Soetanto, A.Pascoal. Nonsingular path following control of a unicycle in the presence of parametric modelling uncertanity. International journal of robust and Nonlinear control,2006,16(10):485-503P
    [30]Lionel Lapierre, Didik Soetanto. Nonlinear path-following control of an UUV. Ocean Engineering,2007,34:1734-1744 P
    [31]刘杨,郭晨,沈智鹏,等.欠驱动船舶路径跟踪的神经网络稳定自适应控制.控制理论与应用,2010,27(2):169-174页
    [32]崔荣鑫,徐德民,严卫生.编队约束下的UUV路径跟踪.西北工业大学学报,2007,25(6):800-804页
    [33]Mariottini G. L, Morbidi F, Prattichizzo D, et al. Leader-follower formations: Uncalibrated vision-based localization and control. IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA:IEEE 2007:2403-2408P
    [34]Das A K, Fierro R, Kumar V, et al. A vision-based formation control framework. IEEE Transactions on Robotics and Automation,2002,18(5):813-825P
    [35]杨丽,曹志强,张文文等.一种基于局部感知的多机器人动态跟随方法.自动化学报,2010,36(1):101-106页
    [36]杨丽,曹志强,谭民.不确定环境下多机器人的动态编队控制.机器人,2010,32(2):283-288页
    [37]Balch T, Arkin R C. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation,1998,14(6):926-939P
    [38]Fredslund J, Mataric M J. A general algorithm for robot formations using local sensing and minimal communication. IEEE Transactions on Robotics and Automation,2002,18(5):837-846P
    [39]Lewis M A, Tan K H. Hign precision formation control of mobile robots using virtual structures. Autonomous Robots,1997,4(4):387-403P
    [40]Wang, P. K. C, Navigation strategies for multiple autonomous robots moving in formation. Journal of Robotic Systems.1991,8(2):177-195P
    [41]N. E. Leonard, E. Fiorelli. Virtual leaders, artificial potentials and coordinated control of groups. Proceedings the 40th IEEE Conference Decision and Control, 2001(3):2968-2973P
    [42]A. Okamoto, J. J. Feeley, D. B. Edwards, et al. Robust control of a platoon of underwater autonomous vehicles. OCEANS'04 MTS/IEEE Conference Proceedings. Kobe, Japan,2004:505-510P
    [43]Edwards D B, Bean T A, Odell D L, et al. A leader-follower algorithm for multiple UUV formations. Proceedings of 2004 IEEE/OES Autonomous Underwater Vehicles. US.2004:40-46P
    [44]Farbod Fahimi. Sliding-mode formation control for underactuated surface vessels. IEEE Transaction on Robotics,2007,23(3):617-622P
    [45]M. J. Mataric, Behaviour-based control:Examples from navigation, learning, and group behavior. J. Exp. Theor. Artif. Intell.,1997,9(2-3):323-336P
    [46]张汝波,王兢,孙世良.具有环境自适应能力的多机器人编队系统研究.机器人,2004,26(1):69-73页
    [47]Lawton J., Beard R. W., Young B. J. A decentralized approach to formation maneuvers, IEEE Transaction on Robotics and Automation,2003,19(6):933-941P
    [48]Monteiro S. Bicho E. A dynamical systems approach to behavior based formation control. Proceedings of the IEEE International Conference on Robotics and Automation, Washingdon, DC,2002:2606-2611P
    [49]Antonelli G., Arrichiello F., Chiaverini S. Experiments of formation control with collisions avoidance using the null-space-based behavioral control. Proceedings 14th Mediterr. Conference Control Automatics, Ancona, Italy,2006:1-6P
    [50]Arrichiello F., Chiaverini S., Fossen T. I. Formation control of underactuated surface vessels using the null-space-based behavioral control. Proceedings of the IEEE International Conference on Intelligence Robots System. San Diego, CA,2006: 5942-5947P
    [51]Fredslund J., Mataric M. J. A general local algorithm for robot formations. IEEE Transaction on Robotics and Automation,2002,18(5):837-846P
    [52]曹志强.未知环境下多机器人协调与控制的队形问题研究.北京:中国科学院自动化研究所博士学位论文,2002
    [53]董胜龙,陈卫东,席裕庚.多移动机器人编队的分布式控制系统.机器人,2000,22(6):433-438页
    [54]Cao Z Q, Xie L J, Zhang B, et al. Formation constrained multi-robot system in unknown environments. Proceedings of the IEEE International Conference on Robotics and Automation. Taibeim China,2003,735-740P
    [55]Cao Z Q, Tan M, Wang S, et al. The optimization research of formation control for multiple mobile robots. Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China,2002,1270-1274P
    [56]Kostelnik P., Samulka M, Janosik M. Scalable multi-robot formations using local sensing and communication. Proceedings of the 3rd International Workshop on Robot Motion and Control. Poznan,2002,319-324P
    [57]M. A. Lewis, K. H. Tan. High precision formation control of mobile robots using virtual structures. Autonomous Robots,1997,4(4):387-403P
    [58]Randal W. Beard, Jonathan Lawton, Fred Y. Hadaegh. A Feedback Architecture for Spacecraft Formation Control. IEEE Transactions on Control Systems Technology, 2001,9(6):777-790P
    [59]Brett J Young, Randal W Beard, Jed M Kelsey. A control scheme for improving multi-vehicle formation maneuvers. American Control Conference, Arlington,2001: 704-709P
    [60]M. Egerstedt, X. Hu. Formation constrained multi-agent control. IEEE Transaction Robotics Automation,2001,17(6):947-951P
    [61]林来兴.小卫星编队飞行及其轨道构成.中国空间科学技术,2001(2):23-28页
    [62]Wei Ren, Randal W Beard. Formation feedback control for multiple spacecraft via virtual structures. IEEE Proceedings Control Theory and Applications,2004,15(3): 357-368P
    [63]J. Ghommam, F. Minf, G. Poisson, et al. Nonlinear Formation control of a group of underactuated ships. Proceedings of OCEANS 2007, Aderdeen, UK,2007:1-8P
    [64]O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research,1986,5(1):90-98P
    [65]贾秋玲,门建国,王新民.基于势函数的多机器人系统的编队控制.机器人2006,28(2):111-114页
    [66]E. Fiorelli, N. E. Leonard, P. Bhatta, et al. Multi-UUV Control and Adaptive Sampling in Monterey Bay. IEEE Journal of Oceanic Engineering,2006,31(4): 935-948P
    [67]熊伟.多自主水下机器人目标搜索与协同围捕研究.哈尔滨:哈尔滨工程大学硕士学位论文,2008
    [68]Y. Ling, H. H. Lee. Decentralized formation control and obstacle avoidance for multiple robots with nonholonomic constraints. Proceedings of the 2006 American Control Conference, Minneapolis,2006,5596-5601P
    [69]J. S. Baras, X. B. Tan, H. Pedram. Decentralized control of autonomous vehicles. Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii,2003: 1532-1537P
    [70]O. Petter. Split and join of vehicle formation doing obstacle avoidance. Proceedings of the 2004 IEEE International Conference on Robotics and Automation. New Orleans,2004
    [71]O. Petter, E. L. Naomi. Obstacle avoidance in formation. Proceedings of the 2003 IEEE International Conference on Robotics and Automation. Taipei, China,2003, 2492-2497P
    [72]G. A. S. Pereira, A. K. Das, V. Kumar, et al. Formation control with configuration space constraints. Proceedings of the IEEE/RJS International Conference on Intelligent Robots and Systems. Las Vegas,2003:2755-2760P
    [73]R. Fierro, A. K. Das. A modular architecture for formation control. Proceedings of the 3rd International Workshop on Robot Motion and Control. Poznan,2002: 285-290P
    [74]R. Olfati-Saber, R. M. Murray. Distributed cooperative control of multiple vehicle formations using structural potential functions. Proceedings of the 15th IF AC World Congrss. Barcelona,2002,1-6P
    [75]J. Alexander Fax, Richard M. Murray. Graph laplacians and stabilization of vehicle formations. Proceedings of 15th IFAC Conference. Barcelona,2002,1-11P
    [76]J. Alexander Fax, Richard M. Murray. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control,2004,1465-1476P
    [77]J. Alexander Fax, Richard M. Murray. Information flow and cooperative control of vehicle formations. Proceedings of 15th IFAC Conference. Barcelona,2002, 1465-1476P
    [78]Ketema Yohnnes, Balas Gary. Formation stability with limited information exchange between vehicles. Proceedings of the American Control Conference. Penver,2003, 1:290-295P
    [79]R. Olfati Saber, R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control,2004, 49(9):1520-1533P
    [80]W. B. Dunbar. Model predictive control:Extension to coordinated multi-vehicle formations and real-time implementation. Pasadena:California Institute of Technology,20011-18P
    [81]W. B. Dunbar, R. M. Murray. Model predictive control of coordinated multi-vehicle formations. Proceedings of the IEEE Conference on Decision and Control. Las Vegas,2002,4631-4636P
    [82]T. Keviczky, F. Borrellit, G. J. Balas. Hierarchical design of decentralized receding horizon controllers for decoupled systems.43rd IEEE Conference on Decision and Control. Nassau,2004,1592-1597P
    [83]W. B. Dunbar, R. M. Murray. Distributed receding horizon control with application to multi-vehicle formation stabilization. Automatica,2006,42(4):549-558P
    [84]魏洪兴,王田苗,梁建宏等.多仿生机器鱼群体定位控制.中国造造船,2003,44(4):80-85页
    [85]孟宪松.多水下机器人系统合作与协调技术研究.哈尔滨:哈尔滨工程大学博士学位论文,2006
    [86]常文君.基于神经网络的多水下机器人协调方法的的研究.哈尔滨:哈尔滨工程大学博士学位论文,2004
    [87]由光鑫.多水下机器人分布式智能控制技术研究.哈尔滨:哈尔滨工程大学博士学位论文,2005
    [88]刘辉,李俊峰.卫星编队飞行的协同控制.清华大学学报,2006,46(11):1922-1925页
    [89]罗广文,周锐.受限信息下的多无人机分散协调技术研究.北京航空航天大学自动化学院学术会议,2006
    [90]程磊,俞辉,王永骥等.融合路径跟踪模式的多移动机器人有序化群集运动控制.机器人,2006,28(2):97-102页
    [91]贾秋玲,李广文,闫建国.多机器人系统的编队路径跟踪控制.机械科学与技术,2007,26(8):1035-1038页
    [92]崔荣鑫,徐德民,严卫生.编队约束下的UUV路径跟踪.西北工业大学学报,2007,25(6):800-804页
    [93]曹静,袁建平,罗建军.多航天器协同飞行动力学分解建模与控制.哈尔滨工业大学学报,2009,41(11):147-151页
    [94]陈杨杨,田玉平.多智能体沿多条给定路径编队运动的有向协同控制.自动化学报,2009,35(12):1541-1549页
    [95]CHEN Yang-Yang, TIAN Yu-Ping. Coordinated path following control for multiple aircrafts in three-dimensional space. Proceedings of the 29th Chinese Control Conference, China, Beijing,2010,4524-4529P
    [96]Xianbo Xiang, Lionel Lapierre, Bruno Jouvencel, et al. Coordinated path following control of multiple nonholonomic vehicles. Proceedings of OCEANS 2009, Bremen, 2009:1-7P
    [97]Xianbo Xiang, Bruno Jouvencel, Olivier Parodi. Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection. International Journal of Advanced Robotic Systems,2010,7(1):75-84P
    [98]Xianbo Xiang, Lionel Lapierre, Bruno Jouvencel, et al. Coordinated path following control of multiple wheeled mobile robots through decentralized speed adaptation. Proceedings of the 2009 IEEE International Conference on Intelligent Robots and Systems, USA,2009:4547-4552P
    [99]向先波.二阶非完整性水下机器人的路径跟踪与协调控制研究.华中科技大学博士学位论文,2010
    [100]V. Kanakakis, K.P. Valavanis, N. C. Tsourveloudis. Fuzzy-logic based navigation of underwater vehicles. Journal of Intelligent and Robotic Systems,2004(40):45-88P
    [101]W. Kang. Formation Control of Multiple Autonomous Vehicles. Proceedings of IEEE 1999 International Conference on Robotics and Automation. San Francisco April,2000:1755-1760P
    [102]Fiorelli E., Leonard N. E. Multi-UUV control and adaptive sampling in Monterey Bay. Proceedings IEEE Autonomous Underwater Vehicles 2004:Workshop on Multiple UUV Operations(UUV04), Sebasco, ME, June,2004
    [103]D. Richard Blidberg. The Deelopment of Autonomous Underwater Vehicles (MUUVS). A Brief Summary. ICRA, Seoul, Korea. May,2001
    [104]Lee Freitag, Matthew Grund, Chris von Alt, et al. A Shallow Water Acoustic Network for Mine Countermeasures Operations with Autonomous Underwater Vehicles. Underwater Defense Technology (UDT),2005
    [105]D. B. Edwards, T. A. Bean, D. L. Odell, et al. A leader-follower algorithm for multiple UUV formations. In Proc of IEEE/OES Autonomous Underwater Vehicles, 2004-.40-46P
    [106]Hunter Brown, Ayoung Kim, Ryan Eustice. Development of a Multi-UUV SLAM Testbed at the University of Michigan, Department of Naval Architecture & Marine Engineering, University of Michigan,2008
    [107]A. Pedro Aguiar, Antonio M. Pascoal. Coordinated path-following control for nonlinear systems with logic-based communication. Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, USA,2007,1473-1479P
    [108]A. Pedro Aguiar, R. Ghabcheloo, Antonio M. Pascoal, et al. Coordinated path-following control of multiple autonomous underwater vehicles. Proceedings of the International Offshore and Polar Engineering Conference,2007,1073-1079P
    [109]A. Pedro Aguiar, J. Almeida, M. Bayat, et al. Cooperative control of multiple marine vehicles. http://users.isr.ist.utl.pt/-mbayat/PDF/MCMC09-2.pdf
    [110]A. P. Aguiar and R. Ghabcheloo Coordinated path following of multiple UAVs for time-critical missions in the presence of time-varying communication topologies, in The 17th IFAC world congress, Korea, July 6-11,2008.
    [111]R. Ghabcheloo, A. Pascoal, C. Silvestre. Nonlinear coordinated path following control of multiple wheeled robots with communication constraints. Proceedings of the 12th International Conference on Advanced Robotics,2005,657-664P
    [112]R. Ghabcheloo, A. Pascoal, C. Silvestre, et al. Coordinated path following control of multiple wheeled robots using linearization techniques. International Journal of Systems Science,2005,37(6):399-414P
    [113]R. Ghabcheloo, A. Pascoal, C. Silvestre, et al. Coordinated path following control of multiple wheeled robots with directed communication links. Proceedings of the 44th IEEE Conference on Decision and Control, Spain,2005,7084-7089P
    [114]R. Ghabcheloo, A. Pascoal, C. Silvestre, et al. Nonlinear coordinated path following control of multiple wheeled robots with bidirectional communication constraints. International Journal of Adaptive Control and Signal Processing,2005,1-25P
    [115]R. Ghabcheloo, A. P. Aguiar, A. Pascoal, et al. Coordinated path-following control of multiple underactuated autonomous vehicles in the presence of communication failures. IEEE Conference on Decision and Control,2006,4345-4350P
    [116]R. Ghabcheloo, A. P. Aguiar, A. Pascoal, et al. Coordinated path-following in the presence of communication losses and time delays. SIAM Journal on Control and Optimization,2009,234-265P
    [117]R. Ghabcheloo, A. Pedro Aguiar, Antonio Pascoal, et al. Synchronization in multi-agent systems with switching topologies and non-homogeneous communication delays. Proceedings of the IEEE Conference on Decision and Control,2007,2327-2332P
    [118]R. Ghabcheloo, I. Kaminer, A. P. Aguiar, et al. A general framework for multiple vehicle time-coordinated path following control. American Control Conference, 2009,3071-3076P
    [119]I. Kaminer, O. Yakimenko, A. Pascoal, et al. Paht generation, path following and coordinated control for time critical missions of multiple UAVs. American Control Conference,2006,4906-4913P
    [120]J. Ghommam, F. Mnif. Coordinated path following control for a group of underactuated surface vessels. IEEE Transactions on Industrial Electronics,2009, 3951-3963P
    [121]Zhang F M, Leonard N E. Coordinated patterns of unit speed particles on a closed curve. Systems and Control Letters,2007,56(6):397-407P
    [122]Zhang F M, Fratantoni D M, Paley D A, Lund J M, Leonard N E. Control of coordinated patterns for ocean sampling. International Journal of Control,2007, 80(7):1186-1199P
    [123]Jawhar Ghommam, Oscar Calvo and Alejandro Rozenfeld Coordinated path following for multiple underactuated UUVs. IEEE Transactions on Automatic Control,2008,52:1362-1368P
    [124]刘海波,顾国昌.智能机器人体系结构分类研究.哈尔滨工程大学学报,2003,24(6):664-668页
    [125]Lynne E Parker. ALLIANCE:an architecture for fault tolerant multirobot cooperation IEEE Trans. on Robotics and Automation,1998,14(2):220-240P
    [126]赵忆文.移动机器人体系结构及多机器人协调规划研究.沈阳:中国科学院沈阳自动化研究所博士学位论文,2000
    [127]Randal W. Beard, Jonathan Lawton, Fred Y. Hadaegh. A Feedback Architecture for Spacecraft Formation Control. IEEE Transactions on Control Systems Technology, 2001,9(6):777-790P
    [128]Brett J Young, Randal W Beard, Jed M Kelsey. A Control Scheme for Improving Multi-Vehicle Formation Maneuvers American Control Conference, Arlington, VA, June 25-27,2001,704-709P
    [129]苏治宝,陆际联.多移动机器人队形控制的研究方法.机器人,2003,25(1):89-91页
    [130]刘海波,顾国昌,沈晶.基于Agent面向群体合作的UUV体系结构.机器人,2005,27(1):1-5页
    [131]许真珍,封锡盛.多UUV协作系统的研究现状与发展.机器人,2007,29(2):186-192页
    [132]Kong J, Cui J H, Wu D. Building underwater ad-hoc network and sensor networks for large scale real-time aquatic applications. In Proceedings of the IEEE ILCOM. USA.2005,1535-1541P
    [133]孟宪松,刘建华,张铭钧.多水下机器人编队通信研究.中国造船,2007,48(4):77-83页
    [134]Eduardo R. B.Marques, Pinto J., Kragelund, S.. AUV Control and Communication using Underwater Acoustic Networks. OCEANS,2007,1-6P
    [135]李殿璞.非线性控制系统.西安:西北工业大学出版社,2009:89,144-149页
    [136]Antonio Loria, Thor I. Fossen, Andrew Teel. UGAS and ULES of Nonautonomous System:Applications to Integral Control of Ships and Manipulators, http://www. itk. ntnu.no/ansatte/Fossen_Thor/papers/ecc99.pdf
    [137]Ren W, Atkins E. Distributed multi-vehicle coordinated control via local information exchange. International Journal of Robust and Nonlinear Control,2006, 17(10-11):1002-1033P
    [138]M. Breivik. Nonlinear maneuvering control of underactuated ships [A], Master's thesis, NTNU, Trondheim, Norway,2003.
    [139]T. Fossen, M. Breivik, and R. Skjetne, Line-of-sight path following of underactuated marine craft [A], in Proc.6th IFAC MCMC, Girona, Spain, September 2003, 244-249P
    [140]M.Breivik and T. Fossen, Path following of straight lines and circles for marine surface vessels [A], in Proc.6th IFAC CAMS, Ancona, Italy, July 2004,65-70P
    [141]Fax, J. A. Optimal and coorperative control of vehicle formations. PhD thesis, California Institute of Technology. Pasadena,2008, USA.
    [142]Aguiar, A. P., A. M. Pascoal. Coordinated path-following control for nonlinear systems with logic-based communication. In:46th IEEE Conference on Decision and Control. New Orleans, LO, USA.2007,1473-1479P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700