用户名: 密码: 验证码:
小时间尺度下东北小兴安岭和完达山地区鹿类冬季营养生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2009年-2011年1月,作者采集了黑龙江省小兴安岭沾河林区的驼鹿和狍的粪便样本和完达山地区的马鹿粪便样本,运用降序对应分析方法,研究了取样期间驼鹿、狍和马鹿种群的主要植物组分。并整合在小兴安岭地区2006年1-3月和2007年1-3月的食性数据、生存所需的最重要的蛋白质和能量,以及影响到蛋白质消化的植物单宁含量,进行了响应曲面模型构建,研究了小兴安岭地区驼鹿、狍种群和完达山地区马鹿种群的营养策略。
     2006,2007,2009和2010年1月作者对小兴安岭地区驼鹿、狍以及2009年和2010年1-2月完达山地区马鹿的雪尿样本进行了采集,并于2012年7-8月于北美阿拉斯加驼鹿研究中心和怀俄明州夏延山地动物园采集了11只驼鹿的纯尿液样本。在保护生理学范畴内,选用了尿液嘌呤衍生物以及尿液嘌呤衍生物与肌酐的比值作为适用于小时间尺度,且能够精确评估鹿类营养状态的指标。计算了马鹿在取样时间段内可消化干物质的摄入量和可代谢能摄入量,并通过构建人工神经网络模型这一计算生态学手段,筛选并优化了小时间尺度内对驼鹿和狍营养状态影响最大的气候因子,并得出了相应的数量关系,最后针对雪深,将时间尺度扩大到年间,讨论雪深对鹿类营养状态的影响。研究结果主要有以下4点:
     (1)在小兴安岭地区,驼鹿和狍分别在2009年和2011年食物多样性达到最高,完达山地区马鹿在2009年也显现出了较高的食物多样性,根据最优取食理论,更高的食物多样性有可能意味着鹿类动物需要更多种植物维持其营养需求,但这种基于最优取食理论的推测是较为片面的,有时可能会导致较大偏差。
     小兴安岭驼鹿种群2009年和2010年1月的主要食物组分为杨、柳、白桦和云杉云杉的出现表明驼鹿在取样时间段内正在经受较为严重的营养限制。有所不同的是与驼鹿同域分布的狍种群的食物组分并没有很多针叶树种出现,在2009和2010年其主要食物组分包括杨、柳、白桦、榛和部分草本植物,在2011年其食物组分出现了一定的变化,蒙古栎作为另一种主要食物出现在狍种群的食物组分中,而相应的,杨、柳、白桦等植物出现相应的降低。狍种群的营养状况在取样时间段内可能稍好于驼鹿。完达山地区马鹿种群的食物组成与之前的研究出现较大的不同,马鹿在2009-2011年1-2月不再以榆、紫椴、榛和暴马丁香等植物为主要食物,转而以柳、白桦和杨树等植物为主要食物,一方面可能是作者所选的取样时间有所不同,马鹿在不同的时间段内极有可能采食不同的植物,另一方面则有可能是马鹿受环境影响,对营养物质的需求发生了变化。
     (2)在对驼鹿和狍进行采食策略响应曲面建模时,为避免云杉相对较低的蛋白质含量和较高的单宁含量对驼鹿的营养策略响应曲面造成过大影响,即作者已知驼鹿会趋向于采食高单宁含量的植物,作者在建模时将云杉和冷杉排除在外,更倾向于了解在没有云杉影响时驼鹿是否依然趋向于采食高单宁含量的食物。并且作者对驼鹿和狍选取了相同的数学关系,以便发现二者可能存在的对冬季严酷多变环境不同的响应模式,建模结果均显著。
     对于小兴安岭地区的驼鹿和完达山区的马鹿,作者认为二者会倾向于采食能量蛋白质和单宁处在一定范围内的食物,使自身的能量需求达到稳态,而这种稳态或临界值会随着环境的变化产生波动。小兴安岭地区的狍总体上则选择了高能量,高蛋白质,低单宁的营养策略,但在蛋白质和单宁含量达到特定区间时,也有出现对单宁的偏好的可能性。
     (3)散养驼鹿尿液嘌呤衍生物测定结果表明,尿囊素在驼鹿尿液中的含量极低,野生驼鹿的尿液嘌呤衍生物含量甚至低于液相色谱的检测极限,这可能是驼鹿适应严寒氧化损伤而形成的降低尿酸氧化酶活性的对策。小兴安岭狍种群中也存在着尿囊素缺失的情况,作者推测这是与驼鹿相似的适应严寒的策略,但这个猜测还有待精确实验予以证实。而作者认为完达山马鹿由于处在较低纬度,取样时期内气候相对温和,并不需要这种抗氧化的保护机制,并未出现尿囊素缺失的情况。
     对于小兴安岭的驼鹿和狍种群,尿液嘌呤衍生物的研究结果表明,在取样的2006,2007,2009和2010四年1月的取样日期内,驼鹿种群和狍种群都存在的营养不充足情况,其中2009年最为严重。这与通过食性和营养策略所得出的结论有所不同。
     对于完达山地区的马鹿种群,根据已有针对雌性成年马鹿的数量关系,作者将马鹿雪尿尿囊素肌酐比值进行双侧截尾,将数值分布保留在雌性马鹿分布范围内,计算了在取样时间段,可消化干物质和可代谢能的摄入量,定量研究了马鹿冬季的营养物质摄入量,结果表明,在2009年和2010年,可消化干物质量摄入量均表现出供给不足,可代谢能摄入量在2010年满足了最低需求但在2009年有一部分个体摄入量不足。可见2009年1-2月对于马鹿也是较为严酷的一段时期。作者认为一定程度的补饲是必要的。
     (4)在气候因子的相关性研究中并未发现较为统一的规律,因此作者通过构建人工神经网络模型,这一适合批量数据处理的基于非线性手段的方法,对小兴安岭的驼鹿和狍尿液嘌呤衍生物对气候因子变量的响应进行了筛选优化,结果显示,日最低温度和日平均风速是众多气候因子中对尿液嘌呤衍生物最为显著的因子,并求得了气候因子与尿液嘌呤衍生物的数量关系。
     最后,相对较大的时间尺度下,雪深表现出对鹿类嘌呤衍生物和肌酐比值的均值有较为显著的影响,并建议雪深应该用于较长时间尺度的营养生态学研究中。
Moose and roe deer fecal samples were collected during January from2009-2011in the Lesser Khingan Mountains, as well as red deer fecal samples in Wanda Mountains in Heilongjiang Province. We analyzed major food component of moose, roe deer and red deer by using detrench correspondence analysis. Then, we integrated the food component data in January to March2006and2007in the same research area together with data on2009-2011and established response surface model.
     In the mean time, we collected snow urine samples of moose and roe deer in January of2006,2007,2009and2010in the Lesser Khingan Mountains as well as red deer snow urine samples from Wanda Mountains in January and February of2009-2011. What's more, we collected11pure urine samples from Alaska Moose Research Center and Chenney Mountain Zoo. In the field of conservation physiology, we chose urinary purine derivatives and their ratio to creatinine for the fine time-scale analysis, which could estimate deer nutritional condition preciously. We accurately calculated the daily digestible dry matter intake and metabolizable energy intake of red deer distributing in the Wanda Mountains and used a computational ecology method-BP artificial neural network to select and optimize the most influential climate factor to purine derivatives to creatinine ratios. Then response surface model was established using the selected climate data and purine derivatives to creatinine ratios as independent factors and response factors respectively. Then we enlarged the research time scale to years and discussed the influence of snow on purine derivatives. Generally, there are four major aspects of results:
     (1) In the Lesser Khingan Mountains, food diversity was the higest for moose in2009and roe deer in2011and in Wanda Mountains. According to the optimal forage theory, higher food diversity probability means that deers need more species to maintain their nutritional requirements, however, this statement could be biased based on the optimal foraging theory. Main food component of moose population distributing in the Lesser Khingan Mountains were poplar, willows, birch and spruce. Appearance of spruce showed a constrained nutritional condition in our research period. In contrast, the sympatric roe deer did not show a large component of needles in faces. In2009and2010main food component of roe deer were poplar, willows, birch, hazel and grass, while Mongolian oak became one of the main food components of roe deer in2011, and percentage of poplar, willows, birch became lower than2009and2010. This indicated that nutritional condition of roe deer might be better than moose in the Lesser Khingan Mountains. We found great difference between main food component in January and February of2009-2011and previous studies of red deer in Wanda Mountains. They do not select elm, amur linden and hazel as their main food but willows, birch and poplars. On one hand, this could be caused by different sampling time, on the other hand, the nutritional requirements changed under the influence of changing environmental condition.
     (2) During the establishment of response surface model, as we have already know that spruce has high content of tannins and that moose in the Lesser Khingan Mountains select spruce as one of their main food, so in order to avoid the influence of spruce, we tending to know that whether moose still prefer food with high tannin content without the influence of spruce. Moreover, we used the same model for the sympatric moose and roe deer to discover different response pattern of the two species. Modeling building results were significant.
     Moose distributing in the Lesser Khingan Mountains and red deer in the Wanda Mountains were tending to feed on food that have certain range of protein and tannins to reach a homostasis of their nutritional requirement, but this homostasis will fluctuate when environment changes. Generally, roe deer showed a preference of high protein and energy content food and avoidance of tannins, while still it is not difficult to figure out that when plant protein and tannins content achieve a certain range, roe deer showed a trend of preference to tannins.
     Results of purine derivatives detection in pure urine from free ranging mooses in North America indicated that, allantoin content was extremely low, and allantoin content in snow urine from wild population distributing in the Lesser Khingan Mountains was even lower than the detection limit of high performance chromatography. The low content of allantoin in the Lesser Khingan Mountains was supposed to be a strategy of antioxidant of adapting to extremely cold winter by this might be the same strategy to moose selected by roe deer in the Lesser Khingan Mountains to resist cold weather. But this still need more accurate experiment before we could confirm this hypothesis. And there is no allantoin absence phenomenon in red deer population in the Wanda Mountains, which might because the red deer population distributing in a low latitude and do not need this conservation strategy.
     During the sampling period in2006,2007,2009and2010, purine derivatives to creatinine ratios showed that both roe deer and moose populations were suffering from nutritional constrain, and the situation in2009is worse. This result was different from that we get from food component and food strategy analysis.
     According to the exist mathematical relationships between allantoin to creatinine ratio and digestible dry matter intake and metabolizable energy intake in female adult red deers, we trimmed off part of the allantoin to creatinine ratio from both sides of data distribution to keep the left data could best reflect the condition of adult females in the Wanda Mountains. Then we calculated the digestible dry matter intake and metabolizable energy intake of red deer by solving equations. Results showed that digestible dry matter intake was in short supply in both2009and2010. Metabolizable energy intake meet the minimum requirement of red deer in2010but in2009part of the individuals was short in metabolizable energy intake supply. These demonstrated that January-February in2009is a relative serious time and some supplementary (4) Climate factors did not show a common regulation, though there was some correlations among factors, but we could not judge which have the greatest influence. Therefore, we used artificial neural network, which is one of the computational ecology methods used for nonlinear analysis and modeling, to select and optimize the climate factors that had the most influential effects. Results showed that daily minimum temperature and daily average temperature had the best prediction effects to purine derivatives to creatinine ratios. Then response surface model were built to describe the mathematical relationships of daily minimum temperature and daily average temperature and urinary purine derivatives to creatinine ratio. Surprisingly, snow depth did not have good prediction effect. Then we enlarged our research time scale to years we found that snow depth should be used in long time scale nutritional ecology research.
引文
[1]Raubenheimer D, Simpson S J and Tait A H. Match and mismatch:conservation physiology, nutritional ecology and the timescales of biological adaption. Philosophical Transactions of the Royal Society B,2012,367:1628-1646.
    [2]Wikelski M and Cooke S J. Conservation physiology. Trends in Ecology and Evolution, 2006,21:38-46.
    [3]Seebacher F and Franklin C E. Determining environmental causes of biological effects:the need for a mechanistic physiological dimension in conservation biology. Philosophical Transactions of the Royal Society B,2012,367:1607-1614.
    [4]Meylan S, Miles D B and Clobert J. Hormonally mediated maternal effects, individual strategy and global change. Philosophical Transactions of the Royal Society B,2012,367: 1647-1664.
    [5]Parker K L. Advances in the nutritional ecology of cervids at different scales. Ecoscience, 2003,10:395-411.
    [6]Raubenheimer D, Simpson S J and Mayntz D. Nutrition, ecology and nutritional ecology: toward an integrated framework. Functional Ecology,2009,23:4-16.
    [7]Simpson S J and Raubenheimer D. The nature of nutrition:an integrative framework from animal adaptation to human obesity.2012. Princeton, NJ:Princeton University Press.
    [8]Tinbergen N. On aims and methods of ethology. Zeitschrift fur Tierpsychologie.1963,20: 410-433.
    [9]Tinbergen N. On aims and methods of ethology. Animal Biology,2005,55:297-321.
    [10]Pyke G H, Pulliam H R and Charnov D L. Optimal foraging:a selective review of theory and tests. Quarterly Review of Biology,1977,52:137-154.
    [11]Smith M J. Optimization theory in evolution. Annual Review of Ecology and Systematics, 1978,9:31-56.
    [12]Raubenheimer D and Simpson S J. Nutrient transfer functions:the site of integration between feeding behaviour and nutritional physiology. Chemoecology,1998,8:61-68.
    [13]Belovsky G E. Optimal foraging and community structure-implications for a guild of generalist grassland herbivores. Oecologia,1986,70:35-52.
    [14]Petchey O L, Beckerman A P, Riede J O and Warren P H. Size, foraging, and food web structure. Proceedings of the National Academy of Science, USA,2008,105:4191-4196.
    [15]Westoby M. An analysis of diet selection by large generalist herbivores. American Naturalist,1974,108:290-304.
    [16]Pulliam R H. Diet optimization with nutrient constraints. American Naturalist,1975,109: 765-768.
    [17]Belovsky G E. How important are nutrient constraints in optimal foraging models or are spatial/temporal factors more important? Behavioural Mechanisms of Food Selection (ed. R.N. Hughes),1990.
    [18]Hirakawa H. Diet optimization with a nutrient or toxin constraint. Theoretical Population Biology,1995,7:331-346.
    [19]Simpson S J, Sibly R M, Lee K P, Behmer S T and Raubenheimer D. Optimal foraging when regulating intake of multiple nutrients. Animal Behaviour,2004,68:1299-1311.
    [20]Newman J A. Herbivory. Foraging:Behaviour and Ecology (eds D.W. Stephens, J.C. Brown & R.C. Ydenberg), pp.175-218.2006. The University of Chicago Press, Chicago.
    [21]Fraenkel G S.1959. The raison d'etre of secondary plant substances. Science,129:1466-1470.
    [22]Mitchell R. Insect behavior, resource exploitation, and fitness. Annual Review of Entomology,1981,26:373-396.
    [23]Waldbauer G P and Friedman S. Self-selection of optimal diets by insects. Annual Review of Entomology,1991,36:43-63.
    [24]Simpson S J, Sword G A, Lorch P D and Couzin I D. Cannibal crickets on a forced march for protein and salt. Proceedings of the National Academy of Sciences, USA,2006,103:4152-4156.
    [25]Simpson J S, Raubenheimer D, Michael A C, Fiona J, Clissold and the ARC-NZ Vegetation Function Network Herbivory Working Group. Modelling nutritional interactions: from individuals to communities. Trends in Ecology and Evolution,2009,25:53-60.
    [26]Toby A P, Len T, Chris W, Otso O and Jason M. State-space models of individual animal movement. Trends in Ecology and Evolution,2009,23:87-94.
    [27]David R, Steven J S and David M. Nutrition, ecology and nutritional ecology:toward an integrated framework. Functional Ecology,2009,23:4-16.
    [28]Elser J. Biological stoichiometry:A chemical bridge between ecosystem ecology and evolutionary biology. American Naturalist,2006,168:S25-S35.
    [29]Reiners W A. Complementary models for ecosystems. American Naturalist,1986,127,59-73.
    [30]Sterner R W and Elser J J. Ecological Stoichiometry:the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.2002.
    [31]Cooper S J. From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite,2009,51:419-427.
    [32]Selye H. The stress of life. New York, NY:McGraw Hill.1956.
    [33]Selye, H. Homeostasis and heterostasis. Perspectives in Biology and Medicine,1973,13: 441-445.
    [34]Moore-Ede M C. Physiology of the circadian timing system—Predictive versus reactive homeostasis. American Journal of Physiology,1986,250:R737-R752.
    [35]Moran T H and Schulkin J. Curt Richter and regulatory physiology. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2000,279:R357-R363.
    [36]Chambers P G, Simpson S J and Raubenheimer D. Behavioural mechanisms of nutrient balancing in Locusta migratoria. Animal Behavior,1995,50:1513-1523.
    [37]Raubenheimer D and Jones S A. Nutritional imbalance in an extreme generalist omnivore: tolerance and recovery through complementary food selection. Animal Behavior,2006,71: 1253-1262.
    [38]Tan C O, Ozesmi U, Beklioglu M et al. Predictive models in ecology:Comparison of performance and assessment of applicability. Ecological Informatics,2006,1(2):195-211.
    [39]Schultz A, Wieland R. The use of neural networks in agroecological modeling. Computers and Electronics in Agriculture,1997,18:73-90.
    [40]Pastor-Barcenas O, Soria-Olivas E, Martin-Guerrero J D. Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modeling. Ecological Modelling, 2005,182:149-158.
    [41]Zhang W J. Computational ecology:Artificial neural networks and their applications. World Scientific,2010.
    [42]Acharya C, Mohanty S, Sukla L B et al. Prediction of sulphur removal with Acidithiobacillus sp. using artificial neural networks. Ecological Modelling,2006,190:223-230.
    [43]Nour M H, Smith D W, El-Din M G. The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands. Ecological Modelling,2006,191:19-32.
    [44]Zhang W J and Barrion A T. Function approximation and documentation of sampling data using artificial neural networks. Environmental Monitoring and Assessment,2006,122:185-201.
    [45]Zhang W J. Computer inference of network of ecological interactions from sampling data. Environmental Monitoring and Assessment,2007,124:253-261.
    [46]Zhang W J. Methodology on Ecology Research. SunYat-Sen University Press, Guangzhou, China,2007.
    [47]Zhang W J. Supervised neural network recognition of habitat zones of rice invertebrates. Stochastic Environmental Research and Risk Assessment,2007,21:729-735.
    [48]ZhangW J. Pattern classification and recognition of invertebrate functional groups using selforganizing neural networks. Environmental Monitoring and Assessment,2007,130:415-422.
    [49]Viotti P, Liuti G, Di Genova P. Atmospheric urban pollution:Applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling,2002,148(1):27-46.
    [50]Almasri M N, Kaluarachchi J J. Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environmental Modelling and Software,2005,20:851-871.
    [51]Zhang W J, Li Q H. Development of topological functions in neural networks and their application in SOM learning to biodiversity. The Proceedings of the China Association for Science and Technology,2007,4(2):583-586.
    [52]Marchant J A, Onyango C M. Comparison of a Bayesian classifier with a multilayer feedforward neural network using the example of plant/weed/soil discrimination. Computers and Electronics in Agriculture,2003,39:3-22.
    [53]Filippi A M, Jensen J R. Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sensing of Environment,2006,100:512-530.
    [54]Jaarsma N G, Bergman M, Schulze F H, Deviate A B. Macro-invertebrates in a dynamic river environment:Analysis of time series from artificial substrates, using a 'white box'neural network modelling method. Aquatic Ecology,2007,41(3):413-425.
    [55]Racca J M J, Racca R, Pienitz R, Prairie Y T. PaleoNet:New software for building, evaluating and applying neural network based transfer functions in paleoecology. Journal of Paleolimnology,2007,38(3):467-472.
    [56]李伟.白石砬子地区狍生态习性观察与食性分析.辽宁林业科技,2003,5:16-18
    [57]陈化鹏,萧前柱.带岭林区马鹿和狍冬季营养对策的比较.生态学报,1991,11(4):349-354
    [58]于孝臣,萧前柱.黑河林区驼鹿的食物组成及其季节变化.兽类学报,1993,11(3):258-265
    [59]侯森林,贾竞波,张明海,朴仁珠.黑河林区驼鹿冬季营养容纳量的研究.南京林业大学学报(自然科学版),2006,30(5):79-82
    [60]Dussutour A, Latty T, Beekman M and Simpson S J. Amoeboid organism solves complex nutritional challenges. Proceedings of the National Academy of Sciences USA,2010,107: 4607-4611.
    [61]Sorensen A, Mayntz D, Raubenheimer D and Simpson S J. Protein leverage in mice: geometry of macronutrient balancing and consequences for fat deposition. Obesity,2008,16: 566-571.
    [62]Mayntz D, Nielsen V H, Sorensen A, Toft S, Raubenheimer D, Hejlesen C and Simpson S J. Balancing of protein and lipid intake by a mammalian carnivore, the mink (Mustela vison). Animal Behavior,2009,77:349-355.
    [63]Raubenheimer D and Simpson S J. Integrative models of nutrient balancing:application to insects and vertebrates. Nutrition Research Reviews,1997,10:151-179.
    [64]Raubenheimer D and Simpson S J. Integrating nutrition:a geometrical approach. Entomology Experiment Application,1991,91:67-82
    [65]李熠.完达山东部地区暴雪前后马鹿和狍营养生态位的比较研究.东北林业大学硕士学位论文.2008.
    [66]Lisa A S, John E G, Donald E S, Hobbs N T, Bruce A W. The scaling of intake rate in mammalian herbivores. The American Naturalist,1994,143:1055-1082.
    [67]Bell R H V. The use of the herb layer by grazing ungulates in the Serengeti. Animal populations in relation to their food resources. University of Manchester.1969.
    [68]Hubbard W A. Following the animal and eye-estimation method of measuring the forage consumed by grazing animals.1952. In:Proceedings of the 6th International Grassland Congress; 17-23 August 1952; State College, PA, USA. Washington, DC, USA:Treasurer Finance Committee. p.1343-1347.
    [69]Dove H and Mayes R W. The use of plant wax alkanes as marker substances in studies of the nutrition of herbivores:a review. Australian Journal of Agricultural Research,1991,42: 913-952.
    [70]Walker J W, Clark D H and Mccoy S D. Fecal NIRS for predicting percent leafy spurge in diets. Journal of Range Management,1998,51:450-455.
    [71]Warn H K and Hjeljord O. Moose summer diet from feces and field surveys:a comparative study. Rangeland Ecology Management,2010,63:387-395.
    [72]Magurran A E, McGill B J. Biological diversity frontiers in measurements and assessment. Oxford University Press.2011.
    [73]http://127.0.0.1:13688/library/vegan/html/diversity.html
    [74]Sponheimer M, Robinson T and Ayliffe L. An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. Canadian Journal of Zoology,2003,81(5):871-876
    [75]Belovsky G. E. Diet Optimization in a generalist herbivore-Moose. Theoretical Population Biology,1978,14(1):105-134.
    [76]Nudds T D. Forage "preference":theoretical considerations of diet selection by deer. Journal of Wildlife Management,1980,44(3):735-740.
    [77]Pyke G H, Pulliam H R and Charnov E L. Optimal Foraging:A Selective Review of Theory and Tests,1977,52(2):137-154
    [78]Stephens D W and Krebs J R, Foraging Theory, Princeton University Press, Princeton. 1986.
    [79]Emlen J M. The role of time and energy in food preference. The American Naturalist, 1966,100(916):611-617.
    [80]Estabrook G F and Dunham A E. Optimal diet as a function of absolute abundance, relative abundance, and relative value of available prey. The American Naturalist,1976, 110(973):401-413.
    [81]Freeland W J and Janzen D H. Strategies in herbivory by mammals:The role of plant secondary compounds.The American Naturalist,1974,108(961):269-289.
    [82]Bryant J P and Kuropat P J. Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annual Review of Ecology and Systematics,1980,11:261-285.
    [83]Gillingham M P and Bunnell F L. Effects of learning on food selection and searching behaviour of deer. Canadian Journal of Zoology,1989,67(1):24-32.
    [84]Stenseth N C H R and Hansson L. Optimal food selection:a graphic model. The American Naturalist,1979,113:373-389.
    [85]Jenkins S H. Management implications of optimal foraging theory:a critique. Journal of Wildlife Management,1982,46:255-256.
    [86]Westoby. An analysis of diet selection by large generalist herbivores. The American naturalist,1978,108:290-304.
    [87]姜广顺.多空间尺度下驼鹿和狍受人类干扰的生态效应及其适应机制.东北林业大学博士学位论文,2009.
    [88]Tollefson T N, Shipley A, Myers W L, Keisler D H and Dasgupta N. Influence of summer and autumn nutrition on body condition and reproduction in lactating mule deer. Journal of Wildlife Management,2010,74:974-986.
    [89]Kamler J and Homolka M. Needles in faeces:an index of quality of wild ungulate winter diet. Folia Zoology,2011,60 (1):63-69
    [90]Gebert C and Verheyden-Tixier H. Variations of diet composition of red deer (Cervus elaphus) in Europe. Mammal Review,2001,31:189-201.
    [91]Homolka M. Food of Cervus elaphus in the course of the year in the mixed forest habitat of the Drahanska-vrchovina highlands. Folia Zoologica,1990,39:1-13.
    [92]Homolka M. The diet of moufflon (Ovis musimon) in the mixed forest habitat of the Drahanska vrchovina highland. Folia Zoologica,1991,40:193-201.
    [93]Homolka M and Heroldova M. Similarity of the results of stomach and fecal contents analyses in studies of the ungulate diet. Folia Zoologica,1992 41:193-208.
    [94]Suter W, Suter U, Krusi B and Schutz M. Spatial variation of summer diet of red deer Cervus elaphus in the eastern Swiss Alps. Wildlife Biology,2004,10:43-50
    [95]Homolka M. The diet of Cervus elaphus and Capreolus capreolus in deforested areas of the Moravskoslezske Beskydy mountains. Folia Zoologica,1995,44:227-236.
    [96]Mysterud A. Diet overlap among ruminants in Fennoscandia. Oecologia,2000,124:130-137.
    [97]Sauve D G and Cote S D. Winter forage selection in white-tailed deer at high density: balsam fir is the best of a bad choice. Journal of Wildlife Management,2007,71:911-914.
    [98]Cederlund G, Ljunquist H, Markgren G and Stalfelt F. Food of moose and roe deer at Grimso in Central Sweden-results of rumen content analyses. Swedish Wildlife Research, Viltrevy 1980,11:171-247.
    [99]Prieditis A. Influence of dry food and needles on body weight and consumption of food substances in roe deer, Capreolus capreolus L. Acta Zoologica Fennica,1984,171:213-215.
    [100]Weixelman D A, Bowyer R T and Van Ballenberghe. Diet Selection by Alaskan moose during winter:Effects of fire and forest succession. Alces,1998,34(1):213-238
    [101]宋影,宋国华,张伟.黑龙江省丰林自然保护区狍冬季食性的研究.林业科技,2001,6:31-34.
    [102]刘群秀.黑龙江省完达山林区马鹿种群生存力分析.东北林业大学硕士学位论文.2008.
    [103]Schoener T W. Theory of feeding strategies. Annual Review of Ecology and Systematics. 1971,2:369-404.
    [104]Mattson W J. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics,1980,11:119-161.
    [105]White T C R. The inadequate environment:nitrogen and the abundance of animals. Berlin, Heidelberg, New York:Springer.1993.
    [106]Freeland W J, Janzen D H. Strategies in herbivory by mammals role of plant secondary compounds. American Naturalist,1974,108:269-289.
    [107]Dearing M D, Foley W J, McLean S. The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annual Review of Ecology, Evolution, and Systematics,2005,36:169-189.
    [108]Raubenheimer D, Simpson S J. Organismal stoichiometry:quantifying non-independence among food components. Ecology,2004,85:1203-1216.
    [109]Robbins C T, Fortin J K, Rode K D, Farley S D, Shipley L A, Felicetti L A. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos,2007,116: 1675-1682.
    [110]Felton A M, Felton A, Raubenheimer D, Simpson S J, Foley W J, Wood J T, Wallis I R and Lindenmayer D B. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behavioral Ecology,2009,20 (4):685-690.
    [111]沈广爽.西藏马鹿草青期食物组成及采食与营养适应对策的研究.东北林业大学硕士论文.2009.
    [112]Schulkin J. Sodium Hunger:The Search for a Salty Taste. Cambridge University Press. 1991.
    [113]Boyle R R.2005. Rapid absorption of dietary 1,8-cineole results in critical blood concentration of cineole and immediate cessation of eating in the common brushtail possum (Trichosurus vulpecula). Journal of Chemical Ecology,2005,31:2775-2790.
    [114]Van C K, Oliver L, Schlentner R, Viereck L A and Dyrness C T. Productivity and nutrient cycling in taiga forest ecosystems. Canandian Journal of Forest Research,1983,13(5):747-766.
    [115]Callesen I, Raulund-Rasmussen K, Westman C J and Tau S L. Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate and soil texture. Boreal Environmental Research.2007,12(6):681-692.
    [116]Rohrs-Richey J K and Mulder C P H. Effects of local changes in active layer and soil climate on seasonal foliar nitrogen concentrations of three boreal forest shrubs. Canadian Journal of Forestry.Research,2007,37(2):383-394.
    [117]Hobbie E A and Hobbie J E. Natural abundance of N-15 in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi:a review. Ecosystems (N.Y.), 2008,11(5):815-830.
    [118]Aphalo P J, Lahti M, Lehto T, Repo T, Rummukainen A, Mannerkoski H and Finer L, Responses of silver birch saplings to low soil temperature. Silva Fennica,2006,40(3):429-442.
    [119]Robbins C T, Hanley T A, Hagerman A E, Hjeljord O, Baker D L, Schwartz C C and Mautz W W. Role of tannins in defending plants against ruminants:reduction in protein availability. Ecology,1987,68(1):98-107.
    [120]Phillip D J, Brian R, James P. M, Stephen D, Bronson K S and Scott L E. Condensed tannins'effect on white-tailed deer forage digestibility in Mississippi. Journal of Wildlife Management,2010,74(4):707-713.
    [121]Ayres M P, Clausen T P, MacLean S F, Redman A M and Reichardt P B. Diversity of structure and antiherbivore activity in condensed tannins. Ecology,1997,78(6):1696-1712.
    [122]McArt S H, Spalinger D E, Collins W B, Schoen E R, Stevenson T and Bucho M. Summer dietary nitrogen availability as a potential bottom-up constraint on moose in south-central Alaska. Ecology,2009,90(5):1400-1411.
    [123]崔多英,刘振生,王小明.贺兰山马鹿冬季食性分析.动物学研究,2007,28(4):383.388.
    [124]刘振生.海南大田国家级自然保护区赤麂生态学研究.东北林业大学博士论文.2003.
    [125]吴建平,单继红,李言阔.2007.小兴安岭地区原麝冬季食性研究.兽类学报,2007.27(1):58-63.
    [126]袁喜才,刘晓明.海南坡鹿食性研究.东北林业大学学报,1990,1:66-71.
    [127]张履冰,徐宏发,薛文杰等.陕西凤县林麝的冬、春季食性的初步研究.四川动物,2008,27(1):110-114.
    [128]侯森林.驼鹿冬季营养容纳量的研究.东北林业大学硕士学位论文.2001.
    [129]吴建平,单继红,李言阔.小兴安岭地区原麝冬季食性研究.兽类学报,2007,27(1):58-63.
    [130]Simpson S J and Raubenheimer D. Geometric analysis of macronutrient selection in the rat. Appetite 1997,28:201-213.
    [131]Leibowitz S F, Lucas D J, Leibowitz K L and Jhanwar Y S. Developmental patterns of macronutrient intake in female and male rats from weaning to maturity. Physiology Behavior, 1991,50:1167-1174.
    [132]Min B R, Barry N T, Attwood G T and McNabb W C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages:a review. Animal Feed Science and Technology,2003,106:3-19
    [133]Felton A M, Felton A, Raubenheimer D, Simpson S J, Foley W J, Wood J T, Wallis I R and Lindenmayer D B. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behavioral Ecology,2009,20:685-690.
    [134]Felton A M, Felton A, Wood J T, Foley W J, Raubenheimer D, Wallis I R and Lindenmayer D B. Nutritional ecology of Ateles chamek in lowland Bolivia:how macronutrient balancing influences food choices. International Journal Primatololgy,2009,30: 675-696.
    [135]Rothman J M, Raubenheimer D and Chapman C A. Nutritional geometry:gorillas prioritise nonprotein energy while consuming surplus protein. Biology Letter,2011,7:847-849.
    [136]Rothman J M, Dierenfeld E S, Hintz H F and Pell AN. Nutritional quality of gorilla diets: consequences of age, sex, and season. Oecologia,2008,155:111-122.
    [137]Barbehenn R V, Jones C P, Hagerman A E, Karonen M and Salminen J P. Ellagitannins have greater oxidative activities than condensed tannins and galloylglucoses at high pH: potential impact on caterpillars. Journal of Chemical Ecology,2006,32:2253-2267.
    [138]Barbehenn R V, Jones C P, Karonen M and Salminen J P. Tannin composition affects the oxidative activities of tree leaves. Journal of Chemical Ecology,2006,32:2235-2251.
    [139]Barbehenn R V, Jones C P, Hagerman A E, Karonen M, Salminen J. Ellagitannins have greater oxidative activities than condensed tannins and galloylglucoses at high pH:potential impact on caterpillars. Journal of Chemical Ecology,2006,32:2253-2267.
    [140]Stolter C, Ball J P, Julkunen-Tiitto R, Lieberei R, and Ganzhorn J U. Winter browsing of moose on two different willow species:food selection in relation to plant chemistry and plant response. Canadian Journal of Zoology,2005,83:807-819.
    [141]Topps J H, Elliot R C. Relationship between concentrations of ruminal nucleic acids and excretion of purine derivatives by sheep. Nature,1965,205,498-499.
    [142]Kanjanapruthipong J, Leng RA, Purine derivatives excreted in urine as an indicator estimating microbial yield from the rumen:a review, Asian Australasia. Journal of Animal Science,1998,11:209-216.
    [143]McAllan A B and Smith R H. Degradation of nucleic acids in the rumen. British Journal of Nutrition,1973,29:331-345.
    [144]McAllan A B and Smith R H. Degradation of nucleic acid derivatives by rumen bacteria in vitro. British Journal of Nutrition,1973,29:467-475.
    [145]Storm E,(?)rskov E R, Brown D S. Nutritive value of rumen microorganisms in ruminants. Digestion of microbial amino-acids and nucleic-acids in and losses of endogenous nitrogen from the small intestine of sheep. British Journal of Nutrition,1983,50:479-485.
    [146]Hristov A N, McAllister T A, Ouellet D R, Broderick G A.Comparison of purines and nitrogen-15 as microbial flow markersin beef heifers fed barley- or corn-based diets. Canadian Journal of Animal Science,2005,85:211-222.
    [147]Puchala R, Kulasek G W. Estimation of microbial protein flow from the rumen of sheep using microbial nucleic acid and urinary excretion of purine derivatives. Canadian Journal of Animal Science,1992,72:821-830.
    [148]张玮琪.基于HPLC的马鹿、驼鹿和狍种群冬季营养状态评价.东北林业大学硕士论文.2009.
    [149]Kopple J D. Nutrition, diet and the kidney. Modern nutrition in health and disease,1988, 1230-1268.
    [150]Pils A C, Garrott R A, Borkowski J J. Samping and statistal analysis of snow-urine allantoin:creatinine ratios. Jounal of Wildlife Management,1999,63(4):1118-1132.
    [151]Robert A G, John G C, James G B, White P J, Steve C, David B V. Evaluation of the urine allantoin:creanitine ratio as a nutritional index for elk. Canadian Journal of Zoology, 1997,75:1519-1525.
    [152]Bristow A W, Whitehead D C, Cockburn J E. Nitrogenous constituents in the urine of cattle, sheep and goats. Journal of the Science of Food and Agriculture 1992,59:387-394.
    [153]Chen X B, Samaraweera L, Kyle E R,(?)rskov H A. Urinary excretion of purine derivatives and tissue xanthine oxidase activity in buffaloes (Bubalis bubalis) with special reference to differences between buffaloes and Bos taurus cattle. British Journal of Nutrition, 1996,75:397-407.
    [154]Long R J, Zhang D G, Wang X, Hu X X, Dong S K. Effect of strategic feed supplementation on productive and reproductive performance in yak cows.1999,38(2-3):195-206.
    [155]Guerouali A, Gass Y E, Balcells J, Belenguer A, Nolan J. Urinary excretion of purine derivatives as an index of microbial protein synthesis in the camel (Camelus dromedarius). British Journal of Nutrition,2004,92:225-232.
    [156]Bakker M L, Chen X B, David J, Kyle E, Bourke A D. Urinary and plasma purine derivatives in fed and fasted llamas. Comparative Biochemistry Physiology,1996,113:367-374.
    [157]Christianson D and Creel Scott. A nutritionally mediated risk effect of wolves on elk. Ecology,2010,91(4):1184-1191.
    [158]DelGuidice G D, Mech L D, and Seal U S. Undernutrition and serum and urinary urea nitrogen of white-tailed deer during winter. Journal of Wildlife Management,1994,58:430-436.
    [159]Garrott, R.A., Cook, J.G., James, G.B., White, P.J., Cherry, S. and Vagnoni, D.B.,1997. Evaluation of the urinary allantoin:creatinine ratio as a nutritional index for elk. Canadian Journal of Zoology,75:1519-1525.
    [160]Vagnoni D B, Garrott R A, Cook J G, White P J and Clayton M K,1996. Urinary allantoin:creatinine ratios as a dietary index for elk. Journal of Wildlife Management,1996,60: 728-734.
    [161]Keilin J. The biological significance of uric acid and guanine excretion. Biological Reviews of the Cambridge Philosophical Society,1959,34:265-296.
    [162]Perez J F, Balcells J, Cebrian J A, Martin-Orue S M. Excretion of endogenous and exogenous purine derivatives in sheep:effect of increased concentrate intake. British Journal of Nutrition,1998,79:237-240.
    [163]Moen. Urinary metabolites for enhancing ecological interpretations:a workshop (1). 2002.
    [164]Chen X B. Excretion of purine derivatives by ruminants:endogenous excretion, difference between cattle and sheep. British Journal of Nutrition,1990,3:121-129.
    [165]王海波,蔡宝昌,程林.反相高效液相色谱法测定山药中尿囊素的含量.上海中医药大学学报,2004,18(2):44-46.
    [166]王玲,王东.不同产地山药中尿囊素含量的HPLC测定.河南中医学院学报,2006,21(5):20-22.
    [167]刘丽芳,金蓉鸾,徐国钧.5种水蛭中尿嘧啶,黄嘌呤,次黄嘌呤含量比较.中国药科大学,1999,22(1):8-10.
    [168]林先军,李永仙,李崎,武千钧,董建军,顾国贤.反相离子对色谱法测定啤酒中的嘌呤类物质.食品科学,2006,27(9):219-222.
    [169]孔宇,赵永席,王波,吴红,马国营.反相高效液相色谱法测定尿液4种肾病标志物.第四军医大学学报,2006,27(7):668-670.
    [170]Lavania M, Dala J, Cheema S, Nautiyal C S and Lal B. In vitro study of lipid peroxidation and free radical scavenging activity of cow urine. European Food Research and Technology,2011,232:703-711.
    [171]Siems W G, Vankuijk F, Maass R and Brenke R. Uric-acid and glutathione levels during short-term whole-body cold-exposure. Free Radical Biology and Medicine,1994,16,299-305.
    [172]Mujahid A and Furuse M. Oxidative damage in different tissues of neonatal chicks exposed to low environmental temperature. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology,2009,152,604-608.
    [173]Martarelli D, Cocchioni M, Scuri S, Spataro A and Pompei P. Cold exposure increases exercise-induced oxidative stress. Journal of Sports Medicine and Physical Fitness,2011,51: 299-304.
    [174]Sinha S. Antioxidant and oxidative stress responses of sojourners at high altitude in different climatic temperatures. International Journal of Biometeorology,2010,54,85-92.
    [175]Baillie J K. Endogenous urate production augments plasma antioxidant capacity in healthy, lowland subjects exposed to high altitude. Chest,2007,131,1473-1478.
    [176]Ramirez G. Blood biochemical characteristics of cattle at sea-level and at moderately high-altitude (3,000 m). American Journal of Veterinary Research,1992,53:547-550.
    [177]Jadhav S E, Charan G, Raj T K, Bharti V K and Singh S B. Performance and blood biochemical profile of lambs fed local unconventional feed ingredients at cold and high altitude conditions of Ladakh. Indian Journal of Animal Sciences,2011,81:730-734.
    [178]Fretwell S D. Populations in a Seasonal Environment. Princeton University Press, Princeton, NJ.1972.
    [179]Erasmus B F N, Van Jaarsveld A S, Chown S L, Kshatriya M, Wessels K J. Vulnerability of South African animal taxa to climate change. Global Change Biology,2002,8(7):679-693.
    [180]Danhardt J, Lindstrom A. Optimal departure decisions of songbirds from an experimental stopover site and the significance of weather. Animal Behaviour,2001,62(2):235-243.
    [181]Ackerly D D. Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences,2003,164:S165-S184.
    [182]Parker K L, Robbins C T, and Hanley T A. Energy expenditures for locomotion by mule deer and elk. Journal of Wildlife Management,1984,48:474-488.
    [183]Root T. Energy constraints on avian distributions and abundances. Ecology,1988,69: 330-339.
    [184]Gaillard J M, Festa-Bianchet M, Yoccoz N G, Loison A, and Toi go C. Temporal variation in fitness components of population dynamics in large herbivores. Annual Review of Ecology and Systematics,2000,31:367-393.
    [185]Bender L C, Lomas L A, Browing J. Condition, survival and cause-specific mortality of adult femal mule deer in north-central New Mexico. Journal of Wildlife Management,2007, 71(4):1118-1124.
    [186]Berthold P. Bird migration:A novel theory for the evolution, the control and the adaptability of bird migration. Journal Fur Ornithologie,2001,142:148-159.
    [187]Humphries M M, Thomas D W, and Kramer D L.2003. The role of energy availability in mammalian hibernation:A cost-benefit approach. Physiological and Biochemical Zoology 76:165-179.
    [188]Saether B E. Environmental stochasticity and population dynamics of large herbivores:A search for mechanisms. Trends in Ecology and Evolution,1997,12:143-149.
    [189]Loison A, and Langvatn R. Short- and long-term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia,1998,116:489-500.
    [190]Post E, and Stenseth N C. Climatic variability, plant phenology, and northern ungulates. Ecology,1999,80:1322-1339.
    [191]Levin S A. The problem of pattern and scale in ecology. Ecology,1992,73:1943-1967.
    [192]Karl J W, Heglund P J, Garton E O, Scott J M, Wright N M, and Hutto R L. Sensitivity of species habitat-relationship model performance to factors of scale. Ecological Applications, 2000,10:1690-1705.
    [192]Miyashita T, Suzuki M, Takada M, Fujita G, Ochiai K, Asada M. Landscape structure affects food quality of sika deer (Cervics nippon) evidenced by fecal nitrogen levels. Population Ecology,2007,49:185-190.
    [193]Ellis R D, McWhorter T J, Maron M. Interating landscape ecology and conservation physiology. Landscape Ecology,2012,27(1):1-12.
    [194]Parker K L, Robbins C T, and Hanley T A. Energy expenditures for locomotion by mule deer and elk. Journal of Wildlife Management,1984,48:474-488.
    [195]Root T. Energy constraints on avian distributions and abundances. Ecology 1988,69: 330-339.
    [196]Haykin S. Neural Networks:A Comprehensive Foundation. Macmillan College Publishing Company, New York, USA.1994.
    [197]Yan P F, Zhang C S. Artificial Neural Networks and Computation of Simulated Evolution. Tsinghua University Press, Beijing, China.2000.
    [198]Fecit. Analysis and design of neural networks in MATLAB 6.5. Electronics Industry Press, Beijing, China,2003.
    [199]Zhang W J. Computational ecology:Artificial neural networks and their applications. World Scientific, Singapore,2009.
    [200]张德丰,等.Matlab神经网络应用设计.北京:机械工程出版社.2009.
    [201]White P J, Garrott R A, Borkowski J J, Berardinelli J G, Mertens D R and Pils A C. diet and nutrition of central yellowstone elk during winter. Terrestrial Ecology,2008,3:157-176.
    [202]Parker K L, Robbins C T and Hanley T A. Energy expenditures for locomotion by mule deer and elk. Journal of Wildlife Management,1984,48:474-488.
    [203]Sweeney J M and Sweeney J R. Snow depth influencing winter movements of elk. Joural of Mammalology,1984,65:524-526.
    [204]Telfer E S and Kelsall J P. Adaptation of some large North American mammals for survival in snow. Ecology,1984,65:1828-1834.
    [205]Mautz W W. Nutrition and carrying capacity. In:Big game of North America (eds. J.L. Schmidt and D.L. Gilbert). Stackpole, Harrisburg.1978.
    [206]Tucker B, Mahoney S, Greene B, Menchenton E and Russell L. The influence of snow depth and hardness on winter habitat selection by caribou on the southwest coast of Newfoundland. Rangifer,1991,11:160-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700