用户名: 密码: 验证码:
匀浆提取银中杨酚苷及其体外抗PRV活性与清除DPPH自由基能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在建立总酚苷可见分光光度法检测方法和水杨苷含量高效液相色谱法的检测方法的基础上,进行银中杨中酚苷匀浆提取工艺的影响因素试验研究。在单因素试验的基础上,应用响应面法优化工艺,得到最佳工艺和银中杨酚苷提取物,并研究了银中杨酚苷提取物大孔吸附树脂纯化的方法。在对猪伪狂犬病病毒(SC毒株)的分离及鉴定的基础上,完成银中杨酚苷体外抗伪狂犬病病毒(PRV)的活性试验,并进行了银中杨酚苷与PRV相互作用荧光定量PCR检测。同时,通过清除DPPH能力测试方法考查了银中杨酚苷的抗氧化能力。具体研究结果如下:
     1、采用响应面法对匀浆提取银中杨干树皮、新鲜树皮、新鲜芽鳞、鲜叶、新鲜芽鳞和枝叶混合物(W芽鳞:W枝叶=1:1)五种原料中总酚苷、水杨苷成分进行优化。考察了匀浆时间、乙醇体积分数、匀浆次数、料液比、粒径大小等因素对提取工艺的影响,应用了Box-Behnken的实验设计,选取总酚苷、水杨苷纯度与得率作为响应值。响应面法优化后提取工艺条件为:
     银中杨干树皮酚苷提取条件:提取时间5min、乙醇体积分数10%、液料比10:1mL/g、提取次数1次。在所确定的工艺条件下,酚苷纯度3.654%;水杨苷纯度0.3726%;得率6.5571%;银中杨新鲜树皮酚苷提取条件:提取时间5min、乙醇体积分数15%、液料比5:1mL/g、提取次数1次。在所确定的工艺条件下,酚苷纯度2.4289%;水杨苷纯度0.3099%;得率2.5786%;银中杨新鲜芽鳞酚苷提取条件:提取时间3mmin、乙醇体积分数10%、液料比15:1mL/g、提取次数1次。在所确定的工艺条件下,酚苷纯度2.0615%;水杨苷纯度0.7396%;得率4.877%;银中杨鲜叶酚苷提取条件:提取时间3mmin、乙醇体积分数15%、液料比10:1mL/g、提取次数1次。在所确定的工艺条件下,酚苷纯度5.554%;水杨苷纯度0.5049%;得率4.4156%;银中杨新鲜芽鳞和枝叶混合物酚苷提取条件:提取时间5min、乙醇体积分数20%、液料比10:1mL/g、提取次数1次。在所确定的工艺条件下,酚苷纯度4.2021%;水杨苷纯度1.0679%;得率4.8915%。
     经过HPD-700大孔树脂吸附实验,酚苷、水杨苷含量分别从44.0561%和4.0616%提高到86.4466%和9.1899%,回收率80.2341%。
     2、银中杨酚苷体外具有抗PRV感染细胞的能力,通过观察细胞病变效应(CPE),在同等条件下,鲜树皮酚苷提取物体外抗PRV效果最好,其次为干树皮酚苷提取物,都优于利巴韦林和水杨苷。对107TCIDso PRV,半数有效抑制浓度分别为:干树皮酚苷提取物IC50577.981ug/ml、鲜树皮酚苷提取物IC50561.35ug/ml。
     根据PRV-SC毒株的gE基因参考序列,建立PRV荧光定量PCR方法:构建阳性标准品(PRV-gE质粒),进行PCR鉴定。经序列测定,测定结果与参考毒株的基因序列完全一致。建立荧光定量PCR标准曲线,进行敏感性试验和特异性试验:得到标准曲线方程为Y=3.489*LOG(X)+46.81,相关系数R2=0.999,扩增效率E=0.935。对银中杨酚苷与PRV相互作用后,PRV载量进行定量分析。定量PCR拷贝数与CPE结果相符,PRV载量有明显的变化。
     3、对DPPH的清除能力以半清除率浓度ICs0表示,各抗氧化剂的抗氧化能力的大小顺序为银中杨新鲜枝叶芽鳞混合物酚苷>银中杨新鲜鳞芽酚苷>VC>银中杨鲜叶酚苷>银中杨鲜皮酚苷>银中杨干皮酚苷>BHT。ICso值分别为0.3519mg/mL、0.3553mg/mL、0.3742mg/mL、0.3810mg/mL、0.4492mg/mL、0.5288mg/mL、0.6277mg/mL。
     银中杨清除DPPH·的能力与酚苷含量成正相关,银中杨新鲜枝叶芽鳞混合物酚苷、银中杨新鲜鳞芽酚苷清除DPPH·的能力均强VC,各酚苷清除DPPH·的能力均优于BHT,其中银中杨新鲜枝叶芽鳞混合物的酚苷提取物清除DPPH·的能力最强。
     本研究的主要创新性表现在三个方面:首次应用匀浆提取的方法从银中杨中提取酚苷;首次验证银中杨酚苷具有体外抗PRV病毒活性作用;首次验证银中杨酚苷提取物具有清除DPPH自由基的能力,新鲜原料提取物的这种能力体现更为明显。
     本研究的目的意义在于在自主创新的生态工艺理论体系指导下,使用匀浆提取的生态分离方法完成银中杨酚苷的提取分离,得到银中杨酚苷提取物,对银中杨的资源实现最大化的利用,最终以尽可能少的资源消耗和尽可能小的环境代价实现最大的经济效益和生态效益。
In this study,UV/Visible spectrophotometer and high performance liquid chromatography (HPLC)detection methods has been established for the determination of the total phenolic glycosides(PGs) and salicin.Research on impact factors on the basis of single factor tesin the PGs homogenates extraction process.Using response surface methodology (RSM) to get the optimizing PGs extract process.Extracting and purifying with macroporous resins was found to be an efficient potential method for PGs extracts.Pseudorabies virus (PRV),a swine neurotropic alphaherpesvirus, was separated and identified as PRV-SC strain in this paper. An in vitro model was used to examine anti-PRV activity test of PGs.Fluorescence Quantitative PCR in detection of PGs-PRV interaction. At the same time, the ability to clear the DPPH test methods to examine PGs antioxidant capacity. The findings are as follows:
     First, using the response surface method of dry barks, fresh bark, fresh buds, fresh leaves, and fresh buds,leaves mixture (1:1) five kinds of raw materials to test ando ptimize total PGs, salicin component. The homogenate time, ethanol volume fraction, the homogenate number, solid-liquid ratio, particle size and other factors on the extraction process, the application of the Box-Behnken experimental design, select the concentration and yield of total PGs, salicin as a response value.
     In the optimized model,several response plots were generated to examine parameter effects on PGs RSM extract process:
     Dry barks PGs extraction conditions:5min extraction time,10%ethanol concentration, Solid-liquid ratio10:1mL/g, one extraction times. Determined by process conditions, the total PGs concentration is3.654%; salicin concentration is0.3727%; yield is6.5571%; fresh barks PGs extraction conditions:5min extraction time,15%ethanol concentration, Solid-liquid ratio5:1mL/g, one extraction times. Determined by process conditions, the total PGs concentration is2.4289%,salicin concentration is0.3099%,yield is2.5786%;Fresh buds PGs extraction conditions:extraction time3min,10%ethanol concentration, Solid-liquid ratio15:1mL/g, one extraction times, Determined by process conditions, the total PGs concentration is2.0615%, salicin concentration is0.7396%; yield of4.877%; Fresh leaves PGs extraction conditions:3min extraction time,15%ethanol concentration. Solid-liquid ratio10:1mL/g, one extraction times.Determined by process conditions, the total PGs concentration of5.554%; salicin concentration is0.5049%,yield is4.4156%; Mixture of fresh buds and leaves PGs extraction conditions:5min extraction time,20%ethanol concentration, Solid-liquid ratio10:1mL/g, one extraction times. Determined under the process conditions, the total PGs concentration is4.2021%, salicin concentration is1.0679%purity; yield is4.8915%.
     After macroporous resin adsorption and desorption experiments, PGs, salicin content increased from44.0561%and4.0616%to86.4466%and9.1899%,80.2341%recovery by HPD-700.
     Second, PGs in vitro anti-PRV-infected cells, by observing the cytopathic effect (CPE), under the same conditions, the fresh bark PGs extracts anti-PRV results is the best, followed by dry barks PGs extract.They are superior to ribavirin and salicin. Median effective inhibitory concentration107TCID50PRV:Dry barks PGs extract IC50is1147.981ug/ml, the fresh barks PGs extract IC50is561.3489ug/ml.
     The gE gene reference sequence according to the strain of PRV-SC, PRV fluorescent quantitative PCR method:build a positive standard (PRV-gE plasmid), identified by PCR. Determination of the sequence, the measurement results with the gene sequence of the reference strain completely consistent, quantitative PCR standard curve, sensitivity test and specificity of the test:Standard curve equation Y=3.489*LOG(X)+46.81, R2=0.999, amplification efficiency E=0.935.
     Interaction PGs-PRV,PRV load for quantitative analysis. Quantitative PCR copy number is consistent with the CPE results:PGs-PRV interaction, under the same conditions, fresh bark PGs extract is the best, followed by fresh bark PGs extract, They are superior to ribavirin and salicin, PRV significant changes in the load.
     Third, DPPH scavenging half-clearance concentration IC50, the size of the order of the antioxidant capacity of antioxidants:Mixture of fresh buds and leaves PGs extract> fresh buds PGs extract> VC> fresh leaves PGs extract> BHA> fresh barks PGs extract> dry barks PGs extract. IC50values were0.3519mg/mL,0.3553mg/mL,0.3742mg/mL,0.3810mg/mL,0.4492mg/mL,0.5288mg/mL,0.6277mg/mL.
     Populus clear DPPH capacity and PGs content as being relevant,the capacity of Mixture of fresh buds and leaves PGs extract and fresh buds PGs extract is strong than VC; the various PGs clear DPPH the ability are superior to BHT. Mixture of fresh buds and leaves PGs extract Clearing DPPH is strongest.
     The major innovation of this study mainly in three aspects:First, application homogenates extraction process to get PGs extract s from Populus parts. Second, First validation of Populus PGs with in vitro anti-PRV virus activity. Third,The PGs extracts fresh ingredients have clear DPPH capacity antioxidant activity.
     The purpose and the significance of this study:Under the guidance of the theory of the ecological process of independent innovation system to complete the homogenates extraction and separation of PGs. and ultimately to the minimal resource consumption and environmental costs as much as possible to maximize the economic and ecological benefits.
引文
[1]G Andreas Boeckler, Jonathan Gershenzon, Sybille B. Unsicker.Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry, 2011,72:1497-1509.
    [2]Brian J. Rehill,Thomas G Whitham,Gregory D.Martinsen,Jennifer A. Schweitzer,Joseph K.Bailey,RichardL. Lindroth.Developmental Trajectories in Cottonwood Phytochemistry. J Chem Ecol,2006,32(10):2269-2285.
    [3]Basey, J.M., Jenkins, S.H., Miller, GC. Food selection by beavers in relation to inducible defenses of Populus tremuloides. Oikos,1990,59:57-62.
    [4]Bingaman, B.R., Hart, E.R. Clonal and leaf age variation in Populus phenolic glycosides, implications for host selection by Chrysomela scripta (Coleoptera: Chrysomelidae). Environ. Entomol.,1993,22:397-403.
    [5]Harding, S.A., Jarvie, M.M., Lindroth, R.L., Tsai, C.J.A comparative analysis of phenylpropanoid metabolism, N utilization, and carbon partitioning in fast-and slow-growing Populus hybrid clones. J. Exp. Bot. 2009,60:3443-3452.
    [6]Haruta, M., Pedersen, J.A., Constabel, C.P. Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides):cDNA cloning, expression, and potential substrates. Physiol. Plant.2001,112:552-558.
    [7]R. THOMAS PALO.Distribution of birch (Betula spp), willow (Salix spp), and poplar (Populus spp) secondary metabolites and their potential role as chemical defense against herbivores. J. Chem. Ecol.1984,10:499-520.
    [8]Rehill, B., Clauss, A., Wieczorek, L., Whitham, T., Lindroth, R.Foliar phenolic glycosides from Populus fremontii, Populus angustifolia, and their hybrids. Biochem. Syst. Ecol,2005,33:125-131.
    [9]Irwin A. Pearl, Stephen F. Darling.Studies on the leaves of the family salicaceae-xi: The hot water extractives of the leaves of Populus Balsamifera.Phytochemistry, 1968,7(10):1845-1849
    [10]Pearl, I.A., Darling, S.F.Investigation of hot water extractives of Populus balsamifera bark. Phytochemistry,1969,8:2393-2396.
    [11]Pearl, I.A., Darling, S.F., Phenolic extractives of leaves of Populus balsamifera and of P. trichocarpa. Phytochemistry,1971,10:2844-2847.
    [12]Clausen, T.P., Chen, J., Bryant, J.P., Provenza, F.D., Villalba, J.Dynamics of the volatile defense of winter "dormant" balsam poplar (Populus balsamifera). J.Chem. Ecol.2010,36:461-466.
    [13]Pearl, I.A., Darling, S.F.The structures of salicortin and tremulacin.Tetrahedron Lett. 1970,44:3827-3830.
    [14]Pearl, I.A., Darling, S.F.The structures of salicortin and tremulacin. Phytochemistry 1971,10:3161-3166.
    [15]Si,C.L.,Wu, L., Zhu, Z.Y. Phenolic glycosides from Populus davidiana bark.Biochem. Syst. Ecol.2009,37,221-224.
    [16]Zhang, X.F., Thuong, P.T., Min, B.S., Ngoc, T.M., Hung, T.M., Lee, I.S., Na, M., Seong,Y.H., Song, K.S., Bae, K..Phenolic glycosides with antioxidant activity from the stem bark of Populus davidiana. J. Nat. Prod.2006,69:1370-1373.
    [17]Picard, S., Chenault, J., Augustin, S., Venot, C.Isolation of a new phenolic compound from leaves of Populus deltoides. J. Nat. Prod.,1994,57:808-810.
    [18]Pearl, I.A., Darling, S.F.,.Studies of hot water extractives of bark and leaves of Populus deltoides Bartr.. Can. J. Chem.,1971,49:49-55.
    [19]Clausen,T.P.,Keller, J.W., Reichardt, P.B.,1990. Aglycone fragmentation accompanies beta-glucosidase catalyzed-hydrolysis of salicortin, a naturallyoccurring phenol glycoside. Tetrahedron Lett.1990,31:4537-4538.
    [20]R.L. Lindroth and M.S. Pajutee.Chemical analysis of phenolic glycosides:art, facts, and artifacts. Oecologia (Berlin),1987,74:144-148.
    [21]Pearl, I.A., Justman, O., Darling, S.F..Populin from leaves of Populus grandidentata and Populus tremuloides. J. Org. Chem.1962,27:2685-2687.
    [22]Pearl IA, Darling SF.Studies on the bark of the bamily Salicaceae. V.I Grandidentatin, a new glucoside from the bark of Populus grandidentata.J. Org. Chem.,1962,27:1806-1809.
    [23]Erickson, R.L., Pearl, I.A., Darling, S.F..Populoside and grandidentoside from bark of Populus grandidentata. Phytochemistry,1970,9:857-863.
    [24]Pearl, I.A., Darling, S.F.,.Hot water extractives of the leaves of Populus heterophylla L.. J. Agric. Food. Chem.1977,25:730-734.
    [25]Thieme H, Benecke R.Die Phenolglykoside den Salicaceen 7. Mitteilung uber die Glykosidfuhrung einheimischer bzw. mitteleuropaischen Kultivierter Populus Arten. Pharmazie 1970,25:780-788.
    [26]Thieme H.Uber die Phenoglykoside der Gattung Populus. Planta Med,1967,15:35-40.
    [27]Thieme H, Benecke R.Isolierung eines neues Phenolglykoside aus Populus nigra.Pharmazie,1967,22:59-60.
    [28]ThiemeH, Benecke R.Isolierung und Konstitutionsaufklarung eines Cyclolignanglyko side aus dem Blaitter von Populus nigra. Pharmazie,1969,24:567-572.
    [29]Ogawa, Y., Oku, H., Iwaoka, E., Iinuma, M., Ishiguro, K.,Allergy-preventive phenolic glycosides from Populus sieboldii. J. Nat. Prod.2006,69:1215-1217.
    [30]Ilka Nacif Abreu,Maria Ahnlund, Thomas Moritz,Benedicte Riber AlbrectsenUHPLC-ESI/TOFMS Determination of Salicylate-like Phenolic Gycosides in Populus tremula Leaves. J Chem Ecol,2011,37:857-870.
    [31]Pearl, I.A., Darling, S.F.,.Hot water phenolic extractives of bark and leaves of diploid Populus tremuloides. Phytochemistry,1971,10:483-484.
    [32]Clausen, T.P., Keller, J.W., Reichardt, P.B., Aglycone fragmentation accompanies beta-glucosidase catalyzed-hydrolysis of salicortin, a naturallyoccurring phenol glycoside. Tetrahedron Lett.1990,31:4537-4538.
    [33]Erwin, E.A., Turner, M.G, Lindroth, R.L., Romme, W.H.,2001. Secondary plant compounds in seedling and mature aspen (Populus tremuloides) in Yellowstone National Park. Wyoming. Am. Midl. Nat.,2001,145:299-308.
    [34]Osier, T.L., Hwang, S.-Y, Lindroth, R.L.,.Effects of phytochemical variation in quaking aspen Populus tremuloides clones on gypsy moth Lymantria dispar performance in the field and laboratory. Ecol. Entomol.,2000,25:197-207.
    [35]Osier, T.L., Hwang, S.Y., Lindroth, R.L..Within-and between-year variation in early season phytochemistry of quaking aspen (Populus tremuloides Michx.) clones. Biochem. Syst. Ecol.,2000,28:197-208.
    [36]Young, B., Wagner, D., Doak, P., Clausen, T..Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining. J. Chem. Ecol.,2010,36:369-377.
    [37]Young, B., Wagner, D., Doak, P., Clausen, T.,.Within-plant distribution of phenolic glycosides and extrafloral nectaries in trembling aspen (Populus tremuloides, Salicaceae). Am. J. Bot.,2010,97:601-610.
    [38]Tod L Osier, Shaw-Yhi Hwang, Richard L Lindroth Within-and between-year variation in early season phytochemistry of quaking aspen (Populus tremuloides Michx.) clonesBiochemical Systematics and Ecology,2000,28(3):197-208.
    [39]Warren JM, Bassman JH, Fellman JK, Martinson DS, Eigenbrode S. Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiology,2003,23:527-535.
    [40]Chuan-Ling Si, Jie Xu, Jin-Kyu Kim,Young-Soo Bae, Peng-Tao Liu, Zhong Liu. Antioxidant properties and structural analysis of phenolic glucosides from bark of Populus ussuriensis Kom.Wood Sci Techno 1,2011,45:5-13.
    [41]李春明.杨树中酚类物质含量季节动态的研究.东北林业大学.2007.
    [42]任广英,范竹珊,郭朝霞,许成启,王福森,温宝阳,李晶.银中杨生长和生长规律.东北林业大学学报,2000,28(5):67~71.
    [43]张建华,张雪冬,谢本山.银中杨生长速增性定量研究.林业科学,2011,3:210~211.
    [44]张剑斌,谷向生,杨本涛.银中杨在林业工程建设中的推广及应用.防护林科技,2003,57(4):53~54.
    [45]Lindroth, R.L..Hydro lysis of phenolic glycosides by midgut beta-glucosidases in Papilio glaucus subspecies. Insect Biochem.1998,18:789-792.
    [46]Lindroth, R.L..Biochemical ecology of aspen-lepidoptera interactions. J. Kans. Entomol.1991,64:372-380.
    [47]Lindroth, R.L., Bloomer, M.S..Biochemical ecology of the forest tent caterpillar: responses to dietary protein and phenolic glycosides. Oecologia,1991,86:408-413.
    [48]Lindroth, R.L., Hemming, J.D.C..Response of the gypsy moth (Lepidoptera: Lymantriidae) to tremulacin, an aspen phenolic glycoside. Environ. Entomol. 1990,19:842-847.
    [49]Lindroth,R.L.,Hsia, M.T.S., Scriber, J.M.,.Seasonal patterns in the phytochemistry of 3 Populus species. Biochem. Syst. Ecol.,1987,15:681-686.
    [50]Lindroth, R.L., Hwang, S.Y.,.Clonal variation in foliar chemistry of quaking aspen (Populus tremuloides Michx.). Biochem. Syst. Ecol.,1996,24:357-364.
    [51]Lindroth, R.L., Koss, P.A.,.Preservation of Salicaceae leaves for phytochemical analyses:further assessment. J. Chem. Ecol.1996,22:765-771
    [52]Lindroth, R.L., Peterson, S.S.,.Effects of plant phenols on performance of southern armyworm larvae. Oecologia,1988,75:185-189.
    [53]Lindroth, R.L., Roth, S., Kruger, E.L., Volin, J.C., Koss, P.A.,.CO2-mediated changes in aspen chemistry:effects on gypsy moth performance and susceptibility to virus. Global Change Biol.,1997,3:279-289.
    [54]Lindroth, R.L., Roth, S., Nordheim, E.V.,.Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia,2001,126: 371-379.
    [55]Lindroth, R.L., Scriber, J.M., Hsia, M.T.S..Chemical ecology of the tiger swallowtail: mediation of host use by phenolic glycosides. Ecology,1988,69:814-822.
    [56]Edwards W R N Effect of salicin content on palatability of Populus foliage to opossum (Trichosurus vulpecula) New Zealand Journal of Science.1978,21:103-106.
    [57]房建军,韩一凡,胡建军.美洲黑杨回交群体生长量与酚甙类次生代谢产物含量的变异.林业科学,2002,38(4):40~47.
    [58]Preeti Rawat, Manmeet Kumar, Neha Rahuja, Daya Shankar Lai Srivastava, Arvind Kumar Srivastava, Rakesh Maurya.Synthesis and antihyperglycemic activity of phenolic C-glycosides.Bioorganic & Medicinal Chemistry Letters, 2011,21(1):228-233.
    [59]Manmeet Kumar, Preeti Rawat, Neha Rahuja, Arvind Kumar Srivastava, Rakesh Maurya.Antihyperglycemic activity of phenylpropanoyl esters of catechol glycoside and its dimers from Dodecadenia grandiflora.Phytochemistry,2009,70(11-12):1448-1455.
    [60]Manmeet Kumar, Preeti Rawat, Mohammad Faheem Khan, Akhilesh K. Tamarkar, Arvind K. Srivastava, Kamal R. Arya, Rakesh Maurya.Phenolic glycosides from Dodecadenia grandiflora and their glucose-6-phosphatase inhibitory activity.Fitoterapia,2010,81(6):475-479.
    [61]Viqar Uddin Ahmad, Muhammad Athar Abbasi, Hidayat Hussain, Muhammad Nadeem Akhtar, Umar Farooq, Naheed Fatima, M.Iqbal Choudhary.Phenolic glycosides from Symplocos racemosa:natural inhibitors of phosphodiesterase I.Phytochemistry,2003,63(2):217-220.
    [62]Muhammad Iqbal Choudhary, Naheed Fatima, Muhammad Athar Abbasi, Saima Jalil, Viqar Uddin Ahmad, Atta-ur-Rahman.Phenolic glycosides, a new class of human recombinant nucleotide pyrophosphatase phosphodiesterase-1 inhibitors.Bioorganic & Medicinal Chemistry,2004,22(12):5793-5798.
    [63]Derya Gulcemal, Ozgen Alankus-Call s kan, Canan Karaalp, Ahmet Uygar Ors, Petek Ballar, Erdal Bedir. Phenolic Glycosides with antiproteasomal activity from Centaurea urvillei DC. subsp. Urvillei.Carbohydrate Research, 2010,22(17):2529-2533.
    [64]Sarot Cheenpracha, Eun-Jung Park, Wesley Y. Yoshida, Chaz Barit, Marisa Wall, John M. Pezzuto, Leng Chee Chang.Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits.Bioorganic & Medicinal Chemistry, 2010,18(17):6598-6602
    [65]Tran Manh Hung, Nguyen Hai Dang, Jin Cheol Kim, Jae Sue Choi, Hyeong Kyu Lee, Byung-Sun Min. Phenolic glycosides from Alangium salviifolium leaves with inhibitory activity on LPS-induced NO, PGE2, and TNF-a production.Bioorganic & Medicinal Chemistry Letters,2009,19(15):4389-4393.
    [66]杨东旭,何克勤,程桂芳.特里杨甙对过敏性慢反应物质和组胺的拮抗作用.药学学报1995,30(4):254~257.
    [67]杨东旭,胡小敏,赵生卉.特里杨甙对免疫功能的影响.中药药理与临床,1997,13(3):23~25.
    [68]Jun Chang, Ryan Case. Phenolic glycosides and ionone glycoside from the stem of Sargentodoxa cuneata.Phytochemistry,2005,66(23):2752-2758.
    [69]Jose A Bravo B, Michel Sauvain, Alberto Gimenez T, Victoria Munoz O, Jorgia Callapa, Louisette Le Men-Olivier, Georges Massiot, Catherine Lavaud.Bioactive phenolic glycosides from Amburana cearensis.Phytochemistry,1999,50(15):71-74.
    [70]Jeong Ah Kim, Seo Young Yang, Anthony Wamiru, James B. McMahon, Stuart F.J. Le Grice, John A. Beutler, Young Ho Kim.New monoterpene glycosides and phenolic compounds from Distylium racemosum and their inhibitory activity against ribonuclease H Bioorganic & Medicinal Chemistry Letters,2011,21(10):2840-2844.
    [71]陈希,赵翔,马朋,张页.加杨芽鳞提取物的抗肿瘤作用研究.中国肿瘤,2004,13(5):304~308.
    [72]Jian Bai, Zhen-Feng Fang, Hui Chen, Shi-Shan Yu, Dan Zhang, Huai-Ling Wei, Shuang-Gang Ma, Yong Li, Jing Qu, Song Xu, Jing-Hong Ren, Fen Zhao, Nan Zhao, Jun-Hong Liu.Antioxidant phenolic glycosides from the roots of Illicium dunnianum.Carbohydrate Research,2012,361(1):206-211.
    [73]Tzung-Han Chou, Hsiou-Yu Ding, Leong-Perng Chan, Jing-Yao Liang, Chia-Hua Liang.Novel phenolic glucoside, origanoside, protects against oxidative damage and modulates antioxidant enzyme activity.Food Research International, 2011,44(5):1496-1503.
    [74]Yoshiyuki Watanabe, Mizuka Nagai, Kazuhiro Yamanaka, Kunio Jose, Masato Nomura.Synthesis of lauroyl phenolic glycoside by immobilized lipase in organic solvent and its antioxidative activity.Biochemical Engineering Journal, 2009,43(3):261-265.
    [75]Simona De Marino, Carmen Festa, Franco Zollo, Filomena Incollingo, Gennaro Raimo, Giovanna Evangelista, Maria Iorizzi.Antioxidant activity of phenolic and phenylethanoid glycosides from Teucrium polium L.Food Chemistry, 2012,133(1):21-28.
    [76]Rahul Mohan, Rahul Birari, Aniket Karmase, Sneha Jagtap, Kamlesh Kumar Bhutani.Antioxidant activity of a new phenolic glycoside from Lagenaria siceraria Stand, fruits.Food Chemistry,2012,132(1):244-251.
    [77]Mahmoud I. Nassar, Tahia K. Mohamed, Sayed A. El-Toumy, Ahmed H. Gaara, Walaa A. El-Kashak, Inaki Brouard, Salah M. El-kousy. Phenolic metabolites from Pyrus calleryana and evaluation of its free radical scavenging activity.Carbohydrate Research,2011,346(1):64-67.
    [78]]Zhang, X.F., Thuong, P.T., Min, B.S., Ngoc, T.M., Hung, T.M., Lee, I.S., Na, M., Seong,Y.H., Song, K.S., Bae, K.. Phenolic glycosides with antioxidant activity from the stem bark of Populus davidiana. J. Nat. Prod.,2006,69:1370-1373.
    [79]Dora Tombacz, Judit S. Toth, Zsolt Boldogkoi Effects of deletion of the early protein 0 gene of pseudorabies virus on the overall viral gene expression, Gene,2012,493(10): 235-242.
    [80]Tirabassi R S, Enquist L W. Role of envelope protein gE endocytosis in the pseudorabies virus life cycle J Virol,1998,72:4571-4579.
    [81]C. Ros Bascunana, L. Bjornerot, A. Ballagi-Pordany, J-A. Robertsson, S. Belak Detection of pseudorabies virus genomic sequences in apparently uninfected'single reactor'pigs Veterinary Microbiology,1997,55(1-4):37-47.
    [82]R. Thiery, C. Pannetier, H.-J. Rziha, A. Jestin A fluorescence-based quantitative PCR method for investigation of pseudorabies virus latency. Journal of Virological Methods,1996,61(1-2):79-87.
    [83]周斌,苏鑫铭,张素芳,贾赞,曹瑞兵,陈溥言.PCR快速检测伪狂犬病病毒野毒感染.中国病毒学,2004,19(6):612~615.
    [84]Chao-fan Zhang, Shang-jin Cui, Chao Zhu Loop-mediated isothermal amplification for rapid detection and differentiation of wild-type pseudorabies and gene-deleted virus vaccinesJournal of Virological Methods,2010,169(1):239-243.
    [85]Mettenleiter TC,. Zsak L, Zuckermann F, Sugg N, Kern H, Ben-Porat T. Interaction of glycoprotein gⅢ with a cellular heparinlike substance mediates adsorption of pseudorabies virus. Journal of Virology,1990,64(1):278-286.
    [86]丁建华,屈朝霞,张光道,任桂梅,王家富,罗满林,张楚瑜.肝素钠对伪狂犬病毒侵染BHK_21细胞和小白鼠的抑制.,畜牧与兽医,1998,30(2):51~52.
    [87]黄现青,别小妹,陆兆新,吕凤霞,杨淑晶.抗微生物脂肽体外抗PRV和PPV的研究Virologica Sinica,2006,21(5):426-429.
    [88]张素梅,杨明凡,王学斌,崔保安,王莉.黄芪、金银花体外对伪狂犬病病毒作用研究.中兽医医药杂志,2003,2:8~10.
    [89]王林青,崔保安,张红英.金银花、山银花黄酮类提取物体外抗伪狂犬病病毒作用研究中国畜牧兽医2011,38(3):183~188.
    [90]Shih-Ling Hsuan, Shih-Chieh Chang, Sheng-Yang Wang, Tien-Ling Liao, Ting-Ting Jong, Maw-Sheng Chien, Wei-Cheng Lee, Shih-Shiung Chen, Jiunn-Wang Liao The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus Journal of Ethnopharmacology,2009,123(1):61-67.
    [91]刘帅涛,陶慧林,李锦艳.4种黄酮小分子对DPPH-自由基的清除作用及构效关系研究.分析测试学报,2012,31(1):71~75.
    [92]袁亚男,陈承瑜,杨滨小,谷明,楠文.31种黄酮、酚酸类化合物和10种中药清除DPPH能力考.中国中药杂志,2009,34(13):1695~1670.
    [93]穆怀雪,杨新周,姚福泉,李学森,胡秋芬.不同提取方法对五味子清除DPPH-自由基作用的影响研究.时珍国医国药,2012,23(6):1454~1455.
    [94]李美兰,郭益冰,孟颖,杨宇民.红景天苷类似物合成及抗二苯基苦基苯肼自由活性研究,交通医学,2010,24(4):337~340.
    [95]于敏,杨春荣,陈帅.五倍子中多酚类物质对DPPH-自由基清除作用.ESR研究.2007,14(5):345-347.
    [96]熊何健.郑建华.吴国宏.王美贵.荔枝多酚的分离制备及清除DPPH活性.食品科学2006,27(7):86~88.
    [97]周桂芬,吕圭.铁皮石斛不同部位黄酮碳苷类成分及清除DPPH-自由基能力比较研究.中国中药杂志,2012,37(11):1536~1540.
    [98]Shuyun Shi, Yongjian Ma, Yuping Zhang, Liangliang Liu, Qi Liu, Mijun Peng, Xiang Xiong Systematic separation and purification of 18 antioxidants from Pueraria lobata flower using HSCCC target-guided by DPPH-HPLC experiment Separation and Purification Technology,2012,89:225-233.
    [99]李东锐,苏明华,汪海.波超声波及匀浆技术在米糠多糖和米糠蛋白提取中的应用研究.粮油加工,2007,4:1-4.
    [100]祖元刚,赵春建,李春英,史权,焦琰.鲜法匀浆萃取烟叶中茄尼醇的研究.高校化学工程学报,2005,9(6):757~761.
    [101]赵春建,祖元刚,付玉杰,李春英,王延兵,侯春莲.匀浆法提取沙棘果中总黄酮的工艺研究.林产化学与工业,2006,26(2):38~40.
    [102]杨磊,肖长文,赵春建,祖元刚,张琳,张莹,马春慧.pH控制匀浆法从迷迭香中提取鼠尾草酸.黑龙江大学自然科学学报,2008,25(4):514~518.
    [103]张琳.杨磊.贾佳.祖元刚.牛卉颖.田浩.刘玉.匀浆法提取长春花中长春碱、文多灵和长春质碱.高校化学工程学报,2008,22(5):765~770.
    [104]贾佳,杨磊,祖元刚.落叶松树皮原花青素的匀浆提取及响应面法优化.林产化学与工业,2009,29(3):78~84.
    [105]史伟国,祖元刚,赵春建,杨磊,李佳慧.匀浆法提取喜树果和喜树叶中喜树碱的研究.林产化学与工业,2009,29(1):79~82.
    [106]赵春建,李佳慧,杨磊,李晓娟.祖元刚优化喜树果中喜树碱和10-羟基喜树碱的匀浆提取工艺.森林工程,2009,25(2):21~25.
    [107]祖元刚,史伟国,赵春建,杨磊,李晓娟,李佳慧.喜树果中喜树碱和10-羟基喜树碱的匀浆提取工艺.天然产物研究与开发,2008,20:1088~1090,1124.
    [108]杨磊,贾佳,祖元刚.蓝莓总花色苷匀浆的提取条件优化及抗氧化活性.食品科学,2009,30(20):29-35.
    [109]杨磊,刘婷婷,卫蔚,王化,祖元刚.响应面法优选新疆紫草总萘醌的匀浆提取工艺研究.中草药,2010,41(4):568-573.
    [110]田浩,刘玉,夏禄华,祖元刚,杨磊.张琳匀浆法提取花生植株中白藜芦醇.东北林业大学学报,2008,36(3):81-83.
    [111]刘洋,杨磊,郝婧玮,祖元刚.响应面法优化匀浆提取刺五加主要酚苷及苷元的工艺.化工进展,2010,29(4):745~752.
    [112]徐祎然,李海燕,李银科,何顺琴,胡秋芬.匀浆法提取、离子色谱法测定烟草中的糖.云南民族大学学报(自然科学版),2010,19(1):43~45.
    [113]杨磊,李家磊,祖元刚,赵春建,李晓娟,李佳慧.印楝种子中印楝素A的匀浆提取工艺.东北林业大学学报,2008,36(9):65~67.
    [114]薛景娇,和顺琴,杨光宇,胡秋芬.匀浆法提取-高效液相色谱法测定金银花中的绿原酸.云南民族大学学报(自然科学版),2011,20(2):86~88.
    [115]杨磊,黄金明,刘婷婷,刘玉,马春慧,刘芳,王富济,祖元刚.响应面法优选红皮云杉针叶中莽草酸的匀浆提取工艺.森林工程,2010,26(6):9~14.
    [116]王照波,周文美,徐子婷,胡廷艳.匀浆辅助水浴法提取雪莲果低聚糖的工艺研究.贵州大学学报(自然科学版),2009,26(4):100~103.
    [117]于雪莹;张莹;陈小强;祖元刚;医学模式转变推动中国植物提取业的发展.现代化工,2011,31(3):14~17.
    [118]T. Kinoshita, Y. Ishigaki, N. Shibata, K. Yamaguchi, S. Akita, S. Kitagawa, H. Kondou, S. Nii Selective recovery of gallium with continuous counter-current foam separation and its application to leaching solution of zinc refinery residues Separation and Purification Technology,2011,78(2):181-188.
    [119]Qingzhe Jin, Jinhuan Yue, Liang Shan, Guanjun Tao, XingguoWang, Aiyong. Qiu.Process research of macroporous resin chromotography for separation of N-(p-coumaroyl) serotonin and N-feruloylserotonin from Chinese safflowerseed extracts. Separation and Purification Technology,2008,62:370-375.
    [120]Lisa E. Pomeranz, Ashley E. Reynolds and Christoph J. Hengartner.Molecular Biology of Pseudorabies Virus:Impact on Neurovirology and Veterinary Medicine. Microbiol. Mol. Biol. Rev. September 2005 vol.69 no.3462-500
    [121]张超范,刘长明,危艳武,刘霓虹.致病性猪伪狂犬病病毒PRV-JF株的分离与鉴定.中国预防兽医学报,2008,30(3):212~215.
    [122]张超范,刘长明,危艳武,刘霓虹.致病性猪伪狂犬病病毒PRV-JF株的分离与鉴定.中国畜牧兽医学会畜牧兽医生物技术学分会暨中国免疫学会兽医免疫分会第七次研讨会论文集2008,7,216~219.
    [123]Van Oirschot, J.T..Comparative evaluation of an enzyme-linked immunosorbent assay (ELISA) to detect antibodies against glycoprotein I of pseudorabies virus and a conventional ELISA and neutralization test. J. Clin. Microbiol.1991,29 (1):5-9.
    [124]Stram YKuznetzova L,Guini M,et al.Detection and quantitation of akabane and aino viruses by multiplex real-time reverse-transcriptase PCR.Virology,2004, 116(2):147-154.
    [125]Zhou B.Shu XM,Zhang SF,et al.Establishment and application of PCR to detect Wild-type pseudorabies virus. Virologica Sinica,2004,19:612-615.
    [126]周斌,苏鑫铭,张素芳,等.PCR快速检测伪狂犬病病毒野毒感染.中国病毒学,2004,19:612~615.
    [127]魏春华,刘建奎,杨小燕,戴爱玲,李晓华.猪伪狂犬病病毒的分离鉴定及其gE基因序列分析.福建畜牧兽医,2012,34(4):1~3.
    [128]R. Thiery, C. Pannetier, H.-J. Rziha, A. Jestin.A fluorescence-based quantitative PCR method for investigation of pseudorabies virus latency. Journal of Virological Methods, Volume 61, Issues 1-2, September 1996, Pages 79-87
    [129]姜举娟PRRSV HuB1株的分离鉴定及甘草酸体外抗PRRSV感染的研究.东北林业大学,2009.
    [130]赵丽,崔保安,陈红英,魏战勇,郑兰兰,吕晓丽,贾艳艳,赵绪永.鉴别伪狂犬病病毒野毒与疫苗毒荧光定量PCR方法的建立.生物工程学报,2008,24(7):1149~1154.
    [131]段廷云,陈红英,崔保安,魏战勇,李新生,王学斌.实时荧光定量PCR检测H1N1亚型猪流感病毒.畜牧兽医学报,2008,39(6):752~756.
    [132]赵丽,崔保安,陈红英,魏战勇,郑兰兰,吕晓丽,文英会.实时荧光定量PCR检测伪狂犬病病毒方法的建立与初步应用.中国兽医学报,2009,29(4):433~436.
    [133]黄素文,王建峰,杨文潮,倪建波,张超,章胜乔.河豚鱼成分实时荧光定量PCR检测方法的建立.食品工业,2010,6:92-93.
    [134]曹军平,胡顺林,吴双,刘慧谋,刘晓文,王晓泉,吴艳涛,刘秀梵.基于M基因的新城疫病毒实时荧光定量RT-PCR的建立及其对临床样品中新城疫病毒检测的研究.畜牧兽医学报,2009,40(7):1120~1125.
    [135]黄现青,魏战勇,高晓平,胡慧.生物表面活性素体外抗猪细小病毒活性研究.浙江农业学报.2008,20(5):349~352.
    [136]黄现青,魏战勇,高晓平,韩庆功,崔艳红.表面活性素体外抗伪狂犬病毒活性研究.生物学杂志,2009,26(4):41~43.
    [137]胡梅.几种不同中药成分体外抗病毒作用的活性研究.河南农业大学.2007.
    [138]黄现青,魏战勇,高晓平,韩庆功,崔艳红.表面活性素体外抗新城疫病毒活性研究.浙江农业科学,2008,5:630~632.
    [139]黄现青,崔保安,魏战勇,高晓平.生物表面活性素体外抗病毒活性.中国兽医学报,2009,29(2):143~146.
    [140]黄现青Bacillus subtilis fmbJ产生的脂肽抗微生物效果及安全性评价.南京农业大学,2006.
    [141]胡建军.美洲黑杨叶面积、生长量、酚类物质及抗虫性状基因定位.北京林业大学,2002.
    [142]Long, M.C., Nagegowda, D.A., Kaminaga, Y., Ho, K.K., Kish, C.M., Schnepp, J., Sherman,D., Weiner, H., Rhodes, D., Dudareva, N.,.Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Plant J.2009,59:256-265.
    [143]Orlova, I., Marshall-Colon, A., Schnepp, J., Wood, B., Varbanova, M., Fridman, E.,Blakeslee, J.J., Peer, W.A., Murphy, A.S., Rhodes, D., Pichersky, E., Dudareva, N..Reduction of benzenoid synthesis in petunia flowers reveals multiplepathways to benzoic acid and enhancement in auxin transport. Plant Cell,2006,18:3458-3475.
    [144]Babst, B.A., Harding, S.A., Tsai, C.J..Biosynthesis of phenolic glycosides from phenylpropanoid and benzenoid precursors in Populus. J.Chem.Ecol.,2010,36: 286-297.
    [145]张莹.迷迭香抗氧化剂的高效分离与抗氧化活性研究.东北林业大学,2008.
    [146]杨磊,刘芳,王化,王涵,张莹,祖元刚.鼠尾草酸的抗氧化活性及对鱼油的氧化稳定性.中国食品学报,2010.
    [147]陈丛瑾,黄克瀛,李德良,王旭强,袁双山.香椿叶提取物清除DPPH-自由基能力的测定方法.林产化学与工业,2006.
    [148]陈丛瑾,黄克瀛,孙崇鲁,白英果提取物清除DPPH-自由基活性研究.食品研究与开发,2006.
    [149]许申鸿,杭瑚.20种植物水提物对DPPH-的清除作用.中国野生植物资源,1999,9:30.
    [150]曲欢欢,李白雪,燕菲,孙文基.用清除有机自由基DPPH-法评价连翘不同部位抗氧化作用.中国中医药信息杂志,2008,15(1):32~34.
    [151]Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agriculture and Food Chemistry,1992,40:945-948.
    [152]李铉军,崔胜云,抗坏血酸清除DPPH-自由基的作用机理.食品科学,2011,32(1):86~90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700