用户名: 密码: 验证码:
鹅掌楸群体空间遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种群遗传结构及其影响因子的研究是保护遗传学的重要内容,它不仅是探讨物种形成以及植物适应和进化机制的基础,也是针对物种制定有效保护策略和措施的依据。影响植物居群内遗传结构的生态和进化因素很多,而遗传变异的空间分布是种群遗传结构的重要特征之一。空间遗传结构是影响群体短期进化过程的重要因素,开展种群空间遗传结构研究有助于了解种群动态,对于濒危植物的保护策略的制订有重要的指导意义。
     鹅掌楸(Liriodendron chinense (Hemsl.) Sarg.)为木兰科鹅掌楸属植物,星散分布于我国华东、中南及西南地区以及越南北部。由于鹅掌楸种群规模小,生境片段化,自然结实率低,天然更新不良,从而被列为我国二级保护树种。本文以1个残存的天然种群和2个遗传结构清楚的人工群体为研究对象,采用SSR分子标记进行亲本分析与谱系重建,进而揭示鹅掌楸空间遗传结构,期望为鹅掌楸的保护策略制定提供理论依据。主要研究结果如下:
     三种常用亲本分析软件效率的比较。在亲本分析中,常用基于最大似然法的软件(如CERVUS, COLONY和PAPA)进行亲本推定,但不同软件各有其特点,其分析结果与亲本推定效率有时相差较大。为比较三种常用亲本分析软件(CERVUS3.0, COLONY2.0和PAPA2.0)的效率及特点,本文以包含278个鹅掌楸潜在亲本及90个鹅掌楸已知亲本的子代群体为材料,利用13对EST-SSR位点信息,分析子代亲本并与其真实亲本进行对照,进而评价三种亲本分析软件的效率,期望为林木亲本分析软件选择提供参考。研究结果表明,13个SSR位点在实验群体中检测出的等位基因数(A)、观测杂合度(Ho)及Shannon多样性指数(I)平均值分别为5.23,0.4766和1.4636,表明该批引物多态性高,适合用于亲本分析。就亲本分析效率而言,总体上看,谱系清楚的子代远高于谱系不清的子代,单亲分析远高于双亲分析。三种软件的分析效率及特点各有差别。对于谱系不清的林下更新子代苗木,双亲分析时,三种软件的分析效率差别不大。但单亲分析时,CERVUS与COLONY软件分析效率较高,其亲本推定的准确率分别为78.87%和69.90%,高于PAPA软件的分析效率。而对于谱系清楚的控制授粉子代,双亲分析时,采用PAPA软件对异交子代亲本推定准确率为34.72%,高于CERVUS及COLONY软件;而CERVUS与COLONY软件则适合于自交子代的亲本分析,其亲本推定的准确率分别可达83.33%及81.2%,远高于PAPA软件。
     广西猫儿山鹅掌楸天然群体谱系重构。利用17对SSR分子标记结合叶绿体PsbA-TrnH片段序列信息,对广西猫儿山鹅掌楸天然群体进行谱系重构。研究结果表明:该群体不同个体间在单碱基(A/T)的重复序列中其重复次数不同,猫儿山鹅掌楸天然群体具有4种不同的单倍型。对49个未成年子代进行亲本分析,共有47个子代推断获得了亲本。其中,有24个子代的单倍型与候选亲本的单倍型一致,有17个子代可推断出双亲。综合上述信息对该鹅掌楸天然群体谱系关系进行了重构。共构建了12对同胞组合,其中全同胞1对,同父异母半同胞4对,同母异父半同胞4对,以及共同亲本不能确定是母本还是父本的半同胞3对。
     鹅掌楸群体空间遗传结构。利用SSR标记分析了3个鹅掌楸群体的空间遗传结构。遗传背景清楚的人工群体的空间遗传结构强度值及其子代的空间遗传结构强度值分别为0.01341,0.02493和0.01762,0.00989。天然群体及其子代群体的空间遗传结构强度值为0.02700,0.01423。鹅掌楸的空间遗传结构属较高水平,且与已报道的具有类似生活史特征物种的空间遗传结构相吻合。
     鹅掌楸种群基因流格局。基因流是影响植物种群遗传结构的重要因子。分别采用亲本分析方法以及空间遗传结构(SGS)分析方法对鹅掌楸基因流进行直接与间接估计。结果表明,鹅掌楸种子流及花粉流大小在不同群体间差别较大。基因流间接估计结果显示,鹅掌楸3个不同群体的基因流及花粉流随居群的成年个体密度增大而减小。在种群密度较大的两个人工群体中,鹅掌楸种子的传播距离大于花粉的传播距离,种子流对基因流的贡献程度较大;而在种群密度较小的天然群体中,其结果则正好相反。
     广西猫儿山鹅掌楸天然种群空间分布格局。为进一步探讨鹅掌楸濒危的机制,从而为鹅掌楸天然种群保护提供参考依据,本文还分析了广西桂林猫儿山鹅掌楸天然种群结构。以种群生命表及生存分析理论为基础,以林木径级结构代表龄级结构,编制鹅掌楸种群静态生命表,分析种群结构的动态变化特点。总体上,鹅掌楸种群龄级结构为金字塔型:幼龄个体数量较多,中龄个体数居中,而老龄个体则相对数量较少,表现为增长型种群。在第Ⅳ龄级时该种群出现死亡高峰,其种群存活曲线属Deevey-Ⅱ型。表明该天然种群具有前期种群数量快速减少,中后期稳定,末期衰退的特点。同时,应用O-ring函数对该鹅掌楸天然种群不同龄级的空间分布格局及龄级间的关系进行分析。分析发现,从小尺度空间(小于24内)角度看,该群体的空间分布格局表现为聚集分布;在中等尺度空间(24~48m)范围内,该群体则表现为随机分布;从较大尺度空间(49~88m)范围看,该群体的空间分布格局趋于均匀分布;而当空间尺度大于88m后,又表现为随机分布。鹅掌楸不同龄级立木的空间分布格局存在差别。成年个体及幼龄个体在小尺度空间范围内表现为聚集分布,在中尺度及大尺度空间范围内表现为随机分布。老龄个体在不同的空间尺度下均表现为随机分布。在小尺度上,不同龄级立木之间表现为正关联;而在较大尺度上,不同龄级立木之间表现为不关联。
     鹅掌楸亲、子群体遗传多样性比较。采用14个SSR位点检测了3个鹅掌楸群体亲本及子代群体的遗传多样性。结果表明,与木兰科其他物种相比,鹅掌楸群体具有较高的遗传多样性,且亲、子代间的遗传多样性差别不大。
Population genetic structure is a major aspect in conservation genetics. It is not only thebasis of the evolution of plants, but also the foundation for the protection of endangered species.Although there are many factors that affect the evolution of plant population, the spatial geneticstructure (SGS) of plants is one of the important factors, for SGS plays key roles in theshort-term evolution. Therefore, studies on SGS may help us to know the population dynamics,as well as to develop effective strategies for ex-situ conservation of endangered species.
     Liriodendron chinense (Hemsl.) Sarg, a species from the genus of Liriodendron inMagnoliaceae family, is now recognized as an endangered species due to its low ratio of fullseeds, hardness in natural regeneration, small population size and fragmentated habitats. In thispaper, the fine-scale spatical genetic structure of L. chinense was analyzed for three populations(one natural population and two artificial populations) using microsatellite markers. This studyaimed to answer the three following quentions:(1) Is there a strong spatial genetic structurewithin the isolated natural population?(2) Whether the sub-populations grouped by age classcould also exhibit obvious spatial genetic structure?(3) What about the gene flow in the isolatednatural population? In one word, the final goal of this paper is to explore the mechanism of thespatial genetic structure in L. chinense. The main results are as follows:
     At present, softwares in the basis of maximum likelihood assignment, such as CERVUS,COLONY and PAPA, were often used to analyze parentage. However, the outputs generatedfrom different softwares were much different though applied to the same experimental population.These were mostly attributed to the different characteristics of softwares. In order to compare thepower of three softwares mentioned above on parentage assignment,13microsatellites had beenused to detect an experimental population of Liriodendron which includes278potential parentsand90progenies whose real parents were unknown. Three softwares (CERVUS3.0,COLONY2.0, PAPA2.0) were used to assign parentage for each progeny, the power of threesoftwares were evaluated by checking the assigned parentage to their real parents for eachprogeny. The results are as follows: the average values of number of alleles (A), effective numberof alleles (Ne) and Shannon diversity index (I) in this experimental population were5.23,0.4766,and1.4636respectively, indicating that these13SSR loci were high polymorphic and suitablefor parentage analysis. As a whole, the power of parentage assignment for control pollinationprogenies was higher than that for open pollination progenies, and paternity analysis was betterthan parentage analysis. Each of these three softwares had its specific characteristics. When theywere applied to analyze progenies whose pedigree were not clear, no significant differenceamong three softwares was found when appling to parentage analysis. However, when appling topaternity analysis, the differences among three softwares in terms of power were significant. Theparentage assignment accuracy of CERVUS and COLONY were78.87%and69.90% respectively, much higher than that of PAPA. As for control pollination progeny whose pedigreewas clear, the parentage assignment accuracy of PAPA was34.72%, higher than other twosoftwares when applied to outcrossing progenies. Nevertheless, if applied to selfing progenies,the parentage assignment accuracy of CERVUS and COLONY were83.33%and81.2%respectively, much higher than that of PAPA. Our findings might be helpful in software choicefor parentage analysis in plants.
     To investigate the spatial genetic structure of Liriodendron chinense, three populations weretaken as target populations, one natural population from Maoershan Reserve, Guilin, Guangxiprovince and two artificial populations from Nanjing and Zhengjiang, Jiangsu provincerespectively.
     The natural population in Maoershan Reserve is an isolated population and has formedcomplex pedigree relationship in its long-term breeding process. To reconstruct the pedigree ofthis population, all the individuals within this population were detected with17SSR locicombined with chloroplast DNA sequences of PsbA-TrnH gene. Single nucleotide mutation (A/T)among individuals was detected checked. Altogether, there were4types of haplotype in thispopulation. Among49offsprings,47offsprings were successfully assigned to their parentage.The haploid of24offsprings were consistent with their candidate parents.17offsprings coulddistinguish their paternity from maternity. The pedigree of this natural population wasreconstructed based on the results of parentage assignment.
     The spatial genetic structure for three populations of L.chinense was investigated using17microsatellite markers. The parameters of spatial genetic structure (Sp) of all individuals andtheir offsprings in2artificial populations were0.01341,0.02493and0.01762,0.00989respectively, while in the natural population, the parameters of spatial genetic structure (Sp)were0.02700,0.01423respectively. Alike other species with similar biological characteristics,L.chinense displays strong fine-scale spatial structure in natural population.
     Gene flow plays key parts in the genetic structure of plant populations. The quantification ofgene flow can be achieved either by parentage analysis directly or by SGS analysis indirectly. Inthis paper, two methods above were used simultaneously to estimate gene flow of L.chinense.The differences among three populations were obvious for both seed flow and pollen flow. Atrend was found that the gene flow and the average pollen dispersal distance decreased withincreased population density in three populations investigated. In two artificial populations withhigher population density, the seed dispersal distance was greater than the pollen dispersaldistance, and the seed flow accounted for the majority of gene flow, while in the naturalpopulation with low population density, the trend was just the opposite.
     The population structure dynamic of L. chinensis was also analyzed for the naturalpopulation in Maoershan Reserve. Based on the theory of population life table and survivalanalysis, the life table in the natural population of L. chinensis was constructed by replacing ageclasses with size-classes,and the population structure dynamic was also predicted. The censusdata showed that the number of young seedling was larger than that of middle-aged and oldindividuals, indicating that the population was in an incremental status. The survival curve in this population appeared to be a Deevey-Ⅱ type, with a peak of mortality in size class Ⅳ. It can beconcluded that the population size of L. chinensis in Maoer Reserve declined sharply in earlystage,stablized in middle stage and fell rapidly in last stage.
     The spatial distribution pattern in this natual population of L.chinense was investigated inthe application of O-ring function. The distribution pattern of this population was closely relatedto the spatial scale, with an aggregation distribution in less than24m, a random distribution in24-48m spatial scale, a hypodispersion distribution in49--88m spatial scale and a randomdistribution in larger than88m. The fine-scale spatial distribution pattern was obviousdifferences among growth stages in this natural population. Both the adulted and youngindividuals showed aggregation distribution at smaller spatial scale, and ramdon distribution atother spatial scale. Whereas, for those aging individuals,only one pattern of random distributionwas identified at all spatial scales. The spatial correlation among development stages werepositive at smaller scale,while at larger scale, no close association was identified.
     The genetic diversity was also compared between parent population and its offspringspopulation based on14SSR loci. Overall, L. chinense contains rather high polymorphismcompared with other species in magnoliaceae. And there was no difference on the geneticdiversity between parent population and offspring population.
引文
Austerlitz F, Smouse PE (2002) Two-generation analysis of pollen flow across a landscape.IV. Estimating thedispersal parameter[J].Genetics:161,355–363.
    Barton NH, Depaulis F, Etheridge AM (2002) Neutral evolution in spatially continuous populations[J].Theoretical Population Biology:61,31–48.
    Bonnin I, Ronfort J, Wozniak F, Olivieri I (2001) Spatial effects and rare outcrossing events in Medicagotruncatula (Fabaceae)[J]. Molecular Ecology:10,1371–1384.
    Besnard G, Casas RD, Vargas P (2003) A set of primers for length and nucleotide-substitution polymorphism inchloroplastic DNA of Olea europaea L.(Oleaceae)[J]. Molecular Ecology Notes:3,651–653.
    Blouin,M.S.,2003, DNA-based methods for pedigree reconstruction and kinship analysis in natural populations.TRENDS Ecol. Evol.18,503–511.
    Butler K. et al.,2004,Accuracy, efficiency and robustness of four algorithms allowing full sibshipreconstruction from DNA marker data[J]. Mol Ecol.,13,1589–1600.
    Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms andevolution[J].Proceedings of the National Academy of Sciences, USA:92,11331–11338.
    Birky CW, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genesin mitochondria and chloroplasts, and some results[J].Genetics:103,513–527.
    Bryan GJ, Mc Nicoll J, Ramsay G, Meyer RC, De Jong WS (1999) Polymorphic simple sequence repeatmarkers in chloroplast genomes of solanaceous plants[J]. Theoretical and Applied Genetics:99,859–867.
    Bucci G, Anzidei M, Madaghiele A, Vendramin GG (1998) Detection of haplotypic variation and naturalhybridization in halepensis-complex pine species using chloroplast simple sequence repeat (SSR)markers[J]. Molecular Ecology:7,1633–1643.
    Cato SA, Richardson TE (1996) Inter-and intraspecific polymorphism at chloroplast SSR loci and theinheritance of plastids in Pinus radiata D Don[J]. Theoretical and Applied Genetics:93,587–592.
    Cabin RJ (1996) Genetic comparisons of seed bank and seedling populations of a perennial desert mustard,Lesquerella fendleri[J]. Evolution:50,1830–1841.
    Campbell DR, Dooley JL (1992) The spatial scale of genetic differentiation in a hummingbird-pollinated plant:comparison with models of isolation by distance[J]. American Naturalist:139,735–748.
    Caujapé-Castells J, Pedrola-Monfort J (1997) Space-time patterns of genetic structure within a stand ofAndrocymbium gramineum (Cav.) McBride (Colchicaceae)[J].Heredity:79,341–349.
    Carwly M J.1986, Plant Ecology. London: Blackwell Scientific Publications,97–185
    Ceplitis ALF, Su Y, Lascoux M (2005) Bayesian inference of evolutionary history from chloroplastmicrosatellites in the cosmopolitan weed Capsella bursa-pastoris (Brassicaceae)[J]. Molecular Ecology:14,4221–4233.
    Condit R, Ashton PS, Baker P,et al.2000,Spatial patterns in the distribution of tropical tree species. Science,288:1414–1418
    Chung MG, Epperson BK (2000) Clonal and spatial genetic structure in Eurya emarginata (Theaceae)[J].Heredity:84,170–177.
    Chung MG, Chung MY, Epperson BK (2000) Spatial genetic structure in a Neolitsea sericea population(Lauraceae)[J].Heredity:85,490–497.
    Daniell H, Lee SB, Grevich J et al.(2006) Complete chloroplast genome sequences of Solanum bulbocastanum,Solanum lycopersicum and comparative analyses with other Solanaceae genomes[J]. Theoretical andApplied Genetics:112,1503–1518.
    Davison A, Chiba S (2003) Laboratory temperature variation is a previously unrecognized source ofgenotyping error during capillary electrophoresis [J]. Molecular Ecology Notes:3,321–323.
    Dakin E.E., and Avise J.C.,2004, Microsatellite null alleles in parentage analysis, Heredity,93(5):504-509
    Dewey SE, Heywood JS (1988) Spatial genetic structure in a population of Psychotria nervosa. I. Distributionof genotypes[J]. Evolution:42,834–838.
    Debout GDG, Doucet JL, Hardy OJ (2010) Population history and gene dispersal inferred from spatial geneticstructure of a Central African timber tree, Distemonanthus benth-amianus (Caesalpinioideae). Heredity,106,88–99.
    Deguilloux MF, Dumolin-Lapegue S, Gielly L, Grivet D, Petit RJ(2003) A set of primers for the amplificationof chloroplast microsatellites in Quercus[J]. Molecular Ecology Notes:3,24–27.
    Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic noncodingregions of mitochondrial and chloroplast DNA in plants[J]. Molecular Ecology:4,129–131.
    Deng Z, Malfa SL, Xie Y, Xiong X, Gentile A (2007) Identification and evaluation of chloroplast uni-andtrinucleotide sequence repeats in Citrus[J]. Scientia Horticulture:111,186–192.
    Dhingra A, Folta KM (2005) ASAP: amplification, sequencing and annotation of plastomes[J]. BMC Genomics:6,176.
    Doligez A, Joly HI (1997) Genetic diversity and spatial structure within a natural stand of a tropical forest treespecies, Carapaprocera (Meliaceae), in French Guiana[J]. Heredity:79,72–82.
    Dow B.D., and Ashley M.V.,1996, Microsatellite analysis of seed dispersal and parentage of saplings in buroak, Quercus macrcarpa, Mol. Ecol.,5(5):615-627
    Doyle JJ, Morgante M, Tingey SV, Powell W (1998) Size homoplasy in chloroplast microsatellites of wildperennial relatives of soybean (Glycine Subgenus)[J]. Molecular Biology and Evolution:15,215–218.
    Duchesne P., Godbout M.H., and Bernatchez L.,2002, PAPA (package for the analysis of parental allocation): acomputer program for simulated and real parental allocation, Mol. Ecol. Notes,2(2):191-193
    Dutech C, Seiter J, Petronelli Joly HI, Jarne P (2002) Evidence of low gene flow in a neotropical clustered treespecies in two rain forest stands of French Guiana. Molecular Ecology,11,725–738
    Dutech C, Kremer A, Latouche-Hallé C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structureand gene dispersal inferences in10Neotropical tree species. Molecular Ecology,15,559–571.
    Dumolin-Lapegue S, Pemonge MH, Petit RJ (1997) An enlarged set of consensus primers for the study oforganelle DNA in plants[J]. Molecular Ecology:6,393–397.
    Ellegren H (2008) Sequencing goes454and takes large-scale genomics into the wild[J]. Molecular Ecology:17,1629–1635.
    Epperson BK (1993) Recent advances in correlation analysis of spatial patterns of geneticvariation[J].Evolutionary Biology:27,95–155.
    Epperson BK (2000) Spatial genetic structure and non-equilibrium demographics within plantpopulations[J].Plant Species Biology:15,269–279.
    Epperson BK, Li T (1996) Measurement of genetic structure within populations using Moran’s spatialautocorrelation statistics[J].Proceedings of the National Academy of Sciences of theUSA:93,10528–10532.
    Epperson BK, Chung MG (2001) Spatial genetic structure of allozyme polymorphisms within populations ofPinus strobus (Pinaceae)[J].American Journal of Botany:88,1006–1010.
    Fenster CB, Vekemans X, Hardy OJ (2003) Quantifying gene flow from spatial genetic structure data in ametapopulation of Chamaecrista fasciculata (Leguminosae).Evolution,57,995–1007.
    Fenster CB (1991) Gene flow in Chamaecrista fasciculata (Leguminosae).I.Gene dispersal[J].Evolution:45,398–409.
    Fenster CB, Vekemans X, Hardy OJ (2003) Quantifying gene flow from spatial genetic structure data in ametapopulation of Chamaecrista fasciculata (Leguminosae)[J].Evolution,57:995–1007.
    Foster PF, Sork VL (1997) Population and genetic structure of the West African rain forest lianaAncistrocladus korupensis (Ancistrocladaceae)[J].American Journal of Botany:84,1078–1091.
    Franceschinelli EV, Kesseli R(1999) Population structure and gene flow of the Brazilian shrub Helicteresbrevispira[J].Heredity:82,355–363.
    Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review[J].GeneticalResearch Cambridge:6,95–107.
    Frost I, and Rydin H.,2000, Spatial pattern and size distribution of theanimal dispersed tree Quercus rubur intwo spruce-dominated forests [J]. Ecoscience,7(1):38--44.
    Garant,D. and Kruuk,L.E.B.,2005, How to use molecular marker datato measure evolutionary parameters inwild populations. Mol. Ecol.,14,1843–1859
    Georg R., Marc N., Melanie K., Birgit Z., and Ronald B.,2010, Short-distance gene flow in Populus nigra L.accounts for small-scale spatial genetic structures: implications for in situ conservation measures, ConservGenet,11(4):1327-1338
    Grubb P J.1977,The maintenance of species-richness in plant communities: the importance of theregeneration niche.Biological Reviews,52(1):107-145.
    Gehring JL, Delph LF (1999) Fine-scale genetic structure and clinal variation in Silene acaulis despite highgene flow[J].Heredity:82,628–637.
    Getzin S,Wiegand T,Wiegand K,He F L.2008,Heterogeneity influences spatial patterns and demographicsin forest stands.Journal of Ecology,96(4):807-820.
    Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization ofisolation-by-distance processes using dominant genetic markers[J].Molecular Ecology:12,1577–1588.
    Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure atthe individual or population levels. Molecular Ecology Notes,2,618–620.
    Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatialautocorrelation and population genetics models[J].Heredity:83,145–154.
    Hardy OJ, Vekemans X (2001) Patterns of allozymic variation in diploid and tetraploid Centaurea jacea atdifferent spatial scales[J].Evolution:55,943–954.
    Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Hett JM,Loucks OL.1976.Age structure models of balsamfir and eastern hemlock[J]. Journal of Ecology,64:1029-1044.
    Harms K E,Wright S J,Calderón O,Hernández A,Herre E A.2000,Pervasive density-dependent recruitmentenhances seedling diversity in a tropical forest.Nature,404(6777):493-495.
    Hamrick J L,Godt Mary Jo W, Sherman-Broyles Susan L.1992,Factors influencing levels of genetic diversityin woody plant species[J].New Forests,6(1-4):95-124.
    He F L,Duncan R P.2000,Density-dependent effects on tree survival in an old-growth Douglas firforest.Journal of Ecology,88(4):676-688.
    Heuertz M, Vekemans X, Hausman J-F, Palada M, Hardy OJ (2003) Estimating seed versus pollen dispersalfrom spatial genetic structure in the common ash[J].Molecular Ecology:12,2483–2495.
    Heywood JS (1991) Spatial analysis of genetic variation in plant populations[J].Annual Review of Ecology andSystematics:22,335–355.
    Husband BC, Barrett SCH (1992) Effective population size and genetic drift in tristylous Eichhornia paniculata(Pontediraceae)[J].Evolution:46,1875–1890.
    Hiroshi Azuma, Leonard B. Thien and Shoichi Kawano,1999, Molecular Phylogeny of Magnolia(Magnoliaceae) Inferred from cpDNA Sequences and Evolutionary Divergence of the Floral Scents J.Plant Res.112:291-306,
    Hirao AS (2010) Kinship between parents reduces offspring fitness in a natural population of Rhododendronbrachycarpum. Annals of Botany,105,637–646.
    Jones A.G., Small C.M., Paczolt K.A., and Ratterman N.L.,2010, A practical guide to methods of parentageanalysis, Mol. Ecol. Resour.,10(1):6-30
    Jones A.G., and Ardren W.R.,2003, Methods of parentage analysis in natural populations, Mol. Ecol.,12(10):2511-2523
    Jones,A.G. and Ardren,W.R.(2003) Methods of parentage analysis in natural populations. Mol. Ecol.,12,2511–2523
    Kalinowski S.T., Taper M.L., and Marshall T.C.,2007, Revising how the computer program CERVUSaccommodates genotyping error increases success in paternity assignment, Mol. Ecol.,16(5):1099-1106
    Kasem S., Rice N.F., and Henry R.J.,2008, DNA extraction from plant tissue, In: Henry R.J.(ed.), PlantgenotypingⅡ: SNP technology, CABI Publishing, Wallingford, UK, pp.219-271
    Kalinowski ST, Taper ML, Marshall TC,2007, Revising how the computer program Cervus accommodatesgenotyping error increases success in paternity assignment. Molecular Ecology,16,1099–1106
    Kalisz S, Nason JD, Hanzawa FM, Tonsor SJ (2001) Spatial population genetic structure in Trilliumgrandiflorum: the roles of dispersal, mating, history and selection[J].Evolutionary Biology:55,1560–1568.
    Kettle C,Hollingsworth PM,Jaffre T,Moran B,Ennos RA(2007) Identifying the early genetic Consequencesof habitat degradation in a highly threatened tropical conifer,Araucaria nemorosa Laubenfels. MolecularEcology16:3581一3591
    Kimura M, Crow JF(1963) The measurement of effective population number[J].Evolution:17,279–288.
    Knowles P, Perry DJ, Foster HA (1992) Spatial genetic structure in two tamarack [Larix laricina (Du Roi) K.Koch] populations with differing establishment histories[J].Evolution:46,572–576.
    Kudoh H, Whigham DF (1997) Microgeographic genetic structure and gene flow in Hibiscus moscheutos(Malvaceae) populations[J].American Journal of Botany,84:1285–1293.
    Laporte V, Viard F, Bena G, Valero M, Cuguen J (2001) The spatial structure of sexual and cytonuclearpolymorphism in the gynodioecious Beta vulgaris ssp. maritima: I/at a local scale[J].Genetics:157,1699–1710.
    Levin DA, Kerster HW (1969) The dependence of bee-mediated pollen and gene dispersal upon plant density.Evolution,23,560–571
    Leathwick JR, Mitchell ND.1992, Forest pattern, climate and volcanism in central North Island, New Zealand.Journal of Vegetation Science,3:603–614
    Leblois R, Estoup A, Rousset F (2003) Influence of mutational and sampling factors on the estimation ofdemographic parameters in a ‘continuous’ population under isolation by distance[J].Molecular Biologyand Evolution:20,491–502
    Liang, Haiying; Ayyampalayam, Saravanaraj; Wickett, Norman,2011, Generation of a large-scale genomicresource for functional and comparative genomics in Liriodendron tulipifera L. TREE GENETICS&GENOMES7(5):941-954
    Lian C, Goto S, Kubo T et al.,2008, Nuclear and chloroplast microsatellite analysis of Abies sachalinensisregeneration on fallen logs in a subboreal forest in Hokkaido, Japan. Molecular Ecology,17,2948–2962.
    Li CC, Weeks DE, Chakravarti A (1993) Similarity of DNA finger-prints due to chance andrelatedness[J].Human Heredity:43,45–52.
    Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understorey shrub,Psychotria officinalis(Rubiaceae)[J].American Journal of Botany:82,1420–1425.
    Lynch M, Milligan BG(1994) Analysis of population genetic structure with RAPD markers[J].MolecularEcology:3,91–99.
    Lynch M, Ritland K(1999) Estimation of pairwise relatedness with molecular markers[J].Genetics:152,1753–1766.
    Lemieux C, Otis C, Turmel M (2007) A clade uniting the green algae Mesostigma viride and Chlorokybusatmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-basedphylogenies[J].BMC Biology:5,2.
    Lian CL, Oishi R, Miyashita N et al.(2003) Genetic structure and reproduction dynamics of Salix reinii duringprimary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatelliteanalysis[J].Molecular Ecology:12,609–618.
    Lira CF, Cardoso SRS, Ferreira PCG, Cardoso MA, Provan J (2003) Long-term population isolation in theendangered tropical tree species Caesalpinia echinata Lam. revealed by chloroplastmicrosatellites[J].Molecular Ecology:12,3219–3225.
    Lin Y C,Chang L W,Yang K C,Wang H H,Sun I F.2011,Point patterns of tree distribution determined byhabitat heterogeneity and dispersal limitation. Oecologia,165(1):175-184.
    Mandák B, Bímová K, Mahelka V, Pla ková I (2006) How much genetic variation is stored in the seed bank? Astudy of Atriplex tatarica (Chenopodiaceae). Molecular Ecology,15,2653–2663.
    McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants[J].Trends inEcology&Evolution:10,198–202.
    McGrath S, Hodkinson TR, Salamin N, Barth S (2006) Development and testing of novel chloroplastmicrosatellite markers for Loliumperenne and other grasses (Poaceae) from de novo sequencing and insilico sequences[J].Molecular Ecology Notes:6,449–452.
    Mahy G, Vekemans X, Jacquemart A-L (1999) Patterns of allozymic variation within Calluna vulgarispopulations at seed bank and adult stages[J].Heredity:82,432–440.
    Malécot G (1950) Quelques schémas probabilistes sur la variabilité des populations naturelles[J].Annales del’Université de Lyon A:13,37–60.
    Meirmans PG, Vlot EC, Den Nijs JCM, Menken SBJ (2003) Spatial ecological and genetic structure of a mixedpopulation of sexual diploid and apomictic triploid dandelions[J].Journal of Evolutionary Biology:16,343–352.
    Mi Yoon Chung, John DNason (2004) Spatial genetic structure in populations of the terrestrial orchidCephalanthera longibracteata(Orchidaceae)[J].American Journal of Botany:91(1):52-57.
    Nason JD, Herre EA, Hamrick JL (1998) The breeding structure of a tropical keystone plant resource. Nature391:685–687. doi:10.1038/35607
    Ng K K S,Lee S L,Koh C L,(2004)Spatial structrue and genetic diversity of two tropical tree species withcontrasting breeding systems and different ploidy levels[J].Mol Ecol:13:657-669
    Ndiade-Bourobou D, Hardy OJ, Favreau B, Moussavou H, Nzengue E, Mignot A, Bouvet JM (2010)Long-distance seed and pollen dispersal inferred from spatial genetic structure in the very low-densityrainforest tree, Baillonella toxisperma Pierre, in Central Africa. Molecular Ecology,19,4949–4962.
    Peakall R, Beattie AJ (1996) Ecological and genetic consequences of pollination by sexual deception in theorchid Caladenia tentaculata[J]. Evolution:50,2207–2220.
    Perry DJ, Knowles P (1991) Spatial genetic structure within three sugar maple (Acer saccharum Marsh.)stands[J].Heredity:66,137–142.
    Pollak E (1987) On the theory of partially inbreeding finite populations.I.Partial selfing[J].Genetics:117,353–360.
    Qifang G, Chunlan L(2008)Mating system, pollen and propagule dispersal, and spatial genetic structure in ahigh-density population of the mangrove tree Kandelia candel Molecular Ecology (2008)17,4724–4739
    Queenborough S A,Burslem D F R P,Garwood N C,Valencia R.2007,Habitat niche partitioning by16species of Myristicaceae in Amazonian Ecuador.Plant Ecology,192(2):193-207.
    Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers[J].Evolution:43,258–275.
    Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation bydistance. Genetics,145,1219–1228.
    Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients[J].GeneticalResearch Cambridge:67,175–185.
    Ritland K (2002) Extensions of models for the estimation of mating systems using n independentloci[J].Heredity:88,221–228.
    Rousset F (2000) Genetic differentiation between individuals[J]. Journal of Evolutionary Biology,13,58–62.
    Romme W H.1982, Fire and landscape diversity in subalpine forests of Yellow stone National Park. EcologicalMonograph,(52):199~221
    Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation bydistance[J].Genetics:145,1219–1228.
    Rousset F (2001) Inference from spatial population genetics. In: Handbook of Statistical Genetics (eds BaldingD, Bishop M, Cannings C)[J], pp.239–269.
    John Wiley&Sons Ltd, Chichester. Rousset F (2002) Inbreeding and relatedness coefficients: what do theymeasure[J].Heredity:88,371–380.
    Riggl B D.1981. Modelling spatial pattern[J]. Journal of the Royal statistical Society. Series B,1977,39:17~212.
    Schnabel A, Nason JD, Hamrick JL (1998) Understanding the population genetic structure of Gleditsiatriacanthos L.: seed dispersal and variation in female reproductive success. Molecular Ecology,7,819–832.
    Schmitt J (1983) Density-dependent pollinator foraging, flowering phenology, and temporal pollen dispersalpatterns in Linanthus bicolor[J].Evolution:37,1247–1257.
    Slatkin M, Arter HE (1991) Spatial autocorrelation methods in population genetics[J]. American Naturalist,138:499–517.
    Slate J., Marshall T.C., and Pemberton J.M.,2000, A retrospective assessment of the accuracy of the paternityinference program CERVUS[J], Mol Ecol.,9(6):801-808
    Slatkin M.(1987) Gene flow and geographic structure of natural populations[J]. Science,236:787~792
    Smouse PE,Peakall R,Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. MolecularEcology17:3389-3400
    Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus geneticstructure[J].Heredity:82,561–573.
    Smouse PE, Dyer RJ, Westfall RD, Sork VL (2001)Two-generation analysis of pollen flow across a landscape.I. Male gamete heterogeneity among females[J].Evolution:55,260–271.
    Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glossl J, Kremer A(1998) Within-population genetic structure inQuercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes andmicrosatellites[J].Molecular Ecology:7,317–328.
    Stacy EA, Hamrick JL, Nason JD, Hubbell SP, Foster RB, Condit R (1996) Pollen dispersal in low-densitypopulations of three neotropical tree species. The American Naturalist,148,275–298.
    Toriola D,Chereyre P,Buttler A.1998,Distribution of primary forest plant species in a19-year old secondaryforest in French Guiana.Journal of Tropical Ecology,14(3):323-340
    Ueno S, Setsuko S, Kawahara T, Yoshimaru H (2005) Genetic diversity and differentiation of the endangeredJapanese endemic tree Magnolia stellata using nuclear and chloroplast microsatellite markers[J].Conservation Genetics:6,563–574.
    Vendramin G.G., Degen B., Petit R.J., Anzideil M., Madaghielel A., and Ziegenhagen B.,1999, High level ofvariation at Abies alba chloroplast microsatellite loci in Europe, Mol. Ecol.,8(7):1117-1126
    Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of20chloroplastmicrosatellites in Pinaceae[J].Molecular Ecology:5,595–598.
    Vendramin GG, Ziegenhagen B (1997) Characterisation and inheritance of polymorphic plastid microsatellitesin Abies[J].Genome:40,857–864.
    Vera IC, Wheat CW, Fescemyer HW et al.(2008) Rapid transcriptome characterization for a nonmodelorganism using454pyrosequencing[J].Molecular Ecology:17,1636–1647.
    Vogel M, Banfer G, Moog U, Weising K (2003) Development and characterization of chloroplast microsatellitemarkers in Macaranga (Euphorbiaceae).Genome:46,845–857
    Van de Casteele T, Galbusera P, Matthysen E (2001) A comparison of microsatellite-based pairwise relatednessestimators[J].Molecular Ecology:10,1539–1549
    Van Dijk H (1987) A method for the estimation of gene flow parameters from a population structure caused byrestricted gene flow and genetic drift[J].Theoretical and Applied Genetics:73,724–736.
    Van Rossum F, Triest L (2003) Spatial genetic structure and reproductive success in fragmented and continuouspopulations of Primula vulgaris[J].Folia Geobotanica:38,239–254.
    Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plantpopulations[J]. Molecular Ecology,13,921–935.
    Wang J.,2007, Parentage and sibship exclusions: higher statistical power with more family members, Heredity,99(2):205-217
    Waller DM, Knight SE (1989) Genetic consequences of outcrossing in the cleistogamous annual, Impatienscapensis. II. Outcrossing rates and genotypic correlations[J].Evolution:43,860–869.
    Wang J (2002) An estimator for pairwise relatedness using molecular markers[J].Genetics:160,1203–1215.
    Wiegand T, Moloney KA (2004) Rings, circles and null-models for point pattern analysis in ecology[J]. Oikos,104(2):209–229.
    Williams CF (1994) Genetic consequences of seed dispersal in three sympatric forest herbs. II. Micro spatialgenetic structure within populations[J].Evolution:48,1959–1972.
    Williams CF, Waser NM (1999) Spatial genetic structure of Delphinium nuttallianum populations: inferencesabout gene flow[J].Heredity:83,541–550.
    White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dryforest: an example from Swietenia humilis Zuccarini. Proceedings of the National Academy of Sciences,USA,99,2038–2042.
    Wright S (1943) Isolation by distance[J].Genetics:28,114–138
    Xu M., Sun Y.G., and Li H.G.,2010, EST-SSRs development and paternity analysis for Liriodendron spp[J],New Forests,40(3):361-382
    Xu M., Li H.G., and Zhang B.,2006, Fifteen polymorphic simple sequence repeat markers from expressedsequence tags of Liriodendron tulipifera[J], Mol. Ecol. Notes,6(3):728-730
    Young A,Boyle T,Brown T(1996) The population genetic consequences of habitat fragmentation forPlants[J].Trends in Ecology and Evolution,11:413一418.
    Zavodna M, Arens P, Van Dijk PJ, Partomihardjo T, Vosman B, Van Damme JMM (2005a) Pollinating figwasps: genetic consequences of island recolonization[J]. J Evol Biol18:1234–1243.
    Zhao R, Xia HB, Lu BR (2009) Fine-scale genetic structure enhances biparental inbreeding by promotingmating events between more related individuals in wild soybean (Glycine Soja; Fabaceae) populations[J].American Journal of Botany,96,1138–1147.
    艾畅,徐立安,赖焕林,黄敏仁,王章荣,2006,马尾松种子园的遗传多样性与父本分析[J],林业科学,42(11):146-150
    陈小勇,宋永昌,2000,自然定居青冈幼苗的亲本分析[J],植物科学学报,18(3):174-180
    陈红林,曹健,丁小飞等.2006,鹅掌揪的两个群体遗传结构的初步研究[J].湖北林业科技,1(137):1-3.
    陈晓德.1998.植物种群与群落结构动态量化分析方法研究[J].生态学报,18(2):214-217.
    陈远征,马祥庆,冯丽贞,et al.2006.濒危植物沉水樟的种群生命表和谱分析[J].生态学报,26(12):4267-4272.
    陈龙.2008.利用SSR分子标记研究鹅掌楸天然群体遗传结构.硕士学位论文,南京林业大学,.
    程占红,张金屯.2002,芦芽山生态旅游植被景观特征与地理因子的相关分析[J].生态学报,22(2):278.
    方炎明,章忠正,王文军.1996.浙江龙王山和九龙山鹅掌揪群落研究[J].浙江林学院学报,13(3):286-292
    方炎明.1994.中国鹅掌揪的地理分布与空间格局[J].南京林业大学学报(自然科学版),18(2):13-18
    冯士雍.1982.生存分析Ⅰ[J].数学的认识与实践,(3):72-80.
    冯士雍.1982.生存分析Ⅲ[J].数学的认识与实践,(1):70-76
    傅立国.1992,中国植物红皮书--稀有频危植物(第1册)[M].北京:科学出版社,408-409.
    韩路,王海珍,彭杰,et al.2010.塔里木河上游灰胡杨种群生存分析[J].林业科学,46(1):131-135
    郝日明,贺善安,汤诗杰,et al.1995.鹅掌楸在中国的自然分布及其特点[J].植物资源与环境,4(1):
    葛颂.1998.植物群体遗传结构的回顾与展望[M].北京:高等教育出版社,118-128.
    顾颖,李超,鲁翠云,郑先虎,俞菊华,孙效文,2011,建鲤(Cyprinus carpio var. Jian)微卫星DNA亲权鉴定[J],遗传,34(11):1447―1455
    赖焕林,王章荣,1997,马尾松种子园及其附近人工林的亲子代群体遗传结构分析.林业科学研究,10(5):490~494
    廖文芳,夏念和,邓云飞,等.2004,华木莲的遗传多样性研究[J].云南植物研究,26(1):58-64.
    李因刚,周志春,范辉华,等.2008,乳源木莲种源遗传多样性和遗传分化[J].林业科学研究,21(4):582-586
    李天生,周国法.1994,空间自相关与分布型指数研究[J].生态学报,14(3):327-331.
    李昂,罗毅波,葛颂.2002,采用空间自相关分析研究两种兰科植物的群体遗传结构[J].生物多样性,10(3):249-257.
    李火根,陈龙,梁呈元,黄敏仁,2005,鹅掌楸属树种种源试验研究[J],林业科技开发,19(5):13-16
    李建民.2001,马褂木地理遗传变异和优良种源选择[J].林业科学,37(4):41-49.
    李周岐,王章荣.2002, RAPD标记在鹅掌楸属中的遗传研究[J].林业科学,38(1):150-153.
    李晓铁.1992.猫儿山林区鹅掌揪生态环境调查研究[J].广西林业科技,21(2):62-70.
    刘丹,顾万春,杨传平.2004,中国鹅掌楸遗传多样性研究[J].林业科学,42(2):116-119.
    刘丹,顾万春,杨传平.2006,鹅掌楸属遗传多样性分析评价[J].植物遗传资源学报,7(2):188-191.
    刘军,陈益泰,孙宗修等.2008,基于空间自相关分析研究毛红椿天然居群的空间遗传结构[J].林业科学,44(6):45-51.
    刘军,陈益泰,姜景民等.2009,毛红椿群体遗传结构的SSR分析[J].林业科学研究,22(1):37-41.
    刘玉壶,夏念和,杨惠秋.1995,兰科的起源、进化和地理分布[J].亚热带植物学报,3(4):1-12.
    刘任涛,毕润成,闫桂琴,2007.山西南部翅果油树种群动态与谱分析[J].植物研究,27(5):550-555
    刘淑燕,岳永杰,余新晓,刘彦.2010,北京山区刺槐林种群的空间点格局[J].东北林业大学学报,38(4):33-36.
    罗光佐,施季森,尹佟明等.2000,利用RAPD标记分析北美鹅掌楸与鹅掌楸种间遗传多样性[J].植物资源与环境学报,9(2):9-13.
    邵丹,裴赢,张恒庆.2007,凉水国家自然保护区天然红松种群遗传多样性在时间尺度上变化的cpSSR分析[J].植物研究,27(4):473-476.
    苏应娟,王艇,郑博等.2004,根据cpDNA trnL-F非编码区序列变异分析黑桫椤海南和广东种群的遗传结构与系统地理[J].生态学报,24(5):914-919.
    王艳梅,刘震,马天晓等.2009,平榛居群结构与遗传多样性的初步分析[J].43(5):497-505.
    王芋华.2006.粗枝云杉(Picea asperata Mast.)天然群体的遗传变异[D].中国科学院研究生院,
    王章荣.2005.鹅掌楸属树种杂交育种与利用[M].北京:中国林业出版社,
    王晓阳,李火根,2011.鹅掌楸苗期生长杂种优势的SSR分析[J].林业科学,47(4):57-62
    吴承祯,洪伟,谢金寿,2000.珍稀濒危植物长苞铁杉种群生命表分析[J].应用生态学报,11(3):333-336.
    魏勇,田如男,方炎明.2004.龙王山鹅掌楸静态生命表分析[J].南京林业大学学报(自然科学版),28
    (6):61-63
    徐立安,李新军.2001,用SSR研究栲树群体遗传结构[J].植物学报,43(4):1-4.
    胥猛,李火根.2008,鹅掌揪EST-SSR引物开发及通用性分析[J].分子植物育种,6(3):615-618.
    徐小林,徐立安,黄敏仁等.2004,栓皮栎天然群体SSR标记遗传多样性研究[J].遗传,26(5):683-688.
    谢宗强,陈伟烈,刘正宇,江明喜,黄汉东.1999,银杉种群的空间分布格局[J].植物学报,41(1):95-101.
    尹增芳,樊汝汶,1994.中国鹅掌楸雄配子体发育的超微结构研究[J].植物资源与环境,3(1):1-8
    殷东生,张海峰,王福德.2009.小兴安岭白桦种群径级结构与生命表分析)[J].林业科技开发,23(6):40-43.
    杨明照.2006.桫椤种群遗传结构和系统发育地理研究[D].中山大学,
    张晓艳.2003.睡莲类植物的系统发育研究-兼论水盾草在中国东部的分布及潜在的生态后果[D].复旦大学,
    朱其卫,李火根.2010,鹅掌楸不同交配组合子代遗传多样性分析[J].遗传,32(2):183-188.
    朱晓琴,马建霞,姚青菊等.1995,鹅掌楸(Liriodendron chinense)遗传多样性的等位酶论证[J].植物资源与环境,4(3):9-14.
    朱晓琴,贺善安,姚青菊.1997,鹅掌楸群体遗传结构及其保护对策[J].植物资源与环境,6(4):7-14.
    张博,张露,诸葛强,王明庥,黄敏仁,2004,一种高效的树木总DNA提取方法[J],南京林业大学学报(自然科学版),28(1):13-17
    张洪映,毛新国,景蕊莲,谢惠民,昌小平,2008,小麦TaPK7基因单核苷酸多态性与抗旱性的关系[J],作物学报,34(9):15371543
    张钦弟,张金屯,苏日古嘎,2010.庞泉沟自然保护区华北落叶松种群生命表与谱分析[J].应用与环境生物学报,16(1):1-6.
    周建云,李荣,张文辉,不同间伐强度下辽东栎种群结构特征与空间分布格局[J].林业科学,48(4):149-155
    祝燕,白帆,刘海丰,李文超,李亮,李广起,王顺忠,桑卫国.2011,北京暖温带次生林种群分布格局与种间空间关联性[J].生物多样性,19(2):252-259.
    张金屯,孟东平.2004,芦芽山华北落叶松林不同龄级立木的点格局分析[J].生态学报,24(1):35~40.
    张金屯.1998,植物种群空间分布的点格局分析[J].植物生态学报,22(4):344~349.
    张红莲.2009.利用SSR分子标记探测鹅掌楸种间渐渗杂交.硕士学位论文,南京林业大学.
    郑志雷,2010,厚朴遗传多样性研究及指纹图谱的构建.博士学位论文,福建农林科技大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700