用户名: 密码: 验证码:
塑性聚合物方法压电纤维复合材料的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1-3型压电复合材料的厚度机电耦合系数与径向机电耦合系数的比值k_t/k_p远大于同类陶瓷材料,使其各向异性大,可提高换能器的分辨率、改善脉冲的响应时间。同时可以通过控制纤维体积含量大幅度提高静水压灵敏度,适合制作高灵敏度、宽带、窄脉冲的换能器,是医疗超声、无损探伤和水听器的理想材料。
     本文在分析1-3型压电复合材料研究现状的基础上,针对换能器应用对压电材料的性能要求,采用塑性聚合物方法制备压电纤维,排列-浇铸法制备1-3型压电复合材料。系统地研究了压电陶瓷组成、陶瓷固含量、纤维体积含量及长径比等因素对1-3型压电复合材料的压电、介电、铁电性能和声阻抗的影响,获得了压电相性能对复合材料性能的影响规律。通过有限元模拟计算,建立了1-3型压电复合材料的振动模型,得到了与实验结果相吻合的研究结论。
     (1)采用塑性聚合物方法分别制备了截面为圆形和方形的PZT5、PMnS-PZN-PZT及PSN-PZN-PZT压电纤维,研究了塑性聚合物方法制备塑性泥料的制备工艺、压电陶瓷纤维的成型工艺及环氧树脂的固化工艺,分析了泥料中陶瓷固含量、烧结条件对纤维结构与性能的影响。陶瓷固含量对材料的力学性能和铁电性能则产生非常大的影响,当陶瓷固含量为86%时,可获得可塑性较好、有一定强度的压电纤维素坯。经过1190~1280℃处理2~4h,压电纤维的强度较高、结构致密、晶粒大小均匀,约2~5μm,此时纤维力学性能和铁电性能均达到最佳;
     (2)纤维长径比对其压电与介电性能产生大的影响,当t/d=4左右时,各性能指标达最大值。纤维横截面形状对压电与介电性能及其随长径比的变化规律不产生任何影响,但纤维截面形状对其应力.应变行为产生大的影响,圆截面纤维比方形截面具有更大的应变。在同一应力作用下,PZT5纤维的应变非常大,而PMnS-PZN-PZT纤维的抗拉强度则可以达到43.5MPa,是PZT5纤维的2倍;
     (3)以甲基四氢苯酐为固化剂、邻苯二甲酸二辛脂为塑性剂和2,4,6-三-(二甲胺基甲基)-苯酚作促进剂组成的环氧树脂固化体系,固化温度及固化速度适中,固化后无气泡产生。随纤维体积含量φ的增加,介电常数、剩余极化强度与矫顽场增大,但均低于纯陶瓷,压电电压系数d_(33)、机电耦合系数k_p和k_t、声阻抗Z显著增大而压电应变系数g_(33)明显降低,且k_t和g_(33)值高于纯陶瓷的性能,Q_m比陶瓷相小很多,使得1-3复合材料具有较高的g_(33)/d_(33)和k_t/k_p,表现出很好的各向异性;
     (4)复合材料的长径比对径向谐振、厚度谐振及横向结构模都会产生很大影响,随压电纤维长径比的减小,横向结构振动模干扰减弱,此时,复合材料的串并联谐振频率f_s、f_p升高,带宽增加。因此,可以通过调整材料的厚度获得单纯的谐振模。但是压电纤维的长径比不能太小,长径比太小的复合材料的d_(33)值很低,压电性能太差,当压电纤维长径比位于2≤t/d≤4之间时,复合材料的性能较佳,且具有单纯的厚度振动模式。复合材料的介电常数和介电损耗受压电相性能的影响非常之大,复合材料的性能变化规律同压电纤维性能的变化规律相同,因此可以通过改变压电纤维的性能来调节复合材料的性能;
     (5)通过模型设计,采用有限元分析了1-3压电复合材料在电场作用下的应力应变情况,研究了纤维体积含量及长径比对1-3型压电复合材料的介电性能、压电性能的影响。结果表明:纤维的长径比对纤维振动模式产生大的影响,长径比较小时同时具有厚度振动与径向振动,长径比较大时同时具有厚度振动与弯曲振动,当长径比为t/d=2~4之间时,可获得单纯的厚度振动模式。压电纤维上的应变和应力均远大于环氧树脂上的应变和应力,而且在陶瓷纤维与环氧树脂的界面上出现了应力集中。压电常数d_(33)随着纤维体积含量的增加迅速增大,最后趋于饱和,介电常数随着纤维体积含量的增加几乎呈线性增加。有限元模拟结果与实验结果吻合,能够很好的指导材料设计和制备。
The ratio of thickness model electromechanical coupling factor to radial model electromechanical coupling factor of 1-3 piezoelectric composites is much larger the that of similar piezoelectric ceramic.This leads to the anisotropism of the composites, and will raise the transducer's resolution to improve the response time of the pulse. Additionally,the hydrostatic pressure sensitivity of the composites can be improved by changing the fiber volume fraction.So,this kind of material is suitable for transducers with high sensitivity,wide bend and narrow pulse,which have been widely used in medical ultrasonic,nondestructive test and hydrophone.
     In this article,the development of 1-3 composites was discussed.PZT5 fibers were fabricated by viscous polymer processing(VPP).1-3 piezoelectric composites were prepared by arranging ceramic fibers and casting epoxy resin.Based on its use for transducer,the influences of ceramic composition,solid content,ceramic volume fraction and aspect ratio on piezoelectric properties,dielectric properties,ferroelectric properties and acoustic impedance were studied,and the influence of piezoelectric phase on the properties of 1-3 composites was achieved.Vibration mode of 1-3 piezoelectric composites was built and calculated by finite element method,and the results was consistent with the experimental result.
     (1) PZT5,PMnS-PZN-PZT and PSN-PZN-PZT ceramic fibers were fabricated by viscous polymer processing(VPP).The procedure of VPP,the formation of piezoelectric ceramic fiber and the solidify of epoxy were studied.The affects of organic and sintering condition on fiber structures and properties were analyzed.The solid content has significant impact on the mechanical and ferroelectric properties,and the green ceramic fiber with good strength and plasticity,was obtained when solid content is 86%.After being sintered at 1190-1280℃for 2-4h,the fiber was dense,the crystal size was uniform(about 2~5μm),and the mechanical and ferroelectric properties of fibers were best.
     (2) The influences of aspect ratio t/d on properties of 1-3 composites were tremendous, and all the properties parameter reached maximum value at t/d~4.Fiber cross-section shape has significant impact on the stress-strain behavior of the fibers,but no influence on the piezoelectric and dielectric properties.The tensile strength of PMnS-PZN-PZT fiber is 43.5MPa,which is 2 time than that of PZT5 fiber.
     (3) After cured at a suitable temperature,it was found that the structure of epoxy resin was tight and almost had no pore when the curing agent was methyl tetrahydrophthalic anhydride(THPA),plasticizer was dioctyl phthalate(DOP) and promoter was 2,4,6-c-(dimethyl-amino) -phenol as.With increasing the ceramic volume fraction,the relative permittivity constant rose linear,remnant polarization P_r and coercive field E_c, piezoelectric strain constant d_(33),electromechanical coupling factors k_p and k_t and acoustic impedance Z gained prominently but the piezoelectric voltage constant g_(33) decreased.And k_t and g_(33) of the composites were both higher than those of pure ceramics, but Q_m was smaller.These lead to 1-3 piezoelectric composites has high values of g_(33)/d_(33) and k_t/k_p,and has great anisotropic property.
     (4) Aspect ratio has significant impact on the planar-mode,thickness-mode and lateral-mode resonances of the composites.With the aspect ratio decreasing,reducing lateral-mode resonances disturbance and the series and parallel resonant frequency,f_s and f_p, increased at the same time,which expanded the bandwidth.This implied that single resonance mode can be obtained by changing the thickness of the composites.But if the aspect ratio is too small,the d_(33) value of the composites will be too low for using.When 2≤t/d≤3,the composites has single resonance mode and fine properties.The dielectric constant and loss of the composites varied with the properties of the piezoelectric ceramic, so the properties of composites can be controlled by changing fiber's properties.
     (5)After designing and building modes,the stress-strain of 1-3 piezoelectric composites under the electric field was analyzed by the FEM simulation.The influences of fiber volume fraction and aspect ratio on dielectric and piezoelectric properties were studied.The simulation results shown that the aspect ratio has significant impact on the resonance modes,small aspect ratio leads to thickness-mode and planar-mode resonances, while large ratio leads to thickness-mode and bend-mode resonances.When t/d=2~4,there is single thickness-mode resonance.The stress and strain on the piezoelectric ceramic fiber are much bigger than those on epoxy and stress focus appeared on the interface between fiber and epoxy.With increasing the ceramic volume fraction,d_(33) increased until it reaches a saturation value the and relative permittivity constant rose linear.The results of FEM simulation was consistent with the experimental result,which were useful for designing and fabrication of the composites.
引文
[1]Gavrilya V,Fesenko E G.Piezoelectric effect in lead titanate single crystals.Soviet Physics Crystallography,1971.16(3):549-552
    [2]Kogan S M.Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals,1964.5(10):2069-2070
    [3]Lyubimov V N.Properties of surface elastic waves in piezoelectric crystals.Soviet Physics Crystallography,1971.15(6):969-971
    [4]Chen H Y,Long J W,Meng Z Y.Effect of Zr/Ti ratio on the properties of PMMN-PZT ceramics near the morphotropic phase boundary.Materials Science and Engineering B-Solid State Materials for Advanced Technology,2003.99(1-3):433-436
    [5]Saito Y,Takao H,Tani T,et al.Lead-free piezoceramics.Nature,2004.432(7013):84-87
    [6]Gomez T E,Montero D E,Espinosa F,et al.Ceramic powder-polymer piezocomposites for electroacoustic transduction:modeling and design.Ultrasonics,1998.36:907-923
    [7]Wan J G,Tao B Q.Design and study on a 1-3 anisotropy piezocomposite sensor.Materials & Design,2000.21(6):533-536
    [8]Ren X B.Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching.Nature Materials,2004.3(2):91-94
    [9]Zhang Q M,Cao W W,Wang H,et al.Characterization of the performance of 1-3 type piezocomposites for low-frequency applications.Journal of Appiled Physics,1993.73(3):1403-1410
    [10]Hashimoto K Y,Yamaguchi M.IEEE Ultrasonics Symposium,1986.p.697
    [11]O'Leary R L,Parr A C S,Troge A,et al.Performance of periodic piezoelectric composite arrays incorporating a passive phase exhibiting anisotropic properties.2005 IEEE Ultrasonics Symposium,2005.1-4:1073-1076
    [12]Brittainm R H,Weight J P.Fabrication of non-uniformly excited wide-band ultrasonic transducers.Ultrasonics 1987.25(2):100-106
    [13]Zipparos M J.The Pennsylvania State University,1996
    [14]Liu R B,Harasiewicz K A,Foster F S.Interdigital pair bonding for high frequency(20-50MHz) ultrasonic composite transducers.Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2001.48(1):299-306
    [15]Zeng D W,Li K,Yung KC,et al,UV laser micromachining of piezoelectric ceramic using a pulsed Nd:YAG laser.Applied Physics a-Materials Science & Processing,2004.78(3):415-421
    [16]Leslie J,Bowen R L,Gentilman R,et al.Injection molded fine-scale piezoelectric composite transducers.Paper presented at:IEEE Ultrasonics Symposium,1993.16499-503
    [17]Pearce D H,Seffen K A,Button TW.Net shape formed spiral and helical piezoelectric actuators.Journal of Materials Science.2002,37(15):3117-3122
    [18]Su B,Button T W,Schneider A,et al.Embossing of 3D ceramic microstructures.Microsystem Technologies.2002,8(4-5):359~362
    [19]Carlos N,Hector G,Nicolas P,et al.Lateral modes and diffracted field behaviour in non-periodical 1-3 piezocomposite transducers.Paper presented at:IEEE Ultrasonics Symposium,1998.19641-644
    [20]Gualtieri J G,Kosinski J A,Ballato A.Piezoelectric materials for acoustic wave applications.Paper presented at:IEEE Transactions on Ultrasonics,1994,2053-59
    [21]Solal M,Gelly J F,Mcavoy B R.A new method to decrease grating sidelobes level in medical acoustic arrays.IEEE Ultrasonics Symposium,1998.p.655-658
    [22]Smith W A.The application of 1-3 piezocomposites in acoustic transducers.IEEE Ultrasonics Symposium,1991.145-152
    [23]Wickramasinghe V K,Hagood N W.Durability characterization of Active Fiber Composite actuators for helicopter rotor blade applications.Journal of Aircraft,2004.41(4):931~937
    [24]Zhang Q M,Wang H,Zhao J,et al.A high sensitivity hydrostatic piezoelectric transducer based on transverse piezoelectric mode honeycomb ceramic composites.Paper presented at:IEEE Transactions on Ultrasonics,19%.2436-43
    [25]Rossetti G A,Pizzochero A,Bent A A.Recent advances in active fiber composites technology.Proceedings of the 2001 12th Ieee International Symposium on Applications of Ferroelectrics,2001.1-11:753-756
    [26]Du Plessis A J,Hagood N W,Rogers C A,et al.Performance investigation of twist actuated single cell composite beams for helicopter blade control.Paper presented at:Sixth International Conference on Adaptive Structures,1996.28191-216
    [27]Rodgers J P,Hagood N W,Murotsu Y,et al.Design,manufacture and testing of an integral twist-actuated rotor blade.Eigth International Conference on Adaptive Structures and Technologies,1998.63-72
    [28]Skinner D P,Newnham R E,Cross L E.Materials Research Bulletin,1978.13:599-607
    [29]Newnham R E,Skinner D P,Cross L E,et al.Connective and piezoelectric-pyroelectric composites.Material Research Bulletin,1978.13:525-536
    [30]Klicker K A,Bigger J V,Newnham R E.Composites of PZT and epoxy for hydrostatic transducer applications.Journal of American Ceramic Society,1981.64(1):5~9
    [31]Auld B A,Kunkel H A,Shui Y A,et al.Dynamic behavior of periodic piezoelectric composites.Paper presented at:IEEE Ultrasonics Symposium,1983.33554~558
    [32]Smith W A,Shaulov A A,Auld B A.Design of piezocomposites for ultrasonic transducers.Ferroelectrics,1989.91:155~162
    [33]Mills D M,Smith S W.Finite element analysis of multi-layer composite hybrid and single crystal medical ultrasound transducers.1999 Ieee Ultrasonics Symposium Proceedings,1999.1-2:1195~1198
    [34]Gururaja T R,Panda R K,Chen J,et al.Single crystal transducers for medical imaging applications.1999 Ieee Ultrasonics Symposium Proceedings,1999.1-2:969~972
    [35]Bent A A,Hagood N W.Piezoelectric fiber composites with interdigitated electrodes.Journal of Intelligent Material Systems and Structures,1997.8(11):903~919
    [36]Thomas R H,Robert Y T.Electroacoustic evaluations of 1-3 piezocomposite sonopanel~(?)materials.IEEE Transactions on Ultrasonics,2000.47(4):886~894
    [37]Schmitt R M,Scott W G,Irving R D.Numerical validation of an advanced finger print sensor based on 1-3 piezo-composites.2003 Ieee Ultrasonics Symposium Proceedings,2003.1-2:1074~1077
    [38]Montero de Espinosa F,Gomez T E.High sensitivite piezoelectric transducers for air borne applications.Paper presented at:IEEE Ultrasonics Symposium,2000.40:1073~1076
    [39]Takeuchi H M H,Nakaya C,et al.Medical ultrasonic probe using electrostrictive-ceramics/polymer composite.Paper presented at:IEEE Ultrasonics Symposium,1989.42:705~708
    [40]Hayward G,Gachagan A,Hamilton R,et al.Ceramic-epoxy composite transducers for non-contacting ultrasonic applications.Paper presented at:Proceedings of the Spie-the International Society for Optical Engineering,1992.43:49~56
    [41]Hamilton R,Hayward G The modelling and design of controllable composite transducers.IEEE Ultrasonics Symposium,1990.1:393~396
    [42]Gentilman R,Fiore D,Serwatka,et al.Sonopanel~(?)1-3 piezocomposite hydrophone-actuator panels.IEEE Ultrasonics Symposium,1995.3:2032~2037
    [43]Meyer R J,Shrout T R,Yoshikawa S.Development of ultra-fine scale piezoelectric fibers for use in high frequency 1-3 transducers.Isaf '96-Proceedings of the Tenth Ieee International Symposium on Applications of Ferroelectrics,1996.1-2:547~550
    [44]Meyer R J,Yoshikawa S,Shrout T R.Processing and properties of 15-70 MHz 1-3 PZT fiber/polymer composites.Materials Research Innovations,2000.3(6):324~331
    [45]Janas V F,Ting S M,Livneh S S,et al.Fine-scale,large area piezoelectric fiber/polymer composites for transducer applications.IEEE Ultrasonics Symposium,1995.295~298
    [46]Chan W L H,Unsworth J.Simple mode for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer.IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1989.36(4):434~441
    [47]Shui Y A,He X M,Mao Y M,et al.A nonlinear interaction of two acoustic beams on the solid interface.Nonlinear Acoustics in Perspective,1996.321~327
    [48]杨凤霞,王四德,兰从庆.1-3型PZT/polymer压电复合材料性能分析.压电与声光,2001.23(1):49-55
    [49]李坤,李金华,李锦春,et al.PLZT陶瓷纤维/环氧树脂1-3复合材料的制备和性能研究.无机材料学报,2004.19(2):631-366
    [50]于新胜,葛骑岐.用1-3压电复合材料设计低旁瓣水声换能器.青岛海洋大学学报,2003.33(5):747-752
    [51]李邓化,李光.1-3型压电复合材料的机械品质因数.功能材料与器件学报,2004.10(1):71-74
    [52]耿学仓,李明轩.检测超声换能器用1-3型压电PZT/环氧复合材料及换能器的研究.应用声学,1991.10(5):10-14
    [53]刘殿锋,李明轩.1-3型压电复合材料非均匀振动换能器的研究.应用声学,1998.17(1):11-14
    [54]Wang D Y,Chan H L W.A dual frequency ultrasonic transducer based on BNBT-6/epoxy 1-3 composite.Materials Science and Engineering B-Solid State Materials for Advanced Technology,2003.99(1-3):147-150
    [55]Leslie J,Bowen R L,Gentilman R,et al.Injection molded fine-scale piezoelectric composite transducers IEEE Ultrasonics Symposium,1993.499-503
    [56]Zhang Q M,Wang H,Cross LE.Piezoelectric Tubes and Tubular Composites for Actuator and Sensor Applications.Journal of Materials Science,1993.84(10):5725-5728
    [57]Reynolds P,Hyslop J,Hayward G.Analysis of spurious resonances in single and multi-element piezocomposite ultrasonic transducers.2003 Ieee Ultrasonics Symposium Proceedings,2003.1-2:1650-1653
    [58]Steinhausen R,Hauke T,Seifert W,et al.Finescaled piezoelectric 1-3 composites:Properties and modeling.Journal of the European Ceramic Society,1999.19(6-7):1289-1293
    [59]Steinhausen R,Seifert W,Beige H,et al.Surface effects of piezoelectric 1-3 ceramic-polymer composites.Ferroelectdcs,2006.331:201-208
    [60]Steinhausen R,Pientschke C,Seifert W,et al.Finite element analysis of the thickness mode resonance of piezoelectric 1-3 fibre composites.2004 IEEE Ultrasonics Symposium,2004.1-3:1678-1681
    [61]Pettermann H E,Suresh S.A comprehensive unit cell model:a study of coupled effects in piezoelectric 1-3 composites.International Journal of Solids and Structures,2000.37(39):5447-5464
    [62]Berger H,Kari S,Bohn N,et al.A micro-macro approach to design active piezoelectric fiber composites.IUTAM Symposium on Mechanics and Reliability of Actuating Materials,2006.127:121-130
    [63]Li H L,Chong C P,Chan H L W,et al.Finite element analysis on 1-3 piezocomposite rings for ultrasonic transducer applications.Ceramics International,2004.30(7):1827-1830
    [64]Chong C P,Chan HLW,Chan MH,et al.Resonances in 1-3 piezocomposite rings.Applied Physics a-Materials Science & Processing,2005.80(8):1793-1799
    [65]Bondarev P,Xanthis L S,Benjeddou A,et al.Mathematical modelling and finite element simulation of smart tubular composites.Computers & Structures,2006.84(31-32):2385-2395
    [66]刘永刚,沈星,赵东标,et al.压电纤维复合材料的静电场分析.人工晶体学报,2007.36(3):596-600
    [67]刘永刚,沈星,赵东标,et al.压电纤维复合材料的研究.计算材料学 2007.5:18-33.
    [68]周剑平,南策文,等.铁电/铁磁1-3型结构复合材料磁电性能分析.物理学报,2006.57(7):3766-3771
    [69]杨凤霞,张端明.研究混合连通型压电复合材料的模型及方法.压电与声光,2003.25(5):414-417
    [70]Haun M J,Moses P,Gururaja TR,et al.Ferroelectrics,1983.49:256-264
    [71]Choy S H,Chan H L W,Ng M W,et al.Study of 1-3 PZT fibre/epoxy composites with low volume fraction of ceramics.Integrated Ferroelectrics,2004.63:621-627
    [72]Xie J,Hu M,Ling S F,et al.Fabrication and characterization of piezoelectric cantilever for micro transducers.Sensors and Actuators a-Physical,2006.126(1):182-186
    [73]包定华,张良莹,姚熹.溶胶凝胶工艺制备功能压电纤维.功能材料与器件学报,1997.28(6):566-569
    [74]Wang Y,Santiago-Aviles J J.Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo-organic decomposition process.Nanotechnology,2004.15(1):32-36
    [75]王英姿,侯宪钦,陶文宏,et al.氧化锆压电纤维特点及制备方法.河南建材,2005.1:29-31.
    [76]Helbig J,Glaubitt W,Spaniol H,et al.Development and technology of doped sol-gel derived lead zirconate titanate fibers.Smart Materials & Structures,2003.12(6):987-992
    [77]汪长安,黄勇,郭海,et al.定向排布的SiC晶须补Si3N4复合材料的制备.硅酸盐学报,1997.25(11):54-60
    [78]张宗涛,胡黎明.纳米氧化锆粉末的塑性挤制成型研究.无机材料学报,1996.11(3):565-569
    [79]Qiu J H,Tani J,Kobayashi Y,et al.Fabrication of piezoelectric ceramic fibers by extrusion of Pb(Zr,Ti)O_3 powder and Pb(Zr,Ti)O_3 sol mixture.Smart Materials & Structures,2003.12(3):331-337
    [80]刁玉强,何巨龙,于栋利,et al.氧化铝、碳化硅压电纤维的成型与烧结 长春光学精密机械学院学报,1999.22(4):13-16
    [81]Montgomery R E,Richard C.An analytical model for the hydrostatic pressure response of a 1-3 composite.IEEE Ultrasonics Symposium,1994.307-312
    [82]Klicker K A,Schulze WA,Biggers JV.Piezoelectric composites with 3-1 connectivity and a foamed polyurethane matrix.Journal of the American Ceramic Society,1982.65(12):208-210
    [83]Electroceramics M.Typical properties Equivelent DOD Navy 2004:10-18
    [84]德岛晃,原尾则行,高桥健一郎,et al.超音波モ一タ.National Technology Report,1987.33(5):4-12
    [85]Ceramic P.Piezoelectric Actuator Matericals,2004.38-41
    [86]Kenji U,Yongkang G,inventors.High-power piezoelectric ceramics,2003.7:24
    [87]王树昕,董蜀湘,桂治轮,et al.压电陶瓷材料对超声马达性能的影响.压电与声光,2000.22(1):23-29
    [88]Zech.Epoxide preparation.U.S.1951.
    [89]Greenlee.Manufacture of epoxide resins.U.S.;1954.
    [90]Narracott.The curing of epoxide resins.British Plastics 1953;26:120-123
    [91]Fisch,Hofmann,Koskikallio.The curing mechanism of epoxy resins.Paper presented at:Symposium of British Society of Chemical Industry,1956.96
    [92]Gallot-lavallee O,Teyssedre G,Laurent C,et al.Identification of photoluminescence features of an epoxy resin based on components features and curing effects.Polymer,2005.46(8):2722-2731
    [93]李芳,张吉才,杜文才.用差热分析(DTA)法对环氧树脂固化条件的研究.光谱实验室,2001.18(3):369-372.
    [94]中华人民共和国国家技术监督局.GB/T 2414.1-1998:中国标准出版社,1998.
    [95]中华人民共和国国家技术监督局.GB 3389.5-82:中国标准出版社,1982.
    [96]中华人民共和国国家技术监督局.GB 2424-81:中国标准出版社,1981.
    [97]李远,秦自楷,周志刚.压电与铁电材料的测量:科学出版社,1984.
    [98]中华人民共和国国家技术监督局.GB 3362-81:中国标准出版社,1981.
    [99]谢希文,过梅丽.材料工程基础:北京航空航天大学出版社,2001.
    [100]中华人民共和国国家技术监督局.GB/T 3077-1999.优质碳素结构钢技术条件:中国标准出版社,1999.
    [101]Li K,Pang G,Wa Chan H L,et al.Mn and Sm doped lead titanate ceramic fibers and fiber/epoxy 13 composites.Journal of Applied Physics,2004.95(10):5691-5695.
    [102]Kuczynski G C.Sintering and related phenomena:New York Plenum Press,1973.
    [103]Goto Y,Tsuge A.Mechanical properties of unidirectionally oriented SiC-whisker-reinforced Si_3N_4 fabricated by extrusion and hot-pressing.Journal of American Ceramic Society,1993.76(6):1420-1424.
    [104]Agbossou A,Richard C,Vigier Y.Segmented piezoelectric fiber composite for vibration control:fabricating and modeling of electromechanical properties.Composites Science and Technology,2003.63(6):871-881
    [105]Waller D,Chen J,Gururaja T R.Requirements of piezoelectric materials for medical ultrasound transducers.Isaf '96-Proceedings of the Tenth Ieee International Symposium on Applications of Ferroelectrics,1996.1-2:565-568
    [106]Li K.Piezoelectric ceramic fiber/polymer 1-3 composites for transducer applications[Ph.D.Thesis]:Hong Kong Polytechnic University,2002.
    [107]Gururaja T R,Schulze W A,Cross L E,et al.Piezoelectric composite materials for ultrasonic transducer applications:evaluation of ultrasonic medical applications.IEEE Transactions on Sonics and Ultrasonics,1985.32(4):499-513
    [108]Gururaja T R,Schulze W A,Cross L E,et al.Piezoelectric composite materials for ultrasonic transducer applications,i.resonant modes of vibration of PZT rod-polymer composites.IEEE Transactions on Sonics and Ultrasonics,1985.32(4):481-498
    [109]Auld B A,Shui Y A,Wang Y.Elastic wave propagation in three-dimensional periodic composite materials.Journal de Physique Colloque,1984.45(5):159-163
    [110]Kunkel H A,Auld B A.The use of guided acoustic interface waves in the study of differentially poled piezoelectric ceramics.Ferroelectrics,1983.51(1-2):759-764
    [111]党长久,李明轩.1-3型压电复合材料.应用声学,1994.14(1):2-7
    [112]Turner M S,Clough R W,Martin HC,et al.Stiffness and deflection analysis of complex structure.J Aero Sci,1956.23:805-808
    [113]Dunn M L,Taya M.Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites.Int J Solids Structures,1993.30(2):161-175
    [114]刘涛,杨凤鹏.精通ANSYS.北京:清华大学出版社,2002.
    [115]ANSYS耦合场分析指南:美国ANSYS公司驻北京办事处,1998.
    [116]ANSYS help files.ANSYS 9.0 Documentation:ANSYS Inc.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700