用户名: 密码: 验证码:
钛硅复合氧化物的制备及在微污染水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机微污染物口益严重的水源水已经给饮用水处理带来了严峻的挑战。微污染原水经过常规净水工艺处理后无法保证供水水质的安全性,需要在先前工艺的基础上增加深度处理工艺。近年来,TiO2因能使有机物彻底矿化,具有良好的杀菌和抑制病毒活性的作用等在环境治理和能源开发方面得到了普遍的关注。然而,因TiO2在光照时产生的e--h+对容易复合,而且禁带宽度较大不能充分利用太阳光,使其实际应用受到了很大限制。因此,对TiO2进行改性以提高光催化活性成为研究的热点。
     本文采用两步溶胶凝胶法制备了SiO2/TiO2,通过对水中微污染有机物的降解选择出高活性的SiO2/TiO2光催化剂,并进一步对其进行修饰改性以获得更加高效的光催化剂。采用XRD、TG-DTA、FT-IR、UV-vis、XPS及TEM等测试手段对催化剂的结构进行了表征,并对其作用机理进行了深入的研究。在本实验中主要研究的内容如下:
     (1)以正硅酸乙酯和钛酸四丁酯为硅源和钛源,无水乙醇为溶剂,乙酰丙酮为抑制剂,盐酸为催化剂(正硅酸乙酯水解时)制备了SiO2/TiO2。以水中微污染腐殖酸(HA)的降解效果确定了SiO2/TiO2的最佳制备条件,并对其进行了表征。结果表明,在相同焙烧温度下,硅的引入可抑制TiO2晶相的转变及催化剂晶粒的增大。当硅掺杂浓度为10%时SiO2/TiO2的最佳焙烧温度为800℃。
     (2)硅掺杂浓度的大小决定着SiO2/TiO2焙烧温度的高低。水用量对催化剂的光催化活性影响较大。在此基础上于600℃下制备了硅掺杂浓度为5%的SiO2/TiO2,将其运用于水中微量甲基橙的降解中。经刻蚀前后的XPS表征分析可知,Si原子在热处理过程中向粉体颗粒的表面扩散,导致TiO2外表面出现Ti4+而在近表面产生Ti3+及氧空位。Ti3+和氧空位缺陷的联合作用、Ti4+与Ti3+的共同存在能有效分离电荷是导致SiO2/TiO2活性较高的关键原因。
     (3)采用热沉积法制备了负载型TS2,550薄膜,研究了其对水中微污染HA的降解及E.coli的灭活效果。结果表明,该薄膜在光催化过程中对HA的降解速率要快于对E.coli的灭活速率。其机理为:薄膜在紫外线照射下产生了氧化还原能力较高的e-和h+。而e-和h+分别与溶解于水中的氧气和水反应生成了许多活性物种如·O2-和·OH等,这些活性物种使水中的HA氧化成无毒的物质,如CO2和H2O,并能破坏E.coli细胞致其死亡
     (4)采用两步溶胶凝胶法制备了Gd3+掺杂SiO2/TiO2光催化材料,以水中微污染HA (pH=6.5)的降解及矿化研究了其光催化活性。结果表明,Gd-SiO2/TiO2光催化剂在150 min内可使水中HA彻底降解,并能使HA的矿化率达97%,比同等条件下TiO2的矿化率增加了38%,比SiO2/TiO2的矿化率增加了30%。可能的原因为:1)Gd3+的掺杂可有效抑制TiO2从锐钛矿相向金红石相的转变和晶粒的增长。同等条件下,Gd-SiO2/TiO2、SiO2/TiO2及TiO2的平均晶粒分别为25.5nm、35.2nm和37.8nm;2)Gd3+的掺杂不仅使催化剂在波长200-800nm内对光的吸收强度增强,而且使催化剂的吸收带边发生蓝移,即带隙能宽化。同等条件下,TiO2、SiO2/TiO2及Gd-SiO2/TiO2的禁带宽度分别为2.57eV、2.62eV和2.69eV;3)Gd3+的掺杂使Gd-SiO2/TiO2催化剂的表面缺陷Ti3+和晶格氧的数量增多。这些都将有利于提高催化剂的光催化活性。
     (5)制备了Fe掺杂SiO2/TiO2可见光响应型光催化材料,选择微污染HA为降解目标物考察了催化剂的光催化活性。表征分析结果表明:Fe离子掺杂不仅使催化剂的吸收带边产生红移,而且增加了催化剂对可见光的吸收强度。另外,在催化剂表面出现了有利于e--h+对分离的Fe3+/Fe2+氧化还原电对。因此,Fe-SiO2/TiO2的可见光活性明显高于SiO2/TiO2和TiO2。
The increasing of organic micro-pollutants in source water has brought serious challenges for drinking water treatment. Micro-polluted raw water treated by regular water purification process can't guarantee the security of water quality. Therefore it needs to add depth process on the basis of the previous technology. In recent years, TiO2 has been attended in environmental treatment and energy exploitation due to thoroughly mineralization of organic matter, good bactericidal effect and inhibition of viral activity. However, the practical application of TiO2 has been very limited because the e--h+ pairs produced by TiO2 in the illumination are easy to recombine and TiO2 doesn't fully utilize solar energy with a larger band gap. There fore, modifications of TiO2 become a research focus to improve its photocatalytic activity.
     In this paper, the SiO2/TiO2 composites were prepared by two-step sol-gel method. The degradation of micro-organic pollutant in water used to choose higher photocatalytic activity of SiO2/TiO2. And further to modify SiO2/TiO2 to obtain more efficient photocatalysts. The structures of the catalysts were characterized using XRD, TG-DTA, FT-IR, UV-vis, XPS and TEM methods.As well as, their mechanisms were studied in detail. In this experiment, the main contents of study were as follows:
     (1) SiO2/TiO2 composites were prepared with tetraethoxysilane and tetrabutyl titanate as silicon source and titanium source respectively, anhydrous ethanol as solvent, acetyl acetone as inhibitor and hydrochloric acid as catalyst for hydrolysis of TEOS. The optimum preparation conditions of the SiO2/TiO2 were determined by photocatalytic degradation effects of micro-polluted humic acid in water and the characterizations of SiO2/TiO2 were analyzed. Results showed that the introduction of silicon inhibited phase transformation and particle size increase of TiO2 under the same calcining temperature. The best calcining temperature was 800℃when silicon doping concentration was 10% for SiO2/TiO2.
     (2) The calcining temperature of SiO2/TiO2 was determined by silicon doping concentration. Water content was greatly impacted on the photocatalytic activity of SiO2/TiO2. In experiment,5% silicon doping concentration for SiO2/TiO2 was prepared at 600℃and was applied to degradation of trace methyl orange in water. Analysis's of SiO2/TiO2 characterized by XPS before and after etching showed that the Si atom was diffused to powder particle surface during heat treatment process, which leading to appear Ti4+at the outer surface, at the same time, Ti3+and oxygen at the near surface of TiO2. The key reasons for higher activity of SiO2/TiO2 were the combined effects of Ti3+ and oxygen vacancies with the co-existence of Ti4+and Ti3+could effectively separate charge.
     (3) The loaded TS2.5-550 films were prepared by thermal deposition. Their degradation of HA in micro-polluted water and inactivation of E.coli were studied. The result showed that degradation rate of HA was faster than the inactivation rate of E.coli by TS25-550 films during photocatalytic process. The mechanism was that e--h+pairs produced on film under UV light illuminate had redox ability and lots of active species such as·OH and·O2- were generated when e- and h+pairs reacted with dissolved oxygen in water and water respectively. HA might be oxidized to nontoxic substances such as CO2 and H2O and E.coli cell might be damaged by these active species.
     (4) Gd3+ doped SiO2/TiO2 photocatalytic materials were prepared using sol-gel method and their photocatalytic activities were studied by the mineralization of HA in slightly polluted water (pH=6.5). The results showed that HA in water was thoroughly degraded and the mineralization rate of HA was 97% by Gd-SiO2/TiO2 photocatalyst after 150 min. This was an increase nearly 38% to the value obtained for TiO2 and of 30% for that of SiO2/TiO2 when measured in parallel. We believed that the reasons for the higher activity of Gd-SiO2/TiO2 composites could be explained as follows:1) Gd3+doping inhibited the phase transformation of TiO2 from anatase to rutile, as well as grain growth. Under the same conditions, the average crystal grain of Gd-SiO2/TiO2, SiO2/TiO2 and TiO2, respectively, were 25.5 nm,35.2 nm and 37.8 nm; 2) Gd3+ doping not only enhanced the absorption light intensity within the wavelength 200 to 800 nm, but also moved the absorption band edge to shorter wavelengths, thereby broadening the band gap of the catalyst semiconductor. Under the same conditions, TiO2, SiO2/TiO2 and Gd-SiO2/TiO2 band gap was 2.57 eV,2.62 eV and 2.69 eV; 3) the amount of surface defect Ti3+ and lattice oxygen on the Gd-SiO2/TiO2 catalyst were increased. These would help to improve the photocatalytic activity.
     (5) Fe doped SiO2/TiO2 photocatalysts responded to visible light were prepared and the degradation of HA in micro-polluted water was selected to investigate the photocatalytic activity of Fe-SiO2/TiO2. Characterization results showed that Fe doping not only made the absorption edge of catalyst red shift and increased the absorption intensity of visible light for the catalyst. In addition, the Fe3+/Fe2+ redox pairs were prepared on catalyst surface which were useful for separation of the e--h+ pairs. Therefore the visible light activity of Fe-SiO2/TiO2 was significantly higher than that of SiO2/TiO2 and TiO2.
引文
[1]Robert Bent, Lloyd Orr, Randall Baker, Energy [M]. Washington D. C.:Island Press. c2002.9-10.
    [2]凌基薇.负载型TiO<2>光催化剂的制备及其降解有害挥发物性能的研究[D].上海:上海交通大学,2009.
    [3]Fujishima A. Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [4]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB'S in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environment Contamination andToxicology,1976,16(6):697-701.
    [5]Frank S N, Bard A J. Semiconductor electrodes.12. Photoassisted oxidations and photoelectrosythesis at polycrystalline TiO2 electrodes [J]. Journal of American Chemical Society,1977,99(14):4667-4675.
    [6]徐振华.钛基和铌基半导体光催化剂的制备及其性能研究[D].济南:山东大学,2006.
    [7]水污染http://baike.baidu.com/view/3313.htm#ref_[1].
    [9]曹贤文.三种不同消毒水中非挥发性有机提取物对人肝癌细胞(HepG2)的毒性作用及其机理研究[D].武汉:华中科技大学,2008.
    [10]潘艳秋,姜明基,林英姿.饮用水中氯化消毒副产物的研究现状[J].中国资源综合利用,2010,28(2):31-34.
    [11]Melnick R L, Dunnick J K, Sandier D P, et al. Trihalomethanes and other environmental factors that contribute to colorectal cancer[J]. Environ Health Perspect,1994,102(6-7):586-588.
    [12]NTP. Toxicity and carcinogenicity of bromodichloromethane (CAS No.75-27-4) in F344/N rats and B6C3F1 mice.TR-321. Research Triangle Park, NC:National Toxicology Program,1987.
    [13]Dunnick J K, Haseman J K, Lilja H S, et al. Toxicity and carcinogenicity of chlorodibromomethane in Fischer 344/N rats and B6C3F1 mice[J]. Fundamental and Applied Toxicology,1985,5(6):1128-1136.
    [14]NTP. Toxicology and carcinogenesis studies of tribromomethane (bromoform) (CAS No.75-25-2) in F344/N rats and B6C3F1 mice (gavage studies). TR-350. Research Triangle Park. NC:National Toxicology Program.1989.
    [15]Bull R J. Toxicity of disinfectants and disinfection byproducts. In:Safety of water disinfection:Balancing chemical and microbial risks (Craun GF). Washington:ILSI Press,1993.239-256.
    [16]Bull R J, Sanchez I M. Nelson M A, et al. Liver tumor induction in B6C3F, mice by dichloroacetate and trichloroacetate[J]. Toxicology,1990,63(3):341-359.
    [17]King W D, Marrett L D. Case-control study of bladder cancer and chlorination byproducts in treated water (Ontario, Canada) [J]. Cancer Causes Control,1996, 7(6):596-604.
    [18]Morris R D. Drinking water and cancer [J]. Environ Health Perspect,1995,103 (S8):225-231.
    [19]Doyle T J, Zheng W, Cerhan J R, et al. The association of drinking water source and chlorination byproducts with cancer incidence among post menopausal women in Iowa:a prospective cohort study [J]. American Journal of Public Health, 1997,87(7):1168-1176.
    [20]Koivusalo M, Pukkala E, Vartiainen T, et al. Drinking water chlorination and cancer-historical cohort study in Finland [J]. Cancer Causes Control,1997.8(2): 192-200.
    [21]Hildesheim M E. Cantor K P, Lynch C F, et al. Drinking water source and chlorination byproducts in Iowa. II:Risk of colon and rectal cancers. Epidemiology,1998,9(1):29-35.
    [22]Cantor K P, Lynch C F, Hildesheim M E, et al. Drinking water source and chlorination byproducts in Iowa. I:Risk of bladder cancer. Epidemiology,1998, 9(1):21-28.
    [23]Kurokawa Y, Hayashi Y, Maekawa A, et al. Carcinogenicity of potassium bromate administered orally to F344 rats [J]. J NatI Cancer Inst,1983,71(5): 965-972.
    [24]Ballmaier D, Epe B. Oxidative DNA damage induced by potassium bromate under cell-free conditions and in mammalian cells [J]. Carcinogenesis,1995, 16(2):335-342.
    [25]Wailer K, Swan S H, Delorenze G, et al. Trihalomethanes in drinking water and spontaneous abortion [J]. Epidemiology.1998,9(2):134-140.
    [26]袁哲俊.纳米科学与技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [27]Joachim C. To be nano or not to be nano[J]. Nature Materials,2005,4(2): 107-109.
    [28]黄加乐.银纳米材料和金纳米材料的植物生物质还原制备及应用初探[D].厦门:厦门大学,2009.
    [29]杨志尹.纳米科技[M].北京:机械工业出版社,2004.
    [30]倪星元,沈军,张志华.纳米材料的理化特性与应用[M].北京:化学工业出版社,2006.
    [31]赵云云.复合纳微材料超快发光特性的研究[D].广州:中山大学,2010.
    [32]Cho S, Ma J, Kim Y, et al. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn[M]. Applied Physics Letters,1999,75(18):2761-2763.
    [33]苏丽娟,金霞.纳米科技[J].辽宁师专学报,2002,3(4):9-12.
    [34]张妹景.金属纳米颗粒的形状对表面等离子体共振特性的调制研究[D].成都:电子科技大学,2010.
    [35]佘慧.考虑表面效应的纳米力学计算模型及量子点、纳米薄膜分析[D].广州:中山大学,2009.
    [36]侯春燕.ZnO纳米材料的制备及其光催化降解有机废水的研究[D].大连:大连海事大学,2006.
    [37]叶韦韦.具有可见光激发响应的纳米TiO<2>光催化材料的研究[D].武汉:武汉理工大学,2010.
    [38]石金娥.具有光催化性能的几种半导体材料的制备、表征与应用[D].长春:东北师范大学,2008.
    [39]王盛.新型半导体光催化剂的制备及光催化性能研究[D].武汉:武汉理工大学,2008.
    [40]陈俊水.纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究[D]. 上海:华东师范大学,2004.
    [41]Ladouceur M, Dodelet J P, Tourillon G. et al. Plasma-sprayed semiconductor electrodes:photoelectrochemical characterization and ammonia photoproduction by substoichiometric tungsten oxides[J].The Journal of Physical Chemistry B. 1990,94(11):4579-4587.
    [42]Uchihara T, Matsumura M, Michio O J, et al. Effect of ethylene diamine tetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide[J]. The Journal of Physical Chemistry B, 1990,94(1):415-418.
    [43]Fischer C H, Henglein A. Preparation and photolysis of cadmium sulfide sols in organic solvents [J]. The Journal of Physical Chemistry B,1989,93(14): 5578-5581.
    [44]徐建华.新型纳米二氧化钛光催化材料的合成及反应研究[D].上海:复旦大学,2007.
    [45]房晓勇,刘竞业,杨会静.固体物理学[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [46]M Kaneko, I Okura. Photocatalytic Science Technology,2002,55.
    [47]申乾宏.常温液相合成TiO<2>纳米晶溶胶及其光催化薄膜制备研究[D].杭州:浙江大学,2008.
    [48]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [49]Ikeda K, Sakai H, Baba R, et al. Microscopic observation of photocatalytic reaction using microelectrode:spatial resolution for reaction products distribution[J]. Chemistry Letters,1995,24(11):979-980.
    [50]Ikeda K, Sakai H, Baba R, et al. Photocatalytic reactions involving radical chain reactions using microelectrodes[J]. The Journal of Physical Chemistry B,1997, 101(14):2617-2620.
    [51]Carraway E R, Hoffman A J, Hoffman M R, et al. Environmental applications of semiconductor photocatalysis[J].Environment Science Technology,1994,28(5): 786-793.
    [52]周秀文.TiO<2>光催化剂的改性研究[D].北京:中国工程物理研究院,2004.
    [53]魏子栋,殷菲,谭君等.TiO2光催化氧化研究进展[J].化学通报,2001.2(1):76-80.
    [54]Li X Z, Li F B. Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry.2001.141(2-3):209-217.
    [55]于洪涛.功能性纳米异质结的制备、光电转换能力及其降解水中有机污染物和灭菌的性能[D].大连:大连理工大学,2009.
    [56]朱建.纳米晶二氧化钛的晶相、织构及光催化性能研究[D].上海:复旦大学,2006.
    [57]Su Y, Wu J S, Xie Q, et al. Electrochemically assisted photocatalytic degradation of phenol using silicon-doped TiO2 nanofilm electrode[J]. Desalination,2010, 252(1-3):143-148.
    [58]Hong S S, Lee M S, Park S S. et al. Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol[J]. Catalysis Today.2003,87(1-4):99-105.
    [59]Fu X Z. Clark L A, Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides:TiO2/SiO2 and TiO2/ZrO2[J]. Environment Science Technology,1996.30(2):647-653.
    [60]Anderson C, Bard A J. An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis[J]. Journal of Physical Chemstry,1995,99(24):9882-9885.
    [61]Estruga M, Domingo C, Domenech X, et al. Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors [J].Journal of Colloid and Interface Science,2010,344 (2):327-333.
    [62]Chen Q F, Shi W M, Xu Y, et al. Visible-light-responsive Ag-Si codoped anatase TiO2 photocatalyst with enhanced thermal stability [J]. Materials Chemistry and Physics,2011,125(3):825-832.
    [63]Chen Q F, Jiang D, Shi W M, et al.Visible-light-activated Ce-Si co-doped TiO2 photocatalyst [J]. Applied Surface Science,2009,255(18):7918-7924.
    [64]陈其凤,史卫梅,姜东等.可见光响应的镍硅共掺杂二氧化钛及其光催化性能[JJ.化学学报.2010,68(4):301-308.
    [65]Phanikrishna S M V, Durga K V, Machiraju S. TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light:Part 2. Silica prepared using acrylic acid emulsion [J]. Journal of Hazardous Materials.2010.175(1-3): 1101-1105.
    [66]Bao N, Wei Z T, Ma Z H. Si-doped mesoporous TiO2 continuous fibers: Preparation by centrifugal spinning and photocatalytic properties [J]. Journal of Hazardous Materials,2010,174(1-3):129-136.
    [67]Yang S G, Fu H B, Sun C, et al. Rapid photocatalytic destruction of pentachlorophenol in F-Si-comodified TiO2 suspensions under microwave irradiation [J]. Journal of Hazardous Materials,2009,161(2-3):1281-1287.
    [68]Zhang Y J, Li X F, Chen D, et al. Si doping effects on the photocatalytic activity of TiO2 nanotubes film prepared by an anodization process [J]. Scripta Materialia. 2009,60(7):543-546.
    [69]Yan X L, He J, Evans D G, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors [J]. Applied Catalysis B:Environmental,2005,55(4):243-252.
    [70]Yu H F, Yang S T. Enhancing thermal stability and photocatalytic activity of anatase-TiO2 nanoparticles by co-doping P and Si elements [J]. Journal of Alloys and Compounds,2010,492(1-2):695-700.
    [71]邓培昌,胡杰珍,王海增等.硅胶负载氯掺杂二氧化钛光催化剂的水热制备与光催化活性评价[J].物理化学学报,2010,26(4):915-920.
    [72]康华,李桂春,徐德永Zn,Si共掺杂纳米TiO2的制备及其光催化性能[J].金属功能材料,2009,16(6):25-29.
    [73]陈垚翰,沈俊,张昭.Si掺杂介孔SO42-/TiO2的非模板剂法合成及表征[J].催化学报,2008,29(4):356-360.
    [74]伏宏彬,金灿,夏平等.钛硅复合气凝胶的制备工艺与光催化能力研究[J].无机盐工业,2009,41(11):26-28.
    [75]Lien S Y, Wuu D S, Yeh W C, et al. Tri-layer antireflection coatings for silicon solar cells using a sol-gel technique[J]. Solar Energy Materials & Solar Cells,2006,90(16):2710-2719.
    [76]Park S E. Kim B E, Lee S W. et al. Employment of encapsulated Si with mesoporous TiO2 layer as anode material for lithium secondary batteries [J]. Transactions of Nonferrous Metals Society of China,2009,19(4):1023-1026.
    [77]Kim K J. Gyu S K, Jin S H,et al. Characterization of a composite film prepared by deposition of TiO2 on porous Si [J]. Solar Energy,1998,64(1-3):61-66.
    [78]Takabayashi S, Nakamura R, Nakato Y.A nano-modified Si/TiO2 composite electrodebfor efficient solar water splitting [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,166 (1-3):107-113.
    [79]余跃波,孟凡英,郭群超等.TiO2/SiO2双层减反膜在太阳电池上的应用[J].太阳能学报,2009,30(11):1465-1468.
    [80]Nattaya C, Joongjai P, Piyasan P.The influence of Si-modified TiO2 on the activity of Ag/TiO2 in CO oxidation [J]. Journal of Industrial and Engineering Chemistry,2010,16(5):703-707.
    [81]Jin R B, Wu Z B, Liu Y, et al. Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method [J]. Journal of Hazardous Materials,2009,161 (1):42-48.
    [82]付薪菱,许海峰,曾明. SO427TiO2-HZSM-5型固体酸催化合成尿囊素[J].精细化工中间体,2010,40(4):46-50.
    [83]王丽,宋永波,赖小林等.钛硅复合氧化物催化合成长链二元睛[J].应用化工,2008,37(2):180-187.
    [84]刘扬林.掺硅二氧化钛复合薄膜超亲水性研究[J].企业技术开发,2009,28(7):51-53.
    [85]Chen Y X, Wang K, Lou L P. Photodegradation of dye pollutants on silica gel supported particles under visible light irradiation TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(1-2):281-287.
    [86]Ismail A A, Ibrahim I A, Ahmed M S, et al. Sol-gel synthesis of titania-silica photocataly for cyanidephotodegradation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):445-451.
    [87]包南,张峰,马志会等.Si修饰TiO2纤维的溶胶-凝胶法制备及其光催化活性[J].化学学报,2007,65(23):2786-2792.
    [88]陈其凤,姜东,徐耀等.溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能[J].物理化学学报,2009,25(4):617-623.
    [89]Kongkiat S, Piyasan P. Bunjerd J, et al. Control of Ti3+surface defect on TiO2 nanocrystal using various calcination atmospheres as the first step for surface defect creation and its application in photocatalysis [J]. Appllied Surface Science, 2007,253(8):3849-3855.
    [90]Kongkiat S, Bunjerd J, Chairit S, et al. Surface defect (Ti3+) controlling in the first step on the anatase TiO2 nanocrystal by using sol-gel technique [J]. Appllied Surface Science,2008,255(5):2759-2766.
    [1]封娜.纳米TiO<2>/SiO<2>复合粉体的制备及光催化降解性能的研究[D].安徽:合肥工业大学,2006.
    [2]傅平青,刘丛强,吴丰昌.水环境中腐殖质-金属离子键合作用研究进展[J].生态学杂志,2004,23(6):143-148.
    [3]刘振中,宋刚福.水源水中腐殖酸的危害及去除方法[J].江西科学,2006,24(4):247-252.
    [4]于春艳.腐殖酸的分离及其组分对水中2,4-D光降解作用[D].大连:大连理工大学,2009.
    [5]刘智勇.水热法制备负载型TiO<2>薄膜及其去除给水中腐殖酸的研究[D].青岛:青岛科技大学,2009.
    [6]戴树桂.环境化学[M].北京:高等教育出版社,1987,345.
    [7]李芙蓉.天然饮用水源中腐殖质的去除[J].工业安全与环保,2002,28(7):8-9.
    [8]陶然.光催化/微滤膜方法在腐殖酸降解中的应用[D].苏州大学,2004.
    [9]Wang G S, Hsieh S T, Hong C S. Destruction of humic acids in water by UV light-catalyzed oxidation with hydrogen peroxide [D]. Water Research,2000, 34(15):3882-3887.
    [10]魏宏斌,徐建伟,徐迪民.水溶液中腐殖酸的二氧化铁催化氧化研究[J].环境科学学报,1998,18(2):162-166.
    [11]贾金平,廖军,方海军.光电化学法处理水体中腐殖酸的初步研究[J].上海环境科学,1997,16(3):24-26.
    [12]Ewa L G, Grazyna G. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbon [J]. Journal of Colloid and Interface Science,2005. 284(2):416-423.
    [13]李冰璟,张巍,刘婉冬等.去除饮用水中三卤甲烷和腐殖酸的活性炭选型方法[J].环境污染与防治,2008,30(4):48-55.
    [14]张慧,于海琴.水中天然有机物对超滤膜污染研究[J].工业用水与废水,2007,38(4):98-101.
    [15]李欣,齐晶瑶,袁一星.饮用水中有机污染物分子的VRML模型[J].环境化 学,2004,23(4):424-426.
    [16]Xu X, Zou H X, Zhang J Q. Formation of strong mutagen [3-chloro-4-(dichloro-methyl)-5-hydroxy-2(5H)-furanone] MX by chlorination of fractions of lake water [J]. Water Research.1997,31(5):1021-1026.
    [17]安永会,李旭峰,何锦等.若尔盖县大骨节病分布特征及其与地质环境的关系[J]. 中国地质,2010,37(3):587-593.
    [18]李胜伟,赵松江,曹楠等.壤塘县大骨节病饮水性致病因素分析及改水模式探索[J].中国地质,2010,37(3):594-599.
    [19]杨敏,鲍治宇,董延茂等.Ti02/Cu0/Cu20(Se03)光催化去除水中腐殖酸[J].环境化学,2010,29(6):1038-1042.
    [20]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [21]徐洁.二氧化钛光催化氧化腐殖酸的实验研究[D].陕西:西安建筑科技大学,2005.
    [22]耿安朝,章申.腐殖酸与稀土元素的结合点位及其表征研究[J].厦门大学学报(自然科学版),2006,45(2):238-242.
    [1]Liu Y B. Zhou B X. Bai J. et al. Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays [J]. Applied Catalysis B:Environmental,2009,89(1-2):142-148.
    [2]Joo D S. Cham K, Geun L S. et al. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants [J]. Journal of Hazardous Materials,2008,154(1-3):118-127.
    [3]Fujishima A, Zhang X T. Titanium dioxide photocatalysis:Present situation and future approaches [J].Comptes Rendus Chimie,2006,9(5-6):750-760.
    [4]Fujishima A, Zhang X T, Tryk D. Heterogeneous photocatalysis:From water photolysis to applications in environmental cleanup [J]. International Journal of Hydrogen Energy,2007,32(14):2664-2672.
    [5]Xu Y M, Zheng W, Liu W P. Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2 [J]. Journal of Photochemistry and Photobiology A: Chemistry,1999.122(1):57-60.
    [6]Hong S S, Lee M S, Park S S. et al. Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of ρ-nitrophenol [J]. Catalysis Today.2003,87(1-4):99-105.
    [7]Fu X Z. Clark L A. Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides:TiO2/SiO2 and TiO2/ZrO2 [J]. Environmental Science & Technology,1996.30(2):647-653.
    [8]Anderson C. Bard A J. An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis[J]. Journal of Physical Chemistry,1995,99(24):9882-9885.
    [9]Nilchi A. Janitabar-Darzi S, Mahjoub A R, et al. New TiO2/SiO2 nanocomposites-phase transformations and photocatalytic studies [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,361(1-3):25-30.
    [10]Dong W Y, Lee C W, Lu X C, et al. Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2-SiO2 nanocomposites generating excellent degradation activity of RhB dye [J]. Applied Catalysis B:Environmental,2010,95(3-4):197-207.
    [11]张青红.纳米二氧化钛光催化材料的设计和制备[D].上海:中国科学院上海硅酸盐研究所,2000.
    [12]陈敬艳.于立军,齐海燕等.正硅酸乙酯成胶机理及铁氧体纳米复合材料合成机理[J].长春师范学院学报(自然科学版),2008,27(5):26-28.
    [13]BRINKER C J.Sol-Gel Science [M]. New York:Academic Press, INC.1990.
    [14]陈同来.陈铮.催化方式和水硅比对正硅酸乙酯的溶胶凝胶过程的影响[J].华东船舶工业学院学报(自然科学版),2003,17(3):62-65.
    [15]刘羽,张建民,牛志睿. Sol-Gel法二氧化硅溶胶的制备及性能影响研究[J].过滤与分离,2008,18(3):21-23.
    [16]RALPH K I. The Chemistry of Silica [M].Canada:John Wiley & Sons, Inc. 1979.
    [17]曲绪平,王兆伦,陈娅如等,正硅酸乙酯水解-聚合的工艺参数研究及纳米SiO2的合成[J].玻璃与搪瓷,2005,33(3):19-23.
    [18]张金仲.SG法制备非晶态SiO<2>光纤预制棒干胶工艺研究[D].哈尔滨:哈尔滨理工大学,2008.
    [19]周锋,傅迎庆,梁开明.工艺参数对TiO2溶胶黏度及胶凝时间的影响[J].连海事大学学报,2008,34(4):87-90.
    [20]谷科成,胡相红,陈逸等. Sol-gel法制备纳米TiO2凝胶过程的控制[J].后勤工程学院学报,2010,26(1):66-69.
    [21]李春燕.李懋强.TiO2的溶胶-凝胶过程研究[J].硅酸盐学报,1996,24(3):338-339.
    [22]江伟辉,冯果,刘健敏等.溶胶-凝胶法制备钛酸铝薄膜的工艺研究[J].中国陶瓷,2010,46(11):31-34.
    [23]温敏.溶胶-凝胶法在45#钢表面制备TiO2晶膜及其性能研究[D].武汉:华中科技大学,2004.
    [24]付文,刘安华,张利利.纳米TiO2/SiO2复合催化剂的制备与表征[J].中国材料进展,2009,28(3):38-42.
    [25]史振彦,田鹏,康艳红等.溶胶-凝胶法制备纳米TiO2凝胶的机理研究[J].2010,28(3):412-415.
    [26]刘康强,占昌朝,旷成秀.固体超强酸S2O82-/TiO2的溶胶-凝胶法制备研究[J].天津化工,2008,22(6):33-34.
    [1]薛峰,薛建军,王玲等.高度有序的TiO2纳米管阵列光催化性能研究[J].环境科学学报.2009,29(6):1252-1257.
    [2]孙秀果,张建民,彭政.用二氧化硅表面改性纳米二氧化钛的制备与表征[J].硅酸盐学报,2007,35(9):1174-1177.
    [3]崔婷,唐绍裘,万隆等.溶胶-凝胶法制备纳米TiO2/SiO2复合薄膜的研究[J].陶瓷学报,2006,27(2):193-196.
    [1]Ismail A A, Ibrahim I A. Ahmed M S. et al. Sol-gel synthesis of titania-silica photocataly for cyanidephotodegradation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004.163(3):445-451.
    [2]Chen Y X, Wang K, Lou L P. Photodegradation of dye pollutants on silica gel supported particles under visible light irradiation TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(1-2):281-287.
    [3]包南,张峰,马志会等.Si修饰TiO2纤维的溶胶-凝胶法制备及其光催化活性[J].化学学报,2007,65(23):2786-2792.
    [4]陈其凤,姜东,徐耀等.溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能[J].物理化学学报,2009,25(4):617-623.
    [5]Kongkiat S, Piyasan P, Bunjerd J, et al. Control of Ti3+surface defect on TiO2 nanocrystal using various calcination atmospheres as the first step for surface defect creation and its application in photocatalysis [J]. Appllied Surface Science, 2007,253(8):3849-3855.
    [6]Kongkiat S, Bunjerd J, Chairit S, et al. Surface defect (Ti3+) controlling in the first step on the anatase TiO2 nanocrystal by using sol-gel technique [J]. Appllied Surface Science,2008,255(5):2759-2766.
    [7]孟前进,李巧玲.TiO2粉体的溶济胶-凝胶法制备及表征[J].化工技术与开发,2009.38(12):4-18.
    [8]周锋,傅迎庆,梁开明.工艺参数对TiO2溶胶黏度及胶凝时间的影响[J].大连海事大学学报,2008,34(4):87-90.
    [9]李静,云虹,林昌健.铁掺杂TiO2纳米管阵列对不锈钢的光生阴极保护[J].物理化学学报,2007,23(12):1886-1892.
    [10]Zhou Z X, Zhu L H. Li J, et al. Electrochemical preparation of TiO2/SiO2 composite film and its high activity toward the photoelectrocatalytic degradation of methyl orange [J]. Journal of Applied Electrochemistry,2009,39(10): 1745-1753.
    [11]Brinley E, Seal S, Folks R, et al. High efficiency SiO2-TiO2 hybrid sol-gel antireflective coating for infrared applications [J]. Journal of Vacuum Science & Technology A,2006,24(4):1141-1146.
    [12]曾人杰.无机材料化学[M].福建:厦门大学出版社,2004:239.
    [13]Wang L Y, Sun Y P, Xu B S. Comparison study on the size and phase control of nanocrystalline TiO2 in three Ti-Si oxide structures [J]. Journal of Materials Science,2008,43(6):1979-1986.
    [14]Nowotny M K, Sheppard L R, Bak T, et al. Defect chemistry of titanium dioxide.Application of defect engineering in processing of TiO2-based photocatalysts [J]. The Journal of Physical Chemistry C,2008,112(14): 5275-5300.
    [1]Tsuyoshi O, Kazuya N, Taketoshi M. et al. Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst [J]. Water Research.2010,44(3): 904-910.
    [2]Rizzo L. Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis [J]. Journal of Hazardous Materials,2009,165(1-3):48-51.
    [3]Sekiguchi K, Sasaki C, Sakamoto K. Synergistic effects of high-frequency ultrasound on photocatalytic degradation of aldehydes and their intermediates using TiO2 suspension in water [J]. Ultrasonics Sonochemistry,2011,18(1): 158-163.
    [4]Luo L, Miao L, Tanemura S, et al. Photocatalytic sterilization of TiO2 films coated on Al fiber [J]. Materials Science and Engineering:B,2008.148(1-3):183-186.
    [5]Damodar R A, Swaminathan T. Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation [J]. Chemical Engineering Journal,2008,144(1): 59-66.
    [6]Rincon A G, Pulgarin C. Fe3+and TiO2 solar-light-assisted inactivation of E. coli at field scale implications in solar disinfection at low temperature of large quantities of water [J]. Catalysis Today.2007.122(1-2):128-136.
    [7]Qu Y C. Song S, Jing L Q. et al. Effects of the co-addition of Zi2+ and sodium dodecylbenzene sulf-onate on photocatalytic activity and wetting performance of anatase TiO2 nanoparticle films [J]. Thin Solid Films,2010,518(12):3177-3181.
    [8]Lin C H, Lee J W, Chang C Y, et al. Novel TiO2 thin films/glass fiber photocatalytic reactors in the removal of bioaerosols [J]. Surface and Coatings Technology,2010,205(Supplement 1):S341-S344.
    [9]http://baike.baidu.com/view/29729.htm
    [10]《生活饮用水卫生标准》GB5749-85
    [11]Wu D H, You H, Jin D R, et al. Enhanced inactivation of Escherichia coli with Ag-coated TiO2 thin film under UV-C irradiation [J]. Journal of Photochemistry and Photobiology A,2011,217(1):177-183.
    [12]Bao N. Wei Z T, Ma Z H. et al. Si-doped mesoporous TiO2 continuous fibers: Preparation by centrifugal spinning and photocatalytic properties [J]. Journal of Hazardous Materials,2010,174(1-3):129-136.
    [13]王玉晓.可见光下光催化分解水制取氢气的研究[D].天津大学.2007.
    [14]Kang M, Lee M H. Synthesis and characterization of Al-, Bi-, and Fe-incorporated mesoporous titanosilicate (MPTS) materials and their hydrophilic properties [J]. Applied Catalysis A:General,2005,284(1-2):215-222.
    [15]Guillemot F, Port M C, Labrug C, et al. Ti4+to Ti3+conversion of TiO2 uppermost layer by low-temperature vacuum annealing:interest for titanium biomedical applications [J]. Journal of Colloid and Interface Science,255(1): 75-78.
    [16]Feng Y J, Cui Y H, Logan B, et al. Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol [J]. Chemosphere,2008,70(9): 1629-1636.
    [17]梁艳.高效复合型稀土掺杂光催化抗菌材料的研究[D].辽宁:东北大学2006.
    [18]Damodar R A, You S J, Chou H H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes [J]. Journal of Hazardous Materials,2009,172(2-3):1321-1328.
    [19]Maness P C, Smolinski S, Blake D M, et al. Bactericidal activity of photocatalytic TiO2 reaction:toward an understanding of its killing mechanism [J]. Applied and Environmental Microbiology,1999,65(9):4094-4098.
    [20]Yu J C, Xie Y, Tang H Y, et al. Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,156(1-3):235-241.
    [1]Zhang Y, Yuwono A H. Wang J, etc. Enhanced photocatalysis by doping cerium into mesoporous titania thin films [J]. The Journal of Physical Chemistry C.2009, 113 (51):21406-21412.
    [2]Du P, Bueno-Lopez A. Verbaas M, etc. The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation[J]. Journal of Catalysis,2008,260(1):75-80.
    [3]Xu A W, Gao Y, Liu H Q. The Preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles[J]. Journal of Catalysis,2002,207(2):151-157.
    [4]Chen Q F, Jiang D, Shi W M, etc. Visible-light-activated Ce-Si co-doped TiO2 photocatalyst [J]. Applied Surface Science,2009,255(18):7918-7924.
    [5]Mohamed R M, Mkhalid I A. The effect of rare earth dopants on the structure, surface texture and photocatalytic properties of TiO2-SiO2 prepared by sol-gel method[J]. Journal of Alloys and Compounds,2010,501(1):143-147.
    [6]Zhou Y, Huang K L, Zhu Z P, etc. Preparation of Gd/N-codoped nano-TiO2 and degradation of humic acid [J].Journal of central south university (Science and Technology),2008,39(4):677-681.
    [7]Zhou Y, Xu X W, Liu Q C. etc. Solar light photocatalysis oxidation characteristics of nano-titania particle doned with RE [J]. Journal of central south university of Technology:Natural Science,2002,33(4):371-373.
    [8]Stengl V. Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles [J]. Materials Chemistry and Physics,2009,114 (1):217-226.
    [9]Mahalakshmi M, Arabindoo B, Palanichamy M, etc. Preparation, characterization, and photocatalytic activity of Gd3+doped TiO2 nanoparticles [J]. Journal of Nanoscience and Nanotechnology,2007,7(9):3277-3285.
    [10]Wang L Y, Sun Y P, Xu B S.Comparison study on the size and phase control of nanocrystalline TiO2 in three Ti-Si oxide structures.Journal of Materials Science [J]. Journal of Materials Science,2008,43(6):1979-1986.
    [11]Wang Y F. Sun Y P. Preparation and photocatalytic activity of TiO2/SiO2 complex oxides by two-step sol-gel method [J]. Journal of Synthetic Crystals,2010. 39(SUPPL.):54-58.
    [12]Han G C., Luo P. Guo Z B, etc. Co-doped TiO2 epitaxial thin films grown by sputtering [J]. Thin Solid Films,2006,505(1-2):137-140.
    [13]Zhang W J, Li Y, Zhu S L, etc. Surface modification of TiO2 film by iron doping using reactive magnetron sputtering[J]. Chemical Physics Letters,2003,373(3-4): 333-337.
    [14]OhnoTeruhisa, Tsubota T, Toyofuku M, etc. Photocatalytic activity of a TiO2 photocatalyst doped with C4+and S4+ions having a rutile phase under visible light [J]. Catalysis Letters,2004,98(4):255-258.
    [15]Guillemot F, Port'M C, Labrug C, etc. Ti4+to Ti3+Conversion of TiO2 uppermost layer by low-temperature vacuum annealing:Interest for titanium biomedical applications [J]. Journal of Colloid and Interface Science,2002,255(1):75-78.
    [16]Suriye K. Jongsomjit B, Satayaprasert C, etc. Surface defect (Ti3+) controlling in the first step on the anatase TiO2 nanocrystal by using sol-gel technique [J].Applied Surface Science,2008,255(5):2759-2766.
    [17]Feng Y J. Cui Y H. Logan B, et al. Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol [J].Chemosphere,2008,70(9): 1629-1636.
    [18]Li J, Zeng H C. Hollowing Sn-Doped TiO2 nanospheres via ostwald ripening [J].Journal of the American Chemical Society,2007,129(51):15839-15847.
    [19]Li J, Zeng H C, Preparation of monodisperse Au/TiO2 nanocatalysts via self-assembly [J].Chemistry of Materials,2006,18(18):4270-4277.
    [20]彭绍琴,李凤丽,李越湘等.Gd~(3+)掺杂纳米TiO_2的制备及光解水制氢性能研究[J].功能材料,2006,37(10):1663-1666.
    [21]Xu J J, Ao Y H. Fu D G, etc. Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,334(1-3):107-111.
    [22]Kyziol J, Twardowska I. Schmitt-Kopplin P. The role of humic substances in chromium sorption onto natural organic matter (peat)[J].Chemosphere,2006, 63(11):1974-1982.
    [1]Yang S G. Fu H B. Sun C, etc. Rapid photocatalytic destruction of pentachlorophenol in F-Si-comodified TiO2 suspensions under microwave irradiation [J].Journal of Hazardous Materials,2009,161(2-3):1281-1287.
    [2]Chen Q F, Jiang D, Shi W M, etc. Visible-light-activated Ce-Si co-doped TiO2 photocatalyst [J]. Applied Surface Science,2009.255(18):7918-7924.
    [3]Xu Y H, Zeng Z X. The preparation, characterization, and photocatalytic activities of Ce-TiO2/SiO2 [J].Journal of Molecular Catalysis A:Chemical,2008,279(1): 77-81.
    [4]Zhang Y J, Li X F, Chen D, etc. Si doping effects on the photocatalytic activity of TiO2 nanotubes film prepared by an anodization process [J].Scripta Materialia, 2009,60(7):543-546.
    [5]Cui L F, Huang F, Niu M T, etc. A visible light active photocatalyst: Nano-composite with Fe-doped anatase TiO2 nanoparticles coupling with TiO2 (B) nanobelts [J]. Journal of Molecular Catalysis A:Chemical,2010,326(1-2): 1-7.
    [6]Wantala K. Laokiat L, Khemthong P, etc. Calcination temperature effect on solvothermal Fe-TiO2 and its performance under visible light irradiation[J]. Journal of the Taiwan Institute of Chemical Engineers,2010,41 (5):612-616.
    [7]Yu J G, Xiang Q J, Zhou M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures [J]. Applied Catalysis B: Environmental.2009.90(3-4):595-602.
    [8]Kang M, Lee M. Synthesis and characterization of A1-, Bi-, and Fe-incorporated mesoporous titanosilicate (MPTS) materials and their hydrophilic properties [J]. Applied Catalysis A:General,2005,284 (1-2):215-222.
    [9]Serpone N, Lawless D, Khairutdinov R, etc. Subnanosecond relaxation dynamics in TiO2 colloidal sols:relevance to heterogeneous photocatalysis [J]. The Journal of Physical Chemistry A.1995,99(45):16655-16661.
    [10]Wu Y M, Zhang J L, Xiao L. etc. Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light [J]. Applied Surface Science,2010,256(13):4260-4268.
    [11]Sun X Y. Jun L. Synergetic effects of thermal and photo-catalysis in purification of dye water over SrTi1-xMnxO3 solid solutions [J]. Journal of physical chemistry C,2008,113(12):9753-9759.
    [12]Dong F, Wang H Q, Wu Z B. etc. Marked enhancement of photocatalytic activity and photochemical stability of N-doped TiO2 nanocrystals by Fe3+/Fe2+surface modification[J]. Journal of Colloid and Interface Science,2010,343(1):200-208.
    [13]卢安贤,谭常优.铁离子掺杂TiO2基自洁净玻璃的制备及性能[J].湖南大学学报(自然科学版),2003,30(2):25-50.
    [14]Ishiibashi K, Nosaka Y, Hashimoto K. Second-sphere and outer-sphere proton relaxation of paramagnetic complexes:from EPR to NMRD [J]. The Journal of Physical Chemistry B,1998,102 (12):2117-2120.
    [15]Carp O, Huisman C L. Reller A. Photoinduced reactivity of titanium dioxide [J]. Progress in Solid State Chemistry,2004,32(1-2):33-177.
    [16]张靖峰,杜志平,赵永红等.Fe3+改性纳米ZnO光催化降解壬基酚聚氧乙烯醚[J].催化学报,2007,28(6):561-566.
    [17]辛柏福,郝国栋,哀福龙等.Fe3+-TiO2/SiO2催化剂对气相中乙醛光催化降解的研究[J].黑龙江大学自然科学学报,2003,20(1):104-107.
    [18]Zhou M H, Yu J G, Cheng B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method [J]. Journal of Hazardous Materials,2006,137(3):1838-1847.
    [19]常琳,刘晶冰,王金淑等.可见光响应的铁掺杂TiO2中空微球的制备及其光催化性能[J].无机化学学报,2010,26(5):744-748.
    [20]陈中颖,余刚,张彭义等.SiO_2纳米粉掺杂对薄膜光催化剂结构和活性的影响[J].环境科学,2002,23(6):40-44.
    [21]吴春春,杨辉,董泽等.SiO2/聚硅氧烷纳米复合防腐涂层的制备与性能[J]. 硅酸盐学报,2010,38(5):959-963.
    [22]郭清泉.王得泰,饶俊元.纳米Ti02光催化剂可见光化的最新进展[J].材料导报网刊.2009.5:11-13.
    [23]彭涛,周曦,李远志.可见光响应纳米Ti02光催化材料研究进展[J].中国科技论文在线,2009,4(4):302-307.
    [24]Dong F. Wang H Q, Wu Z B, etc. Marked enhancement of photocatalytic activity and photochemical stability of N-doped TiO2 nanocrystals by Fe3+/Fe2+surface modification[J].Journal of Colloid and Interface Science,2010,343(1):200-208.
    [25]Hirotaka O, Shinji I, Masashi I. Marked promotive effect of iron on visible-light-induced photocatalytic activities of nitrogen-and silicon-codoped titanias [J]. The Journal of Physical Chemistry C,2007,111(45):17061-17066.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700