用户名: 密码: 验证码:
陕北黄土高原土壤水环境变化与植被建设
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:针对黄土高原的土壤干层现象和人们对黄土高原植被建设存在问题的关注本文以陕北黄土高原为研究区,以土壤含水量的测量为主要研究手段,综合运用野外考察和实验分析,对土壤干层的评价标准、土壤干层的形成原因、土壤干层的形成机制和空间分异、土壤干层形成的动态过程、土壤干层的补偿与恢复、黄土高原环境退化的自然背景、黄土高原植被建设途径等进行了系统研究。期望能为黄土高原尤其是陕北黄土高原的植被建设提供决策依据。
     通过研究,获得的主要进展和新认识包括:
     (1)陕北黄土高原人工林地普遍有土壤干层发育,榆林地区土壤干层的发育强度高于延安地区。土壤干层的空间分异在年降水量550mm和400mm附近表现出两个突变现象,具体表现是:在年降水量400mm的榆林靖边县荒地没有土壤干层发育,而年降水量329mm的定边县荒地有土壤干层发育;在年降水量500mm延安北部延川县18龄苹果林地出现接近稳定凋萎湿度的强烈干层,而年降水量550mm的甘泉县20龄苹果林地出现的是较弱的干层。
     (2)洛川人工林地土壤水分的动态过程表现为春季显著失墒期、夏季显著增墒期、秋季稳定失墒期和冬季稳定增墒期。由于春季降水少、气温高、蒸发蒸腾作用强,春季失墒现象表现尤其突出,失墒现象以17龄中老龄苹果林地最为显著。土壤含水量的下降不仅在地表2米以上表现明显,在2米以下同样很显著。春季显著失墒期是土壤干层的主要形成时期。
     (3)2004年1月的土壤含水量测定结果表明,洛川地区极端丰水年的降水入渗使得人工林地土壤水分得到了较好恢复。17龄乔化苹果林地、17龄矮化苹果林地和8龄乔化苹果林地土壤水分恢复深度分别达到4米、5米和6米,不同的恢复深度取决于土壤干层的发育深度和发育强度。连续一年的土壤含水量测定表明,极端丰水年降水能够在短期内将土壤干层恢复到田间持水量水平,但是只具有2至3年的短期补偿效应,并不能从根本上减轻或消除土壤干层的危害。
     (4)实验分析表明,重力水带土层在充分湿润或者比较湿润的情况下,土壤水的运动可以到达较大深度,能够补给薄膜水带的土壤水分亏缺,不会形成土壤干层,因此黄土高原土壤干层的形成原因在于土壤表层干旱。土壤表层干旱一方面使得重力水的入渗深度在正常降水条件下保持在2米深度范围内,重力水带含水量较低也导致薄膜水的运动速度变得很慢,使得薄膜水带的土壤水分一旦被利用就很难得到补给最终导致土壤干层的形成。
     (5)研究了陕西扶风全新世黄土剖面的土壤学和地层学特征,全新世古土壤S0与黄土L0之间显著的界面代表了一次季风气候转型。3100a BP是全新世大暖期结束的时间,黄土L0磁化率低,而pH值很高,表明在其堆积形成过程中气候比较干旱,土壤水分缺乏。这次气候转型标志着黄土高原由全新世大暖期相对暖湿的气候转变为相对干冷的气候,这就导致了黄土高原3100年以来水分不足的状况,这样的状况延续到现今,加上当今暖干化的影响,就不可避免地导致黄土高原植被的退化和土壤干层的发育。
     (6)经过对前人详细的土壤干层评价标准进行系统分析,发现不同土壤地带土壤水分常数和土壤干层评价标准之间存在吻合得很好的比例关系,由此提出土壤干层指数(土壤干层指数=土壤稳定湿度÷土壤含水量)作为土壤干层的定量化指标。以1.0、1.3、1.6、1.9、2.2作为划分非干层、弱干层、较弱干层、中等干层、较强干层和强干层的分级标准,并且以生长更新速率和生长发育过程的受影响程度为依据,对五种类型土壤干层的特点进行了分析。
     (7)通过对洛川地区土壤水分动态研究提出了耗水指数Ic=(W1-W2)/W1,其中,Ic表示耗水指数,即植被对土壤水分的消耗程度,w1和W2分别表示研究时段初始含水量和终了含水量。运用耗水指数这一指标可以对每一个测量深度的土壤含水量进行分析计算,从而反映每一深度层次土壤水分的差别。耗水指数意义明确、计算方便,是土壤水分动态研究和土壤水分分异研究中的一个定量化分析指标。
     (8)陕北黄土高原林场空间分布与河流存在密切的空间关系,是黄土高原森林植被非地带性的显示。长安县少陵塬修建水平梯田的坡地土壤水分含量存在斜坡下部较高而斜坡上部较低的现象,说明降水产生的径流在坡面上的重新分配是一个普遍现象。黄土高原土壤水分的坡下富集特点导致森林植被常延沟谷分布。
     (9)环境胁迫、水分胁迫和人口胁迫造成了黄土高原生态环境恶化,黄土高原生态建设与经济建设脱离造成了生态环境建设的缓慢。黄土高原地区应以退耕还林还草为契机,以特色农业、林果业和草畜业等生态适宜型产业基地建设为重点,全面实施产业结构调整战略,建立以土壤水分植被承载力为依据的生态适宜型产业结构模式,实现生态经济可持续发展的根本目标。
Abstract:Aim at serious phenomenon of dried soil layer and concern about vegetation construction in the Loess Plateau, a series of questions, such as assessing standards, forming reasons, regional distribution, formation mechanism, renew condition of dried soil layer, had been discussed, by measuring soil moisture content, field investigation and experimental analysis in northern Shaanxi, which located in the middle part of the Loess Plateau, expecting to serve decision basis of vegetation construction in the Loess Plateau,especially for northern Shaanxi.
     The main achievements and cognitions concluded as follows:
     1.Dried soil layers in Yulin are stronger than in Yan'an, and spatial differentiation show sudden changes when precipitation are about550mm/year or about400mm/year. The details are as follow:in wild land, there are dried soil layers in Dingbian county(precipitation is329mm/year), there are no dried soil layer in Jingbian county(precipitation reaches400mm/year).in apple orchard about20year, there are strongest dried soil layers in Yanchuan county(precipitation is500mm/year) wherever there are weakest dried soil layers in Ganquan county(precipitation reaches550mm/year).
     2. The dynamic process of soil moisture in Luochuan county can be separated into notable decreasing stage of soil moisture in spring, notable increasing stage of soil moisture in summer, stable decreasing stage of soil moisture in autumn and stable increasing stage of soil moisture in winter. Mainly caused by higher temperature, higher evaporation and lower precipitation in spring, it was notable decreasing in spring. Soil moisture decreased notably not only in the depth of2meters but also under the depth of2meters. The results show spring is the main season, in which man-made plantation leads to dried soil layer.
     3. It was shown that the soil moisture content of artificial forest increased greatly after2003, the rainy year. The soil moisture content of dried layer in17-aged arboreal apple trees,17-aged dwarf apple trees and8-aged arboreal apples recovered respectively reached4meter,5meter and6meter, which was decided by the depth and strength of the dried soil layer. The precipitation in uttermost rainy year can enhance the soil moisture content in dried layer to field moisture capacity, which last for2or3years. The shortdated equalize can't uproot even lighten the harm of dried layer.
     4.On measuring soil water unsaturated flow rate and pellicular water move rate of soil near Xi'an, it shows that soil moisture under2meters can be recharged if soil is most or more wet in gravity water zone in the depth of2meters, there would be no dried soil layer, so dried soil layers of the Loess Plateau in the semi-humid and semi-arid zone are mainly caused by shallow dried soil layer, because of lower precipitation and higher evaporation. Shallow dried soil layer leads to smaller infiltration depth, less unsaturated flow and slower pellicular water movement than in humid areas, which to be the mechanism of dried soil layer, can described as the surface-driven model of dried soil layer.
     5. The integrative pedological and sedimentary study was carried out in a Holocene loess profiles on the Zhouyuan loess tableland in Fufeng County, Shaanxi Province.The distinct interface between the Holocene Soil SO and loess LO indicate a monsoon climatic change. The Holocene climatic optimum was ended at3100B.P. The low magnetic susceptibility and high pH in loess mean that it was opposite dry and soil moisture was lacking during the loess deposited. The climate change indicated the climate changed from the opposite warm and humid into the opposite cold and dry, which caused the soil moisture lacking in Loess Plateau from then on. Joined with warm-dry climate, it was unavoidable that the plant degradation and dried soil layer developed.
     6. Drought degree of dried soil layer can be measured by Id which means index of dried soil layer and can be defined as steady moisture to soil moisture content. Soil layers can be classified as non dried soil layer, weakest dried soil layer, weaker dried soil layer, medium dried soil layer, stronger dried soil layer and strongest dried soil layer by1.0,1.3,1.6,1.9,2.2according to the score of Id. Characters of each type of dried soil layer are described by situations of growth and reproduction rate of vegetations. The construction of Id and its assessing standards provides a unified and convenient quantitative evaluation means when research dried soil layers of different area in the Loess Plateau.
     7. To research soil moisture dynamics, we define water-consuming index as follows: Ic=(W1-W2)/W1 As above, Ic means soil moisture consuming degree by vegetation.W1means initial soil moisture content or soil moisture content of reference profile,W2means terminal soil moisture content or soil moisture content of researching profile. When score of Ic in each depth are calculated, differences between two profiles will be showed clearly. The water-consuming index will be a useful index when we research soil moisture dynamic process or analyze soil moisture character of different plantations.
     8. There is a close spatial relationship between forest distribution and river location in Yan'an and Yuling of northern Shaanxi by our surveys, it shows forest have more non zonal character than zonal character in northern Shaanxi. The phenomenon is mainly caused by water redistribution, which result much more soil water can be got in lower space. Enrichment mechanism of soil moisture in lower space to be a general situation, it were testified in one slope at Chang'an district in Xi'an, where terrace were constructed. Enrichment mechanism of soil moisture in lower space leads to forest distributed along valleys in most part of the Loess Plateau.
     9. The stress from environment, water resources and population caused ecological deterioration in the Loess Plateau. Solely vegetation construction separated from economic development leads to lower speed and lower efficiency. The construction in the Loess Plateau should take the opportunity of reforestation, build the eco-industrial model, that according to the vegetation carrying capacity of soil water resource, focused on special agriculture, fruit industry and grass-stock industry. Thus, the sustainable eco-economic development would come true.
引文
[1]张兰生,方修琦,任国玉.全球变化[M].北京:高等教育出版社,2000:1-4.
    [2]刘东生.黄土与环境[J].西安交通大学学报(社会科学版),2002,22(4):7-12.
    [3]杜继稳,王小宁,雷向杰,等.陕北气象灾害与生态环境治理[J].灾害学,2001,16(1):71~77.
    [4]赵景波,黄春长,朱显谟.黄土高原的形成与发展[J].中国沙漠,1999,19(4):333-337.
    [5]刘东生等著.中国的黄土堆积[M].北京:科学出版社,1965:52-82.
    [6]刘东生等著.黄土与环境[M].北京:科学出版社,1985:92-176,186-189,303-322.
    [7]竺可桢.中国近五千年来气候变迁的初步研究[J].中国科学,1973,(2):168-189.
    [8]施雅风,孔昭宸.中国全新世大暖期气候波动与重要事件[J].中国科学(B辑),1992,OOB(12):1 300-1 308.
    [9]唐克丽,贺秀斌.黄土高原全新世黄土-古土壤演替及气候演变的再研讨[J].第四纪研究,2004,24(2):129-139.
    [10]黄春长,庞奖励,张战平.黄土高原环境恶化的自然背景研究[J].陕西师范大学学报(自然科学版),2000,28(3):110-114.
    [11]IPCC. Climate change 2001:The scientific basis[A], Summary for Policy makers and Technical Summary of the working Group I Report[R]. Cambridge, UK:Cambridge University Press,2001,98.
    [12]IPCC. Climate change 2001:The scientific basis,Contribution of the intergovernmental Panclon Climate Change.Edited by Houghton H, Ding Y, Griggs D.J.,etal. Cambridge, UK:Cambridge University Press,2001, 769.
    [13]姚玉璧,王毅荣,李耀辉等.中国黄土高原气候暖干化及其对生态环境的影响[J].资源科学,2005,27(5):146-152.
    [14]朱显谟.抢救“土壤水库”实为黄土高原生态环境综合治理与可持续发展的关键—四论黄土高原国土整治28字方略[J].水土保持学报,2000,14(1):1-6.
    [15]李玉山.黄土高原治理开发之基本经验[J].土壤侵蚀与水土保持学报,1999,5(2):51-57.
    [16]舒若杰,高建恩,赵建民等.黄土高原生态分区探讨[J].干旱地区农业研 究,2006,24(3):143-148.
    [17]黄奕龙,傅伯杰,陈利顶.黄土高原水土保持建设的环境效应[J].水土保持学报,2003,17(1):29-32.
    [18]徐学选,崔小琳,穆兴民.黄土高原水土保持与水环境[J].水土保持通报,1999,19(5):44-48.
    [19]梁宗锁,左长清,焦巨仁.生态修复在黄土高原水土保持中的作用[J].西北林学院学报2003,18(1):20-24.
    [20]西北水土保持生物研究所土壤水分组.陕西东部旱塬农田墒情调查[J].土壤,1975,(6):279-285.
    [21]梁一民,李代琼,从心海.吴旗沙打旺草地土壤水分及生产力特征[J].水土保持通报1990,10(6):113-118.
    [22]刘增文,王佑民.人工油松林蒸腾耗水及林地水分动态特征的研究[J].水土保持通报,1990,10(6):78-84.
    [23]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(2):91-101.
    [24]李代琼,从心海,梁一民.黄土高原半干旱区沙棘林净初级生产量与耗水量研究[J].水土保持通报,1990,10(6):91-97.
    [25]陈一鹗,刘康.渭北早原紫花苜蓿蒸腾强度与水量平衡研究[J].水土保持通报,1990,10(6):108-112.
    [26]侯庆春,黄旭,韩仕峰等.黄土高原地区小老树成因及其改造途径的研究[J].水土保持学报,1991,5(2):76-83.
    [27]侯庆春等.小老树的分布及其生长特点[J].水土保持学报,1991:5(1):64-71.
    [28]赵景波,侯甬坚,黄春长.陕北黄土高原人工林下土壤干化原因与防治[J].中国沙漠,2003,23(6):612-615.
    [29]李裕元,邵明安.黄土高原气候变迁、植被演替与土壤干层的形成[J].干旱区资源与环境,2001,15(1):72-77.
    [30]李玉山.黄土高原森林植被对陆地水循环影响的研究.自然资源学报,2001,16(5):427-432.
    [31]黄明斌等.黄土区渭北旱塬苹果基地对区域水循环的影响[J].地理学报,2001,56(1),7-13.
    [32]杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1):78-85.
    [33]孙长忠,黄宝龙,陈海滨,等.黄土高原人工植被与其水分环境相互作用关系研 究[J].北京林业大学学报,1998,20(3):7-14.
    [34]杨文治,邵明安,彭新德等.黄土高原环境的旱化与黄土中水分关系[J].中国科学(D辑),1998,28(4):357-365.
    [35]侯庆春,韩蕊莲,韩仕峰.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,1999,(5):11-14.
    [36]王力,邵明安,侯庆春.延安地区的土壤干层现状[J].水土保持通报,2000,20(3):35-37.
    [37]黄明斌,党廷辉,李玉山.黄土区旱塬农田生产力提高对土壤水分循环的影响[J].农业工程学报,2002,18(6):50-54.
    [38]黄明斌,康绍忠,李玉山.黄土高原沟壑区小流域水分环境演变研究[J].应用生态学报,1999,10(4):411-414.
    [39]黄明斌,党廷辉,李玉山.黄土区旱塬农田生产力提高对土壤水分循环的影响[J].农业工程学报,2002,18(6):50-54.
    [40]付明胜,钱卫东,牛萍,等.连续干旱对土壤干层深度及植物生存的影响[J].干早区研究,2002,19(2):71-74.
    [41]王克勒,王斌瑞.集水适林防止人工林植被土壤干化的初步研究[J].林业科学,1998,34(4):14-21.
    [42]王志强,刘宝元,路炳军.黄土高原半干旱区土壤干层水分恢复研究[J],生态学报,2003,23(9):1944-1950.
    [43]穆兴民,徐学选,王文龙,等.黄土高原人工林对区域深层土壤水环境的影响[J].土壤学报,2003,40(2):210-217.
    [44]杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992.241-297.
    [45]王力,邵明安,侯庆春.土壤干层量化指标初探[J].水土保持学报,2000,14(4),87-90.
    [46]何福红,黄明斌,党廷辉.黄土高原沟壑区小流域土壤干层的分布特征[J].自然资源学报,2003,18(1):30-36.
    [47]王力.陕北黄土高原土壤水分亏缺状况与林木生长关系[D].杨凌:中国科学院水利部水土保持研究所,2002,23-33,58-60,80-81.
    [48]王力,邵明安,侯庆春.黄土高原土壤干层初步研究[J].西北农林科技大学学报,2001,29(4):34-38.
    [49]穆兴民.试论黄土区旱地土壤水资源的地带性与非地带性[J].土壤学报,1999,36(2):237-244.
    [50]王力,邵明安,侯庆春等.延安试区人工刺槐林地土壤干层分析[J],西北植物学报,2001,21(1):101-106.
    [51]王经民,戴夏燕,韩斌.黄土丘陵区土壤水分研究[J],农业系统科学与综合研究,2000,16(1):53-56.
    [52]李玉山.苜蓿生产力动态及其水分生态环境效应[J].土壤学报,2002,39(3):404-411.
    [53]李靖.黄土高原地区农业水资源可持续利用的问题与举措[J].中国农业科技导报,2000(4):29-33.
    [54]王浩,杨贵羽,贾仰文,等.土壤水资源的内涵及评价指标体系[J],水利学报,2006,37(4):389-394.
    [55]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    [56]张强,孙向阳,张广才.土壤水分研究进展[J].林业科学研究,2004,17(增刊):105-108.
    [57]康绍忠,刘晓明,高新科,等.土壤-植物-大气连续体水分传输的计算机模拟[J].水利学报,1992,(3):1-12.
    [58]邵明安,王全九.推求土壤水分运动参数的简单入渗法(理论分析)[J].土壤学报,2000,37(1):1-7.
    [59]庄季屏,王伟.土壤低吸力段持水性能及其与早期土壤干旱的关系研究[J].土壤学报,1986,23(4):306-313.
    [60]杨诗秀,雷志栋,谢森传.均质土壤一维非饱和流动通用程序[J].土壤学报,1985(1):24-34.
    [61]周择福,洪玲霞.不同林地土壤水分入渗和入渗模拟的研究[J].林业科学,1997,33(1):9-17.
    [62]吴长文,王礼先.林地土壤的入渗及其模拟分析[J].水土保持研究,1995,2(1):71-75.
    [63]周维博.降雨入渗和蒸发条件下野外层状土壤水分运动的数值模拟[J].水利学报,1991,(9):32-36.
    [64]朱显谟.维护土壤水库确保黄土高原山川秀美[J],中国水土保持,2006,(1):6-7.
    [65]夏自强.土壤水资源特性分析[J].河海大学学报,2001,29(4):23-26.
    [66]龙笛,潘巍.六库联调构建生态防洪抗旱体系[J].中国水土保持,2006,(1):10-12.
    [67]穆兴民.黄土高原土壤水分与水土保持措施相互作用[J].农业工程学报.2000,16(2):41-45.
    [68]徐建华,李雪梅,王志勇.黄土高原水土保持生态建设耗水量宏观分析[J].人民黄河,2003,25(10):21-22.
    [69]周旗.关中平原土壤水环境变化与植被建设[D].西安:陕西师范大学,2005:21-23,24-29.
    [70]中国科学院黄土高原综合科学考察队.黄土高原区域环境及其演变[M].北京:科学出版社,1991,1-30.
    [71]Zhao Jingbo, Du Juan,Chen Baoqun.Dried earth layers of artificial forestland in the Loess Plateau of Shaanxi province[J]. Journal of Geographical Sciences,2007,17(1):114-126.
    [72]杨文治,田均良.黄土高原土壤干燥化问题探源[J].土壤学报,2004,41(1):1-6.
    [73]李小强,安芷生,周杰,等.全新世黄土高原塬区植被特征[J].海洋地质与第四纪地质.2003,23(3):109-114.
    [74]王斌瑞,王百田,张府娥.黄土高原径流林业[C],全国首届雨水利用学术会议暨东亚地区国际研讨会论文集.1998.180-185.
    [75]陈丽华,余新晓.晋西黄土地区合理造林密度的确定[J].林业科技通讯,1995,1:22-23.
    [76]侯庆春等.小老树的分布及其生长特点[J].水土保持学报,1991:5(1):64-71.
    [77]杨文治,韩仕峰.黄土丘陵区人工林草地的土壤水分生态环境[J].中国科学院西北水土保持研究所集刊,1985,(2):19-28.
    [78]杨文治,马玉玺,韩仕峰等.黄土高原地区造林土壤水分生态分区研究[J],水土保持学报,1994,8(1):1-9.
    [79]赵景波,杜娟,李艳花等.西安蓝田人工林地土壤干层研究[J].陕西师范大学学报,2004,32(2):97-101.
    [80]赵景波,杜娟,周旗,等.陕西咸阳人工林地土壤干层研究[J].地理科学,2005,25(3):322~328.
    [81]程国栋,张志强,李锐.西部地区生态环境建设的若干问题与政策建议[J].地理科学,2000,20(6):503-510.
    [82]彭文英,张科利,江忠善,等.黄土高原坡耕地退耕还草的水沙变化特征[J].地理科学,2002,22(4):397~402.
    [83]李香云,王立新,章予舒,等.西北干旱区土地荒漠化中人类活动作用及其指标 选择[J].地理科学,2004,24(1):68~75.
    [84]杜娟,赵景波.西安高陵人工林土壤干层与含水量季节变化研究[J].地理科学,2007,27(1):98~103.
    [85]Nassar IN. Thermally induced water movement in uniform clay soil[J].Soil Science,1996,161(8):471-479.
    [86]Yuin E. An infiltration model to predict suction changes in the soil p rofile[J]. Water Resource Research,1998,34(7):1617-1622.
    [87]Ole Wendroth. Observations of measured soil hydraulic properites from laboratory tension disc infiltrometer experiments[J].Water Resource Research,1998,34(9):2191-2202.
    [88]Rapp I.Evaporation and crust imperdance role in seeding emergence[J]. Soil Science,2000,165(4):354-364.
    [89]王力,邵明安,王全九,等.黄土区土壤干化研究进展[J].农业工程学报,2004,20(5):27-31.
    [90]张雷明,上官周平.黄土高原土壤水分与植被生产力的关系[J].干旱区研究,2002,19(4):59-63.
    [91]郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8):1640-1647.
    [92]赵景波.中国最富集的优良土壤资源[J].干旱区地理,2004,27(3):283-286..
    [93]王孟本,李洪建,柴宝峰.极端降水条件对林地水分循环的影响[J].土壤侵蚀与水土保持学报,1996,2(3):83-87.
    [94]刘贤赵,黄明斌.渭北旱塬苹果园土壤水分环境效应[J].果树学报,2002,(2):75-78.
    [95]宋孝玉,刘贤赵,沈冰等.陕西渭北旱塬种植业结构调整的水资源问题及对策[J].干旱区地理,2004,27(2):199-201.
    [96]刘贤赵,宋孝玉.陕西渭北旱塬苹果种植分区土壤水分特征研究[J].干旱区地理,2004a,27(3):320-326.
    [97]刘贤赵,衣华鹏,李世泰.渭北早塬苹果种植分区土壤水分特征[J].应用生态学报,2004b,15(11):2055-2060.
    [98]樊军,邵明安,郝明德,等.渭北旱塬苹果园土壤深层干燥化与硝酸盐累积[J].应用生态学报,2004,15(7):1213-1216.
    [99]陈宝群,赵景波,李艳花.特大丰水年洛川人工林地土壤水分特征研究[J].干旱区地理,2006,29(4):532-537.
    [100]余新晓,张建军,朱金兆.黄土地区防护林生态系统土壤水分条件的分析与评价[J].林业科学,1996,32(4):289-297.
    [101]余新晓,张建军,朱金兆.黄土地区防护林生态系统土壤水分条件的分析与评价[J].林业科学,1996,32(4):289-297.
    [102]王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究[J].生态学报,1995,15(2):178.
    [103]王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究[J].生态学报,1995,15(2):178.
    [104]李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析[J].应用生态学报,2003,14(4):515-519.
    [105]杨文治,邵明安.2000.黄土高原土壤水分研究.北京:科学出版社,107-111.
    [106]陈洪松,邵明安.黄土区深层土壤干燥化程度的评价标准[J],水土保持学报,2004,18(3):164-166.
    [107]刘兆谦.土壤地理学原理[M].西安:陕西师范大学出版社,1988.40-55.
    [108]Huang Chunchang, Zhou Jie, Pang Jiangli, et al. A regional aridity phase and its possible cultural impact during the Holocene Megathermal in the Guanzhong Basin, China[J]. The Holocene,2000,10(1):135-143.
    [109]Huang Chunchang. Holocene landscape development, climatic variation and human impact in the Maumeen Gap,Connemara,western Ireland[J]. Journal of Biogeography,2002,29(2):153-165.
    [110]Huang Chunchang, Pang Jiangli, Huang P. An early Holocene erosion phase on the loess tableland in the southern Loess Plateau of China[J]. Geomorphology,2002,43(3-4):209-218.
    [111]Zhou W J, An Z S, Jull A, et al.Reappraisal of Chinese Loess Plateau stratigraphical sequence over the last 30000years:procuress of an important monsoon climatic event [J]. Radiocarbon,1998,40(2):905-913.
    [112]朱艳,陈发虎,唐领余,等.干旱区石羊河终闾湖泊孢粉组合中云杉圆柏属环境指示意义探讨[J].中国沙漠,2001,21(2):141-146.
    [113]庞奖励,黄春长,张战平.陕西五里铺黄土微量元素组成与全新世气候不稳定性研究[J].中国沙漠,2001,21(2):151-156.
    [114]张战平,黄春长,庞奖励.岐山全新世黄土与气候变化[J].中国沙漠,2000,20(4):415-417.
    [115]李徐生,杨达源.镇江下蜀黄土古土壤序列磁化率特征与环境记录[J].中国 沙漠,2002,22(1):27-32.
    [116]赵景波,岳应利,杜娟.陕西洛川黄土中第5层古土壤与环境研究[J].中国沙漠,2004,24(1):30-34.
    [117]汪海斌,陈发虎,张家武.黄土高原西部地区黄土粒度的环境指示意义[J].中国沙漠,2002,22(1):21-26.
    [118]王晗生,王青宁.黄土高原植被属性有关论点辨析[J].林业科学,2005,41(5):149-154.
    [119]王义凤.黄土高原主要植被类型、分布和水平与垂直带谱[M].中国科学院黄土高原科学综合考察队编.黄土高原地区的植被资源及其合理利用.北京:中国科技出版社,1991.16-67.
    [120]王义凤,肖新明.黄土高原地区主要植被类型的气候梯度分析[J].植物生态学报,1993,35(4):291-299.
    [121]彭鸿,Bernd Stimm, Reinhard Mosandl.陕北黄土高原森林植被的性质和当前森林培育的策略[J].水土保持通报,2002,22(6):2-6.
    [122]张金屯,李斌.黄土高原森林植被景观的特征分析[J].山地学报,2006,24(1):1-6.
    [123]陈海滨,孙长忠,安锋,等.黄土高原沟壑区林地土壤水分特征的研究(Ⅰ)[J].西北林学院学报,2003,18(4):13-16.
    [124]杨文治.黄土高原土壤水资源与植树造林[J].自然资源学报,2001,16(5):433-438.
    [125]张万寿,尹全洲.退耕还林(草)与增收并举:黄土高原实施生态建设与反贫困双赢战略所面临的历史使命.宁夏社会科学.2001,3:59-68.
    [126]李凤民,徐进章,孙国钧.半干旱黄土高原退化生态系统的修复与生态农业发展[J].生态学报.2003,23(9):1901-1909.
    [127]师守祥,杜立钊.黄土高原地区发展草产业的方略构想.草业科学,2003,20(1):29-31.
    [128]尹怀庭,刘兴昌,杨海娟.黄土高原水土流失治理若干问题的反思.中国人口·资源与环境.2002,12(5):111-113.
    [129]刘兴昌,杨海娟,尹怀庭.黄土高原综合治理绩效与生态重建构想.水土保持通报,2001,21(6):1-6.
    [130]周德翼,杨海娟.黄土高原治理中中央、地方、农民间的博弈分析.水土保持通报,2002,22(3):35-38.
    [131]陈钢.“我们为我们为什么退草复垦”.瞭望新闻周刊,2003,17:44.
    [132]陈雷.推动沙棘建设与开发工作再上新台阶[J].中国水土保持,2003,1:4-6.
    [133]李锐,刘国彬,穆兴民.改善生态与富民增收是黄土高原生态建设的中心.中国科学院院刊,2000,3:193-196.
    [134]徐勇,田均良,刘普灵.黄土高原中部丘陵区生态适宜型农村经济发展模式案例研究.水土保持通报.2002,22(3):43-46.
    [135]樊廷录.黄土高原的生态环境建设与特色农业产业经济.水土保持研究,2003,10(1):110-114.
    [136]申元村,张洪业,王秀红.农业在西部大开发中的地位及生态农业分区.干旱区资源与环境.2003,17(3):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700