用户名: 密码: 验证码:
川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川滇黔地区是我国重要的铅锌多金属矿产地,区内现已发现铅锌矿床(点)多达400余个。绝大部分铅锌矿床受构造控制明显,是典型的后成铅锌矿床,可归入到MVT铅锌矿床中。但现阶段对促使区内铅锌大规模成矿的重大地质事件争议激烈,同时对这些矿床的成矿机制和构造控矿规律等问题认识不足。本文针对上述问题开展研究,获得主要成果和认识如下:
     1.通过矿床控矿构造研究,提出了三种主要的控矿构造类型,它们分别是:双重逆冲构造(或冲断-褶皱)、楔冲构造和层间滑脱破碎带构造。结合区域构造演化史,认为上述控矿构造是印支期以来区域性挤压事件在古陆边缘或陆内盖层中作用的产物。从古陆边缘(滇东北地区)向陆内(川滇交界地区)方向,控矿构造的组合类型展现出一定的空间分带规律。同时,对应的构造变形强度和所控制矿床的规模、品位均有逐渐减小的趋势,可能是“构造-流体-成矿”事件从古陆边缘向陆内逐步发展的表现。
     2.通过系统的矿床地球化学和成矿流体的研究,并辅之以新技术、新方法(LA-ICPMS、Zn-Fe同位素等),提出并进一步论证了区内MVT铅锌矿床成矿的三种重要机制,分别是:与古老油气藏破坏有关的MVT铅锌矿床;与下寒武统黑色岩系盖层或破碎带(“黑破带”)中有机质还原作用有关的MVT铅锌矿床;和“均一化成矿流体贯入”成矿。同时,强调了下寒武统黑色岩系在区内铅锌成矿过程中的重要作用:既可能是重要矿源层,又可能是硫酸盐还原作用的主导者。
     3.探索性通过沥青Re-Os定年,并结合有机质热演化史,将四川盆地西南缘的赤普铅锌矿床成矿年龄限定在200~165Ma之间;通过成矿期热液含钙矿物高精度Sm-Nd同位素测年,将川滇交界地区的MVT铅锌矿床限定在200Ma左右。结合前人所获得的成矿年代学数据,充分考虑区域构造和控矿构造的演化过程,将川滇黔地区MVT铅锌矿床大规模成矿事件统一在古特提斯洋闭合的背景下,并认为这些铅锌矿床可能是印支期时,扬子地台西南缘强烈的造山作用驱动成矿流体大规模运移的产物。
The boundaries area of Sichuan-Yunnan-Guizhou provinces is an importantlead-zinc metallogenic belt in China. Till now, there are more than400lead-zincdeposits has been found in this region. Most of them are structural controlledepigenetic ore deposits and can be classified into MVT lead-zinc deposits. However,the relationship between the mineralization of MVT deposits and major geologicalevents remains ambiguous. Moreover, the understanding of ore field structures andthe process of ore-forming is unclear. Focus on these scientific issue,we got somemain understanding as follows:
     1. The ore-controlling structures can be divided into the three main types. Theyare duplex thrust, wedging thrust and fracture zone of interlayer slip. Combined withregional tectonic evolution history, these structures could be the product of thecompressional event, which caused deforms of the strata, in the paleo-land.
     2. Systematic study of geochemistry and ore-forming fluids, with complementedby new technologies such as LA-ICPMS and Zn-Fe isotopes, reveal some depositscould have a close relationship between the oil-gas system and the Lower Cambrianblack shale, and some others are the products of the metal-enriched homogenizingfluids.
     3.An exploratory study on the Re-Os dating of bitumen from the Chipu depositconstraints the age of lead-zinc mineralization in the range of200Ma~165Ma. Thehigh-precision Sm-Nd dating of the Daliangzi and Jingshachang deposits reveal themetallogenic age are about200Ma in the border of Sichuan and Yunnan provinces.Based on the evolution of the regional tectonic and ore-controlling structures, webelieve that most of the MVT deposits in this area could be formed during the stage ofIndosinian orogeny which could drive the large-scale migration of ore-forming fluids.
引文
Anderson G M, Garven G. Sulfate-sulfide-carbonate associations in MississippiValley-type lead-zinc deposits. Economic Geology,1987,82(2):482-488.
    Anderson G M. Organic maturation and ore precipitation in southeast Missour. EconomicGeology,1991,86(5):909-926.
    Anderson G M. The mixing hypothesis and the origin of Mississippi Valley-type oredeposits. Economic Geology,2008,103(8):1683-1690.
    Anderson I K, Ashton J H, Boyce A J, et al. Ore depositional process in the Navan Zn-Pbdeposit, Ireland. Economic Geology,1998,93(5):535-563.
    Archer C, Vance D. Mass discrimination correction in multiple-collector plasma sourcemass spectrometry: an example using Cu and Zn isotopes. Journal of Analytical AtomicSpectrometry,2004,19(5):656-665.
    Barker S L L, Bennett V C, Cox S F, et al. Sm–Nd, Sr, C and O isotope systematics inhydrothermal calcite–fluorite veins: Implications for fluid–rock reaction andgeochronology. Chemical Geology,2009,268(1):58-66.
    Barker S L L, Bennett V C, Cox S F, et al. Sm–Nd, Sr, C and O isotope systematics inhydrothermal calcite–fluorite veins: Implications for fluid–rock reaction andgeochronology. Chemical Geology,2009,268(1):58-66.
    Basuki N I, Spooner E T C. A review of fluid inclusion temperatures and salinities inMississippi Valley-type Zn-Pb deposits: Identifying thresholds for metal transport.Exploration and Mining Geology,2002,11(1-4):1-17.
    Bau M, Dulski P. Comparative study of yttrium and rare-earth element behaviours influorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology,1995,119(2-3):213-223.
    Beane R E. The magmatic-hydrothermal transition: Geothermal Resources CouncilSpecial Report13.1983.
    Bradley D C, Leach D L. Tectonic controls of Mississippi Valley-type lead–zincmineralization in orogenic forelands. Mineralium Deposita,2003,38(6):652-667.
    Cai C, Li K, Zhu Y, et al. TSR origin of sulfur in Permian and Triassic reservoir bitumen,East Sichuan Basin, China. Organic Geochemistry,2010,41(9):871-878.
    Changkakoti A, Gray J, Krstic D, et al. Determination of radiogenic isotopes (Rb-Sr,Sm-Nd and Pb-Pb) in fluid inclusion waters: An example from the Bluebell Pb-Zndeposit, British Columbia, Canada. Geochimica et Cosmochimica Acta,1988,52(5):961-967.
    Christensen J N, Halliday A N, Leigh K E, et al. Direct dating of sulfides by Rb-Sr: A criticaltest using the Polaris Mississippi Valley-type Zn-Pb deposit. Geochimica etCosmochimica Acta,1995,59(24):5191-5197.
    Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz andwater. Journal of Geophysical Research,1972,77(17):3057-3067.Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: ALA-ICPMS study. Geochimica et Cosmochimica Acta,2009,73(16):4761-4791.
    Corbella M, Ayora C, Cardellach E. Hydrothermal mixing, carbonate dissolution andsulfide precipitation in Mississippi Valley-type deposits. Mineralium Deposita,2004,39(3):344-357.
    Creaser R A, Sannigrahi P, Chacko T, et al. Further evaluation of the Re-Osgeochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturationeffects in the Exshaw Formation, Western Canada Sedimentary Basin. Geochimica etCosmochimica Acta,2002,66(19):3441-3452.
    Dill H G, Hansen B T, Weber B. REE contents, REE minerals and Sm/Nd isotopes ofgranite-and unconformity-related fluorite mineralization at the western edge of theBohemian Massif: With special reference to the Nabburg-W lsendorf District, SEGermany. Ore Geology Reviews,2011,40(1):132-148.
    Ehya F. Variation of mineralizing fluids and fractionation of REE during the emplacementof the vein-type fluorite deposit at Bozijan, Markazi Province, Iran. Journal ofGeochemical Exploration,2012,112:93-106.
    Fallick A E, Ashton J H, Boyce A J, et al. Bacteria were responsible for the magnitude ofthe world-class hydrothermal base metal sulfide orebody at Navan, Ireland. EconomicGeology,2001,96(4):885-890.
    Fry B, Gest H, Hayes J M. Sulfur isotope effects associated with protonation of HS-andvolatilization of H2S. Chemical Geology: Isotope Geoscience section,1986,58(3):253-258.
    Ghazban F, Schwarcz H P, Ford D C. Carbon and sulfur isotope evidence for in situreduction of sulfate, Nanisivik lead-zinc deposits, Northwest Territories, Baffin Island,Canada. Economic Geology,1990,85(2):360-375.
    Gromek P, Gleeson S A, Simonetti A. A basement-interacted fluid in the N81deposit, PinePoint Pb-Zn District, Canada: Sr isotopic analyses of single dolomite crystals.Mineralium Deposita,2012,47(7):749-754.
    Jiang S Y, Chen Y Q, Ling H F, et al. Trace-and rare-earth element geochemistry andPb–Pb dating of black shales and intercalated Ni–Mo–PGE–Au sulfide ores in LowerCambrian strata, Yangtze Platform, South China. Mineralium Deposita,2006,41(5):453-467.
    Kelemen S R, Walters C C, Kwiatek P J, et al. Distinguishing solid bitumens formed bythermochemical sulfate reduction and thermal chemical alteration. OrganicGeochemistry,2008,39(8):1137-1143.
    Kesler S E, Jones H D, Furman F C, et al. Role of crude oil in the genesis of MississippiValley-type deposits: Evidence from the Cincinnati arch. Geology,1994,22(7):609-612.
    Kesler S E, Martini A M, Appold M S, et al. Na-Cl-Br systematics of fluid inclusions fromMississippi Valley-type deposits, Appalachian Basin: Constraints on solute origin andmigration paths. Geochimica et Cosmochimica Acta,1996,60(2):225-233.
    Kesler S E, Vennemann T W, Frederickson C, et al. Hydrogen and oxygen isotopeevidence for origin of MVT-forming brines, southern Appalachians. Geochimica etcosmochimica acta,1997,61(7):1513-1523.
    Le Guen M, Lescuyer J L, Marcoux E. Lead-isotope evidence for a Hercynian origin of theSalsigne gold deposit (Southern Massif Central, France). Mineralium Deposita,1992,27(2):129-136.
    Leach D L, Bradley D C, Huston D, et al. Sediment-hosted lead-zinc deposits in Earthhistory. Economic Geology,2010,105(3):593-625.
    Leach D L, Bradley D, Lewchuk M T, et al. Mississippi Valley-type lead–zinc depositsthrough geological time: implications from recent age-dating research. MineraliumDeposita,2001,36(8):711-740.
    Leach D, Sangster D, Kelley K, et al. Sediment-hosted lead-zinc deposits: A globalperspective. Economic Geology,2005,100:561-607.
    Lehrmann D J, Donghong P, Enos P, et al. Impact of differential tectonic subsidence onisolated carbonate-platform evolution: Triassic of the Nanpanjiang Basin, south China.AAPG bulletin,2007,91(3):287-320.
    Li W, Huang Z, Yin M. Dating of the Giant Huize Zn‐Pb Ore Field of Yunnan Province,Southwest China: Constraints from the Sm‐Nd System in Hydrothermal Calcite.Resource Geology,2007,57(1):90-97.
    Li Y,Densmore AL and Allen PA. Sedimentary responses to thrusting and strike-slipping ofLongmen Shan along eastern margin of Tibetan Plateau,and their implication ofCimmerian continents and India/Eurasia collision. Scientia Geologica Sinica,2001,10(4):223-243.
    Liu Y C, Hou Z Q, Yang Z S, et al. Formation of the Dongmozhazhua Pb–Zn Deposit in theThrust-Fold Setting of the Tibetan Plateau, China: Evidence from Fluid Inclusion andStable Isotope Data. Resource geology,2011,61(4):384-406.
    Machel H G, Krouse H R, Sassen R. Products and distinguishing criteria of bacterial andthermochemical sulfate reduction. Applied geochemistry,1995,10(4):373-389.
    Machel H G, Krouse H R, Sassen R. Products and distinguishing criteria of bacterial andthermochemical sulfate reduction. Applied geochemistry,1995,10(4):373-389.
    Maréchal C, Albarède F. Ion-exchange fractionation of copper and zinc isotopes.Geochimica et Cosmochimica Acta,2002,66(9):1499-1509.
    Mason T F D, Weiss D J, Chapman J B, et al. Zn and Cu isotopic variability in theAlexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia.Chemical Geology,2005,221(3):170-187.
    Minghua Z, Xiaochun W. Ore genesis of the Daliangzi Pb-Zn deposit in Sichuan, China.Economic Geology,1991,86(4):831-846.
    Muhling J R, Fletcher I R, Rasmussen B. Dating fluid flow and Mississippi Valley typebase-metal mineralization in the Paleoproterozoic Earaheedy Basin, Western Australia.Precambrian Research,2012.:75-90.
    Munoz M, Premo W R, Courjault-Radé P. Sm–Nd dating of fluorite from the worldclassMontroc fluorite deposit, southern Massif Central, France. Mineralium deposita,2005,39(8):970-975.
    Nakai S, Halliday A N, Kesler S E, et al. Rb-Sr dating of sphalerites from Tennessee andthe genesis of Mississippi Valley type ore deposits. Nature,1990,346(6282):354-357.
    Peng J T, Hu R Z, Burnard P G. Samarium–neodymium isotope systematics ofhydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): thepotential of calcite as a geochronometer. Chemical Geology,2003,200(1):129-136.
    Pfaff K, Koenig A, Wenzel T, et al. Trace and minor element variations and sulfur isotopesin crystalline and colloform ZnS: Incorporation mechanisms and implications for theirgenesis. Chemical Geology,2011,286(3):118-134.
    Powell T G, MacQueen R W. Precipitation of sulfide ores and organic matter: sulfatereactions at Pine Point, Canada. Science,1984,224(4644):63-66.
    Sangster D F. Mississippi Valley-type and sedex lead-zinc deposits: A comparativeexamination. Trans. Inst. Mining and Metall.,1990,99:21-42.
    Sangster D F. Mississippi Valley-type lead-zinc. Geology of Canadian Mineral DepositTypes: Geological Survey of Canada, Geology of Canada,1996(8):253-261.
    Selby D, Creaser R A, Dewing K, et al. Evaluation of bitumen as a187 Re–187 Os geochronometer for hydrocarbon maturation and migration: A testcase from the Polaris MVT deposit, Canada. Earth and Planetary Science Letters,2005,235(1):1-15.
    Selby D, Creaser R A. Direct radiometric dating of hydrocarbon deposits usingrhenium-osmium isotopes. Science,2005,308(5726):1293-1295.
    Souissi F, Souissi R, Dandurand J L. The Mississippi Valley-type fluorite ore at Jebel Stah(Zaghouan district, north-eastern Tunisia): Contribution of REE and Sr isotopegeochemistries to the genetic model. Ore Geology Reviews,2010,37(1):15-30.
    Su W, Hu R, Xia B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type golddeposit, Guizhou, China. Chemical Geology,2009,258(3):269-274.
    Tongu Uysal I, Zhao J X, Golding S D, et al. Sm–Nd dating and rare-earth elementtracing of calcite: Implications for fluid-flow events in the Bowen Basin, Australia.Chemical geology,2007,238(1):63-71.
    Wang Y X, Yang J D, Chen J, et al. The Sr and Nd isotopic variations of the ChineseLoess Plateau during the past7Ma: Implications for the East Asian winter monsoonand source areas of loess. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,249(3):351-361.
    Wilkinson J J, Stoffell B, Wilkinson C C, et al. Anomalously metal-rich fluids formhydrothermal ore deposits. Science,2009,323(5915):764-767.
    Wilkinson J J, Weiss D J, Mason T F D, et al. Zinc isotope variation in hydrothermalsystems: Preliminary evidence from the Irish Midlands ore field. Economic Geology,2005,100(3):583-590.
    Ye L, Cook N J, Ciobanu C L, et al. Trace and minor elements in sphalerite from basemetal deposits in South China: a LA-ICPMS study. Ore Geology Reviews,2011,39(4):188-217.
    Yin M, Li W, Sun X. Rb-Sr isotopic dating of sphalerite from the giant Huize Zn-Pb ore field,Yunnan Province, Southwestern China. Chinese Journal of Geochemistry,2009,28(1):70-75.
    Zartman R E, Haines S M. The plumbotectonic model for Pb isotopic systematics amongmajor terrestrial reservoirs—a case for bi-directional transport. Geochimica etCosmochimica Acta,1988,52(6):1327-1339.
    Zhou C, Wei C, Guo J, et al. The source of metals in the Qilinchang Zn-Pb deposit,northeastern Yunnan, China: Pb-Sr isotope constraints. Economic Geology,2001,96(3):583-598.
    Zhou MF, Yan DP, Kennedy AK, et al., SHRIMP U-Pb zircon geochronological andgeochemical evidence for Neoproterozoic arc-magmatism along the western margin ofthe Yangtze Block, South China. Earth and Planetary Science Letters,2002,(196):51-67
    Zhu G Y, Zhang S C, Liang Y B, et al. The genesis of H2S in the Weiyuan Gas Field,Sichuan Basin and its evidence. Chinese Science Bulletin,2007,52(10):1394-1404.
    鲍淼,周家喜,黄智龙,等.铅锌矿床定年方法及川一滇.黔铅锌成矿域年代学研究进展.矿物学报,2011,31(3):391-396.
    陈大,吴林峰.川滇黔相邻区铅锌矿床分布特征及成矿规律.四川地质学报,2012,32(3):304-308.
    陈玲.华南麻江海相古油藏沥青Re-Os同位素特征及其对油藏形成和破坏时代的约束.武汉:中国地质大学武汉博士学位论文,2010.
    陈士杰.黔西滇东北铅锌矿成因探讨.贵州地质,1986,3(3):211-222.
    陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征.岩石学报,2007,23(9):2085-2108.
    陈郑辉,李超,屈文俊,等.石墨Re-Os同位素分析及其在成矿年代学中的初步运用.岩石学报,2010,26(11):3411-3417.
    仇定茂.云南永善金沙矿区的上部铅锌矿床.沉积与特提斯地质,2000,20(2):83-91.
    邓飞,贾东,罗良,等.晚三叠世松潘甘孜和川西前陆盆地的物源对比:构造演化和古地理变迁的线索.地质论评,2008,54(4):561-573.
    丁道桂,潘文蕾,黄继文.楚雄前陆盆地的改造变形.石油实验地质,2012,34(4):345-351.
    丁康乐,罗跃,单敬福,等. CaSO4-C-H2O体系研究:模拟实验与热力学探讨.地质学报,2013,87(3):424-432
    董家龙.黔西北地区铅锌矿矿床成矿规律与找矿研究.昆明:昆明理工大学硕士学位论文,2005.
    杜远生,黄虎,杨江海,等.晚古生代-中三叠世右江盆地的格局和转换.地质论评,2013,59(1):1-11.
    丰成友,张德全,王富春,等.青海东昆仑造山型金(锑)矿床成矿流体地球化学研究.岩石学报,2004,20(4):950-958.
    高炳羽.滇西北金顶铅锌矿床有机质及Re-Os法测年.北京:中国地质大学北京硕士学位入围,2012.
    耿元生,杨崇辉,王新社,等.扬子地台西缘结晶基底的时代高校地质学报,2007,13(3):429-441.
    韩奎,罗金海,王宗起,等.川滇黔交界地区铅锌矿床含矿角砾岩特征及其构造意义.矿床地质,2012,31(3):629-641.
    韩润生,胡煜昭,王学琨,等.滇东北富锗银铅锌多金属矿集区矿床模型.地质学报,2012,86(2):280-294.
    韩润生等.构造成矿动力学及隐伏矿定位预测:以云南会泽超大型铅锌(银,锗)矿床为例.科学出版社,2006,1-239.
    胡瑞忠,毛景文,范蔚茗,等.华南陆块陆内成矿作用的一些科学问题.地学前缘,2010,17(2):13-26.
    黄文明.四川盆地下古生界油气地质条件及勘探前景.成都:成都理工大学博士学位论文,2011.
    黄智龙,陈进,韩润生,等.云南会泽超大型铅锌矿床地球化学及成因.北京:地质出版社,2004,1-300.
    黄智龙,陈进,刘丛强,等.峨眉山玄武岩与铅锌矿床成矿关系初探-以云南会泽铅锌矿床为例.矿物学报,2001,21(4):681-688.
    黄智龙,李文博,陈进,等.云南会泽超大型铅锌矿床C, O同位素地球化学.大地构造与成矿学,2004,28(1):53-59.
    贾东,陈竹新,贾承造,等.龙门山前陆褶皱冲断带构造解析与川西前陆盆地的发育.高校地质学报,2003,9(3).
    姜永果,崔银亮,吴静,等.滇东北地区渔户村组铅锌矿稳定同位素地球化学特征.矿产与地质,2011,25(5):417-422.
    李波.滇东北地区会泽、松梁铅锌矿床流体地球化学与构造地球化学研究.昆明:昆明理工大学博士学位论文,2010.
    李超,屈文俊,王登红,等. Re-Os同位素体系在沥青及灰岩中的应用研究-以青海玉树地区东莫扎抓铅锌矿为例.矿物学报,2011(增刊):602-603.
    李厚民,张长青.四川盆地富硫天然气与盆地周缘铅锌铜矿的成因联系.地质论评,2012,58(3):495-510.
    李伟,秦胜飞.四川盆地须家河组地层水微量元素与氢氧同位素特征.石油学报,2012,33(1):55-63.
    李文博,黄智龙,王银喜,等.会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及其地质意义.地质论评,2004,50(2):189-195.
    李文博,黄智龙,张冠.云南会泽铅锌矿田成矿物质来源: Pb、S、C、 H、 O、Sr同位素制约.岩石学报,2006,22(10):2567-2580.
    李勇,苏德辰,董顺利,等.龙门山前陆盆地底部不整合面:被动大陆边缘到前陆盆地的转换.岩石学报,2011,27(8):2413-2422.
    李于海,梁兆明,李锦朝,等.四川省会理县天宝山铅锌矿区专题地质研究系列报告.四川鑫银资源投资有限责任公司.2011.
    李泽琴,王奖臻,倪师军,等.川滇密西西比河谷型铅锌矿床成矿流体来源研究:流体Na-Cl-Br体系的证据.矿物岩石,2002,22(4):39-42.
    廖文.滇东黔西铅锌金属区硫铅同位素组成特征与成矿模式探讨.地质与勘探,1984,1:1-6.
    廖震文,邓小万.银厂坡铅锌银矿床地质构造特征及找矿分析.贵州地质,2002,19(3):163-168.
    林方成.康滇地轴东缘铅锌矿床铅同位素组成特征及其成因意义.沉积与特提斯地质,1995,19:132-132.
    林方成.四川会东大梁子铅锌矿床成因新探.矿床地质,1994,13(2):126-136.
    蔺志永,王登红,张长青.四川宁南跑马铅锌矿床的成矿时代及其地质意义.中国地质,2010,37(002):488-494.
    刘家铎,张成江,刘显凡,等.扬子地台西南缘成矿规律及找矿方向.北京:地质出版社,2004,1-300.
    刘树根,罗立志,戴苏兰,等.龙门山冲断带的隆升和川西前陆盆地的沉降.地质学报,1995,69(3):204-214.
    刘文均,郑荣才.硫酸盐热化学还原反应与花垣铅锌矿床.中国科学D辑,2000,20(5):456-464.
    刘文周,徐新煌.论川滇黔铅锌成矿带矿床与构造的关系.成都理工学院学报,1996,23(1):71-77.
    刘文周.云南金沙厂铅锌矿床地质特征及成因探讨.成都地质学院学报,1989,16(2):11-19.
    柳贺昌,林文达.滇东北铅锌银矿床规律研究.昆明:云南大学出版社,1999,1-300.
    柳贺昌.峨眉山玄武岩与铅锌成矿.地质与勘探,1995,31(4):1-6.
    吕洪波,章雨旭,夏邦栋,等.2003.南盘江盆地中三叠统复理石中的同沉积挤压构造-类新的沉积构造的归类、命名和构造意义探讨.地质论评,49(5):449-456
    毛景文,周振华,丰成友,等。初论中国三叠纪大规模成矿作用及其动力学背景.中国地质,2012,39(6):1440-1458.
    莫平衡,谭建湘,李先灿等.四川省会东县会东铅锌矿资源储量核实报告.湖南省有色地质勘查局二一七队.2012.
    聂海宽,张金川,李玉喜.四川盆地及其周缘下寒武统页岩气聚集条件.石油学报,2011,32(6):959-967.
    祁进平,张静,唐国军.熊耳地体南侧中晚元古代地层碳氧同位素组成: CMF模式的证据.岩石学报,2005,21(5):1365-1371.
    芮宗瑶,叶锦华,张立生,等.扬子克拉通周边及其隆起边缘的铅锌矿床.中国地质,2004,31(4):337-346.
    沈传波, DavidSelby,梅廉夫等.油气成藏定年的Re-Os同位素方法应用研究.矿物岩石,2011,31(4):87-93.
    孙祥,杨子荣,刘敬党,等.义县萤石矿床稀土元素地球化学特征及其指示意义.矿床地质,2008,27(5):579-579.
    汤世凯,马筱,李学刚,等.黔西北福来厂铅锌矿床Pb同位素研究及地质意义.大地构造与成矿学,2012,36(4):549-558.
    田小彬.龙门山北段构造特征及油气前景探讨.成都:成都理工大学硕士学位论文,2009.
    涂怀奎.陕西汉中地区早寒武世磷铀矿成矿特征与伴生元素的研究.化工矿产地质,2000,22(1):31-37.
    王奖臻,李朝阳,李泽琴,等.川滇黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比.矿物岩石地球化学通报,2002,21(2):127-132.
    吴根耀,吴浩若,钟大赉,等.2000.滇桂交界处古特提斯的洋岛和岛弧火山岩.现代地质,14(4):393-400.
    吴根耀.古深断裂活化与燕山期陆内造山运动.大地构造与成矿学,2001,25(3):246-253.
    夏庆霖,赵鹏大,陈永清,等.云南德泽下寒武统黑色岩系中Ni-Mo-V-PGE多金属矿化.地球科学(中国地质大学学报),2008,33(1):67-72.
    肖龙,徐义刚,何斌.峨眉地幔柱-岩石圈的相互作用:来自低钛和高钛玄武岩的Sr-Nd和O同位素证据.高校地质学报,2003,9(2):207-217.
    谢家荣.云南矿产概论.地质论评,1941,1.
    徐新煌,龙训荣.赤普铅锌矿床成矿物质来源研究.矿物岩石,1996,16(3):54-59.
    徐燕丽.川中地区震旦系-寒武系油气成藏条件研究.成都:成都理工大学硕士学位论文,2009.
    许成,黄智龙,漆亮,等.四川牦牛坪稀土矿床成矿流体来源与演化初探.萤石稀土元素地球化学的证据.地质与勘探,2001,37(5):24-28.
    许志琴,侯立玮,王宗秀,等.中国松潘-甘孜造山带的造山过程.北京:地质出版社,1992,190.
    晏子贵,夏传见,贺光兴,等.四川省宁南县跑马铅锌矿地质特征及找矿前景分析.地质找矿论丛,2006,21(增刊):77-80.
    杨红英.四川省宁南银厂沟—骑骡沟铅锌矿床构造控矿作用研究.成都:成都理工大学硕士学位论文,2009.
    杨应选,柯成熙,林方成,等.康滇地轴东缘铅锌矿床成因及成矿规律.成都:四川科学技术出版社,1994,1-230.
    游先军.湘西下寒武统黑色岩系中的镍钼钒矿研究.长沙:中南大学博士学位论文,2010.
    张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释.地球化学,2000,29(3):231-238.
    张同钢,储雪蕾,张启锐,等.扬子地台灯影组碳酸盐岩中的硫和碳同位素记录.岩石学报,2004,20(3).
    张位及.试论滇东北铅锌矿床的沉积成因和成矿规律.地质与勘探,1984,7:11-16.
    张岳桥,徐先兵,贾东,等.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘,2009,16(1):234-247.
    张云湘,骆耀南,杨崇喜.攀西裂谷.北京,地质出版社,1988,1-250.
    张云新等.云南鲁甸乐红地区铅锌矿评价成果报告.昆明云南省地质调查院,2006.
    张长青,李向辉,余金杰,等.四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义.地质论评,2008,54(4):532-538.
    张长青,毛景文,刘峰,等.云南会泽铅锌矿床粘土矿物K-Ar测年及其地质意义.矿床地质,2005,24(3):317-324.
    张长青,毛景文,余金杰,等.四川甘洛赤普铅锌矿床流体包裹体特征及成矿机制初步探讨.岩石学报,2007,23(10):2541-2552.
    张长青,余金杰,毛景文,等.四川赤普铅、锌矿床生物标志化合物特征研究.沉积学报,2010,28(4):832-848.
    张长青.中国川滇黔交界地区密西西比型(MVT)铅、锌矿床成矿模型.北京:中国地质科学院博士学位论文,2008.
    张招崇,王福生.峨眉山玄武岩Sr, Nd, Pb同位素特征及其物源探讨.地球科学-中国地质大学学报,2003,28(4):431-435.
    张振亮.云南会泽铅锌矿床成矿流体性质和来源.中国科学院研究生院(地球化学研究所)博士学位论文,2006.赵准.滇东北地区铅锌矿床的成矿模式.云南地质,1995,14(4):350-354.
    钟志伟.中华人民共和国四川省甘洛幅1:5万区域地质调查图说明书.四川:四川省地质矿产局207地质队地调所.1995.
    周家喜,黔西北铅锌成矿区分散元素及锌同位素地球化学.贵阳:中国科学院研究生院(地球化学研究所)博士学位论文,2011.
    朱光有,张水昌,梁英波,等.硫酸盐热化学还原反应对烃类的蚀变作用.石油学报,2005,26(5):48-52
    朱赖民,袁海华,栾世伟.四川底苏,大梁子铅锌矿床同位素地球化学特征及成矿物质来源探讨.矿物岩石,1995,15(1):72-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700