时空孤立点检测算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于数据采集技术的飞速发展,数据挖掘技术的进展相对缓慢,这种情况在时空孤立点检测方面显得尤为突出,也就出现了“空间数据爆炸而知识贫乏”的现象,急需开发空间数据挖掘技术以发现隐藏在海量空间数据背后的知识。时空孤立点检测作为空间数据挖掘中的一个重要研究分支,是为了找到与时空邻居对象有显著差别的时空对象,它们的数量很少或几乎没有,非常容易被当作数据噪声而被忽略。然而识别时空孤立点能够发现一些意想不到的、有意义的时空模式。论文以空间数据挖掘理论为基础,对空间孤立点检测及时空孤立点检测等问题进行了深入的研究,将信息熵理论、LLE降维算法引入到空间孤立点及时空孤立点检测研究中,弥补了现有空间孤立点检测及时空孤立点检测算法的不足。
     提出了一种基于图的空间权重孤立点检测算法。多数空间孤立点检测算法源于传统聚类方法或孤立点检测方法,使用空间对象的空间属性确定空间邻居对象,使用空间对象的非空间属性评价空间对象间的差异,从而发现空间孤立点。这种做法忽略了空间对象的空间属性与非空间属性间的内在联系,没有充分挖掘空间属性对空间对象间差异计算的贡献。本文提出了一种基于图的空间权重孤立点检测算法。通过引进信息熵理论计算空间属性重要因子,为空间邻居分配权重系数的方法,将空间属性和非空间属性结合起来对空间对象间的差异进行评价,并使用基于图的方法检测空间孤立点。该算法充分考虑了空间属性在评价空间对象间差异过程中的作用,解决了在空间孤立点检测过程中将空间属性和非空间属性割裂使用的问题。
     提出了一种基于改进型LLE的时空孤立点检测算法。时空孤立点检测作为一个较新的研究课题,面临时空邻居界定、算法效率低、传统孤立点检测方法不适用等问题。针对上述问题,本文提出了一种基于改进型LLE的时空孤立点检测算法。首先使用改进的LLE算法将高维时空数据映射为低维数据,其次应用时空异常系数的方法检测时空孤立点。该算法充分考虑了时空对象各种属性的作用,能够有效的将高维数据映射为低维数据,并保持数据的局部拓扑结构不变,从而解决了从高维时空数据集中发现孤立点的难题。
     设计开发了时空孤立点检测原型系统。针对时空孤立点检测研究和应用的需求,遵循软件工程规范设计开发了时空孤立点检测原型系统,该系统具有较为先进的体系架构、较强的可扩展性和实用性,基本实现了对空间孤立点和时空孤立点的检测分析,并使用真实数据集进行了测试。
In comparison with fast advances of data collection technology, data mining technology has obviously fallen behind, especially in the field of spatio-temporal outlier detection. Currently, so-called“data explosion”coexists with the“knowledge deficiency”. It is in urgent need to develop spatial data mining technology so as to discover and extract the spatial knowledge from myriad spatial data. As an important branch of spatial data mining, spatio-temporal outlier detection focuses on the approaches to picking out those objects from the available datasets, whose attributes are significantly distinguished from those of other objects in their spatio-temporal neighborhood. In general, these objects could easily be ignored, even canceled as data noise. Detecting spatio-temporal outlier could lead to the discovery of unexpected, interesting, and useful spatio-temporal patterns for further analysis. On the basis of theory of spatial data mining, this dissertation thoroughly studies spatial and spatio-temporal outlier detection issues, by introducing information entropy theory and LLE dimensionality reduction technology into the process of spatial and spatio-temporal outlier detection, which could be used to deal with the shortcoming of existing algorithm.
     The dissertation proposes a graph-based spatially weighted outlier detection algorithm. Most of the spatial outlier detection algorithms available are developed from traditional cluster methods or outlier detection methods, which use spatial attributes for determining the neighborhood relationship. The computation of the outlierness of a spatial object is solely based on the non-spatial attributes of this object and its neighbors. This traditional approach ignores the intrinsic link between the spatial and non-spatial attributes of spatial objects, which does not fully mine the potential role of spatial attributes in computation of the outlier of a spatial object. Based on this observation, graph-based spatially weighted outlier detection algorithm proposed in this paper, uses both the spatial and non-spatial attributes for evaluation of the differences in spatial objects. In the procedure of computing the outlier of spatial objects, different weights are assigned to different neighbors based on information entropy theory. And then spatial outlier could be detected by means of methods based on graph. The algorithm fully covers the role of spatial attributes in the process of determining differences in spatial objects. So it could be used to solve the problem, such as the separation of spatial and non-spatial attributes in the process of detecting spatial outlier.
     The paper also puts forward an improved LLE-based spatio-temporal outlier detection algorithm. In study of this relatively new method for spatio-temporal outlier detection, a lot of new issues have to be addressed, including the definition of spatio-temporal neighbor, efficiency of the algorithm, and limitations of traditional outlier detection methods. Firstly, the paper offers the improved LLE algorithm to transform high-dimensional spatio-temporal data to low-dimensional data which can greatly reduce the computation. Secondly, spatio-temporal anomaly coefficient is calculated and used to detect spatio-temporal outlier. This algorithm takes the role of different kinds of attributes of spatio-temporal objects into account, and causes no changes in the local topology of the data. Therefore, it could be used to solve the problems in detecting spatio-temporal outlier from high-dimensional dataset.
     Finally the paper designs and develops a prototype of the spatio-temporal outlier detection system. This prototypical system is designed for the need of studying and applying based on software engineering principles. The prototype has a relatively advanced framework, stronger extendibility and practical functions. Case studies show that the prototype system has realized the basic task of detecting spatial and spatio-temporal outliers from the true dataset, which proves the efficiency of the algorithm proposed in the dissertation.
引文
[1]Tony Hey,Stewart Tansley,Kristin Tolle.The fourth paradigm: data-intensive scientific Discovery[M]. Microsoft Research,2009:1-15.
    [2] Knorr EM, Ng,R T. A unified notion of outliers: properties and computation[C]. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining(KDD), NewportBeach,CA, USA, 1997: 219-222.
    [3] Knorr EM, Ng,R T. Algorithms for mining distance-based outliers in large datasets[C]. In: Proceedings of 24th Very Large Data Bases (VLDB) Conference, New York, USA, 1998: 392-403.
    [4] Knorr EM., Ng, R.T. Finding intentional knowledge of distance-based outliers[C]. In: Proceedings of the 25th International Conference on Very Large Data Bases, Edinburgh, Scotland, 1999:211-222.
    [5] Knorr EM., R. Ng, V. Tucakov. Distance-based outlier: algorithms and applications[J] .The VLDB Journal, 2000(8):237-253.
    [6] Ramaswamy S, Rastogi R, Kyuseok S. Efficient algorithms for mining outliers from large data sets[C]. In: Proceedings of the ACM International Conference on Management of Data(SIGMOD),Dallas, Texas, USA, 2000: 93-104.
    [7] Yu, D., Sheikholeslami, G. and Zhang. A find out: finding outliers in very large datasets[J]. Knowledge and Information Systems, 2002,4(4):387-412.
    [8] Jin, W., Tung, A.K.H., Han, J.W. Mining top-n local outliers in large databases[C]. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining .2001:293-298.
    [9] Arning A, Agrawal R, Raghavan P. A linear method for deviation detection in large databases [C]. In: Proceedings of Conference on Knowledge Discovery and Data Mining(KDD)’96, Portland OR, USA, 1996: 164-169.
    [10] Yamanishi. K, Takeuchi. J ,and Williams.. Unsupervised outlier detection using finite mixtures with discounting learning algorithms[C]. In Proceedings of the Sixth ACM SIGKDDOO, Boston, MA, USA, pp.320-324.
    [11] Breunig MM, KriegelH P, NgR T,etal. LOF: Identifying density-based local outliers[C]. In: Proceedings of the ACM International Conference on Management of Data(SIGMOD)’00 , Dallas,Texas, USA, 2000: 427-438.
    [12] Papadimitriou, S., Kitawaga, H., Gibbons, P., Faloutsos, C. LOCI: Fast outlier detection using the local correlation integral[C], Proceedings - International Conference on Data Engineering,2003:29-35.
    [13] M.I.Shamos,D.Honey.Closest-point problems[C].In Proc of 16th Annual IEEE Symposium on Foundations of Computer Science(FOCS),1975:151-162.
    [14] Ruts I, Rousseeuw P. Computing depth contours of bivariate point clouds[ J]. Computational Statistics and Data Analysis, 1996,23(1): 153-168.
    [15] Guha S, Rastogi R, Kyuseok S. ROCK: A robust clustering algorithm for categorical attributes[C]. In: Proceedings of 15th International Conference on Data Engineering, Sydney, Australia,1999: 512-521.
    [16] He Zeng-you, Xu Xiao-fe,i Deng S. Discovering cluster-based local outliers[J]. Pattern Recognition Letters, 2003,24( 9-10 ):1642-1650.
    [17] He Zeng-you, Xu Xiao-fei, Huang Joshua-zhexue,et al. Mining class outliers: concepts, algorithms and applications in CRM [J].Expert Systems with Applications, 2004,27(4): 681-697.
    [18] Aggarwal C, Yu P. Outlier detection for high dimensional data[C].In: Proceedings of the ACM SIGMOD’01 International Conference on Management of Data. Santa Barbara, CA, USA, 2001: 37-46.
    [19] Hu Tian-ming, Sung Sam-Y. Detecting pattern-based outliers[ J].Pattern Recognition Letters, 2003,24(16): 3059-3068.
    [20] S. Shekhar, C. Lu, and P. Zhang. Detecting graph-based spatial outlier: algorithms and applications(A Summary of Results)[C]. In: Proceedings of the Seventh ACMSIGKDD Int’l Conference on Knowledge Discovery and Data Mining, 2001: 371-376.
    [21] Agarwal, D., Phillips, J.M., Venkatasubramanian. The hunting of the bump: on maximizing statistical discrepancy[C]. In: Proceedings of 17th Ann. ACM-SIAM Symp, 2006: 1137-1146.
    [22] Barnett, V. & Lewis, T. Outliers in statistical data[M]. 3rd Edition. John Wiley & Sons.1994:421-478.
    [23] Chang-Tien Lu, Dechang Chen,Yufeng Kou. Detecting spatial outliers with multiple attributes[C]. In: Proceedings of 15th IEEE International Conference on, 2003:122–128.
    [24] Y. Kou, C.-T. Lu, and D. Chen. Spatial weighted outlier detection[C]. In: Proceedings of the Sixth SIAM International Conference on Data Mining, Bethesda, Maryland, USA, 2006: 614–618.
    [25] N. R. Adam, V. P. Janeja, and V. Atluri. Neighborhood-based detection of anomalies in high-dimensional spatio-temporal sensor datasets[C]. In: Proceedings of the 2004 ACM symposium on Applied computing,Nicosia, Cyprus, 2004:576–583.
    [26] H. Liu, K. C. Jezek, and M. E. O’Kelly. Detecting outliers in irregularly distributed spatial data sets by locally adaptive and robust statistical analysis and gis[J]. International Journal of Geographical Information Science, 2001,15(8):721–741.
    [27] Aggarwal, C. C., Yu, S. P.. An effective and efficient algorithm for high-dimensional outlier detection[J]. The VLDB Journal, 2005(14): 211-221.
    [28] Lazarevic, A., Kumar. Feature bagging for outlier detection[C]. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining,2005:157-166.
    [29] Ping Guo, Ji-Yong Dai, Yan-Xia Wang. Outlier detection in high dimension based on projection machine learning and cybernetics[C]. Second International Symposium on Intelligent Information Technology Application, 2006: 1165– 1169.
    [30] E.M. Jordaan. Irtdusrriol application of supper vector machines for regression[D].Eindhoven University of Technology, 2002:1-43.
    [31] Jordaan, E.M.;,Smits, G.F.. Robust outlier detection using SVM regression[C]. Neural Networks, 2004. Proceedings. 2004:2017– 2022.
    [32] Sun Yuxiang, Xie Kunqing, Ma Xiujun. Detecting spatio-temporal outliers in climate dataset: A Method Study[C].IEEE IGARSS, 25th Anniversary,2005:25-29.
    [33] Birant,D.Kut, A. Spatio-temporal outlier detection in large databases[J].Journal of computing and information technology,2006,14(4),291-298.
    [34] Berk,Anbaroglu. Considering spatio-temporal outliers in function approximation[C].2008 23rd International Symposium on Computer and Information Sciences,2008:1-6.
    [35]魏藜,宫学庆,钱卫宁等.高维空间中的孤立点发现[J].软件学报,2002,13(2):280-290.
    [36]李存华,孙志挥. GridOF:面向大规模数据集的高效离群点检测算法[J].计算机研究与发展,2003,40(11):1586-1592.
    [37]马荣华,何增友.从GIS数据库中挖掘空间孤立点的一种高效算法[J].武汉大学学报,2006,31(8):679-682.
    [38]薛安荣,鞠时光.基于空间约束的孤立点挖掘[J].计算机科学,2007,34(6):207-210.
    [39]贾瑞玉,钱光超,张然.空间孤立点的检测算法[J].计算机技术与发展,2008,18(5):28-30.
    [40]余建桥.基于云理论与数据场的空间孤立点挖掘研究[D].重庆:西南农业大学图书馆,2005:1-16.
    [41] Tao Cheng, Zhilin Li. A multiscale approach to detect spatial-temporal outliers[C]. 20th ISPRS Congress, 2004:1008-1013.
    [42]何伟华.时空离群点检测研究[D].江苏大学图书馆,2007:32-48.
    [43]邸凯昌.空间数据挖掘和知识发现的理论与方法[D].武汉:武汉大学图书馆,1999:1-30.
    [44] W. Lu, J. W. Han et al. Discovery of general knowledge in large spatial databases[C]. In: Proceedings of Far East Workshop on Geographic Information Systems. Singapore, 1993:275-289.
    [45] Ng R,Han J W. Efficient and effective clustering methods for spatial data mining[C].In Proc of the 20th Int'l Conf on Very Large Data Bases,1994:144-155.
    [46] Koperski K,Adhikary J,Han J W. Spatial data mining: progress and challenges survey paper[C]. In Proc of ACM SIG-MOD Workshop on Research Issues on Data Mining and Knowledge Discovery,1996:1-10.
    [47] Koperski K,Han J W. Discovery of spatial association rules in geographic information database [C]. In: Proceedings of the 4th International Symposium on Advances in Spatial Databases,1995:47-66.
    [48]谢昆青,马修军,杨冬青等译.空间数据库[M].北京:机械工业出版社,2004.
    [49] S. Shekhar, C.T. Lu, and P. Zhang. A unified approach to detecting spatial outliers [J].Geoinformatica, 2003, 7(2): 139-166.
    [50] S. Shekhar and Y. Huang. Discovering spatial co-location patterns: a summary of results[C]. In Proc of 7th International Symposium on Spatial and Temporal Databases(SSTD01), L.A., CA, 2001:236-256.
    [51] Y. Huang, S. Shekhar, and H. Xiong. Discovering co-location patterns from spatialdatasets: A General Approach[C]. In Proc of IEEE Transactions on Knowledge and Data Engineering (TKDE), 2004: 1472-1485.
    [52] H. Xiong, S. Shekhar, Y. Huang, et al. A framework for discovering co-location patterns in data sets with extended spatial objects[C]. In Proc of 2004 SIAM International Conf. on Data Mining (SDM'04), Orlando, Florida, USA, 2004.
    [53] J. S. Yoo and S. Shekhar. A partial join approach for mining co-location patterns[C]. In Proc of 12th ACM International Workshop on Geographic Information Systems, Washington,DC, USA, 2004: 241-249.
    [54] S. Chawla, S. Shekhar, and W. Wu. Predicting locations using map similarity (PLUMS): a framework for spatial data mining[C]. in Proc of the 6th International Conference on Knowledge Discovery and Data Mining, Boston, MA, 2000.
    [55] S. Shekhar, P. Schrater, R. Vatsavai, et al. Spatial contextual classification and prediction models for mining geospatial data[J]. IEEE transactions on multimedia, 2002,4(2):174-188.
    [56] A. K. H. Tung, J. Hou, and J. Han. Spatial clustering in the presence of obstacles[C]. In Proc of 2001 Int. Conf. on Data Engineering (ICDE'01), Heidelberg, Germany, 2001:359-357.
    [57] K. Koperski, J. Han, and d. N. Stefanovic. An efficient two-step method for classification ofspatial data[C]. in Proc of 1998 International Symposium on Spatial Data Handling SDH'98, Vancouver, BC, Canada, 1998:45-54.
    [58]李德仁.空间数据挖掘的理论与应用[M].北京:科学出版社, 2005.
    [59]李德仁,史文中.论空间数据挖掘和知识发现[J],武汉大学学报. 2001, 26(6):491-499.
    [60]石云,孙玉芳,左春.基于RoughSet的空间数据分类方法[J].软件学报,2000,11(5):673-678.
    [61]李龙澍,倪志伟,凌成.基于Rough集的空间属性数据挖掘的研究与实践[J].系统仿真学报,2002,14(12):1702-1705.
    [62]宋国杰,唐世渭,杨冬青等.基于最大熵原理的空间特征选择方法[J].软件学报,2003, 14(9): 1544-1550.
    [63]陈冠华.基于空间数据库的空间数据挖掘语言[J].北京大学学报. 2004, 40(3):465-472.
    [64]周成虎,张健挺.基于信息熵的地学空间数据挖掘[J].中国图象图形学报,1999,4[A](11):943-951.
    [65]滕明贵,王儒敬,马献章.基于最小拟合误差平方和准则的空间聚类[J],小型微型计算机系统. 2005, 26(7): 1221-1224.
    [66]王占全,王申康,华成.空间分类数据同位规则挖掘算法[J].计算机辅助设计与图形学学报. 2005, 17(10): 2339-2344.
    [67]王海起,王劲峰.空间数据挖掘技术研究进展[J].地理与地理信息科学,2005,21(4):6-10.
    [68]胡彩平,秦小鳞.空间数据挖掘研究综述[J].计算机科学,2007,34(5):14-19.
    [69]王占全.基于地理信息系统空间数据挖掘若干关键技术的研究[D].浙江大学图书馆,2005:1-35.
    [70] Jiawei Han,Micheline Kamber.《数据挖掘:概念与技术》.机械工业出版社,2001.
    [71]裴韬,周成虎,骆剑承,等.空间数据知识发现研究进展评述[J].中国图象图形学报,2001,6A(9):854-860.
    [72]罗志清,李琦.城市空间数据基础设施研究[J].地理与地理信息科学,2003,19(3):32-34.
    [73] H. J. Miller,J. Han. Geographic data mining and knowledge discovery: An overview[M]. Geographic Data Mining and Knowledge Discovery. London:Taylor and Francis,2001.3-32.
    [74]金义富.高维稀疏离群数据集延伸知识发现研究[D].重庆大学图书馆,2007:9-18.
    [75]王新洲.论空间数据处理与空间数据挖掘[J].武汉大学学报(信息科学版),2006,31(1):1-8.
    [76]于立红,杜芸.数据挖掘中数据预处理方法与技术[J].安徽电子信息职业技术学院学报,2009,43(8):42-43
    [77]彭高辉,王志良.数据挖掘中的数据预处理方法[J].华北水利水电学院学报, 2008, 29(6): 61-63.
    [78]李新运.城市空间数据挖掘方法与应用研究[D].山东科技大学图书馆,2004:16-23.
    [79]郭仁忠.空间分析(第二版)[M].北京:高等教育出版社,2001.
    [80] Gold, C.M. Spatial adjacency—a general approach[C]. In Proceedings, Auto-Carto 9, Baltimore, April 1989, pp. 298-312.
    [81] 2邱保志,尚俊平,贾晨科.基于局部最大距离的孤立点检测算法的研究[J].河南教育学院(自然科学版),2005,14(1):55-58.
    [82]李强,李振东.数据挖掘中孤立点的分析研究在实践中应用[J].微计算机应用, 2006, 27(3): 323-327.
    [83]杨永铭,王喆.孤立点挖掘算法研究[J].计算机与数字工程,2008,36(1):11-15.
    [84] Sanjay Chawla,Pei Sun. SLOM: A new measure for local spatial outliers[J].Knowledge and Information Systems,2006,9(4):412-429.
    [85] Anrong Xue, Shiguang Ju. Algorithm for spatial outlier detection based on outlying degree[C].Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China,2006:6005-6009.
    [86] Tianqiang Huang,Xiaolin Qin,Chongcheng Chen,Qinmin Wang. Density-based spatial outliers detecting[C].In Proc of 5th International Conference on Computational Science 2005. 979-986.
    [87] Yufeng Kou, Chang-Tien Lu, Dos Santos, R.F.. Spatial outlier detection: a graph-based approach.[C]. Proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence, 2007:281– 288.
    [88]倪巍伟,陈耿,陆介平,吴英杰,孙志挥.基于局部信息熵的加权子空间离群点检测算法[J].计算机研究与发展,2008,45(7):1189-1194.
    [89] Barbara D, Li Y, Couto J. Coolcat: An entropy-based algorithm for categorical clustering [C]. Proceedings of ACM Conference on Information and Knowledge Management (CIKM), 2002: 582-589.
    [90] Li T, Ma S, Mitsunori O. Entropy-based criterion in categorical clustering[C]. Proceedings of Internal Conference on Machine Learning (ICML), 2004:68-75.
    [91] He Z Y, Xu X F, Deng S C. An optimization model for outlier detection in categorical data[C]. Proceedings, Part I. Lecture Notes in Computer Science of Advances in Intelligent Computing, International Conference on Intelligent Computing, 2005: 23-26.
    [92] New York City with Census 2000 data set[EB/OL]. http://www.s4.brown.edu/S4/events.htm,2009-10-25.
    [93] Shekhar, Raj, Cothren, Robert. Cornhill, J.Fredrick1. Spatio-temporal localization of intravascular ultrasound data for accurate 3D reconstruction of coronary arteries [C]. Proceedings of the 1996 18th Annual International Conference of the IEEE Engineering inMedicine and Biology Society,1996:668-669.
    [94] Kaufman L. and Rousseeun P.J. Finding groups in data: an introduction to cluster analysis[M]. John Wiley&Sons,1990.
    [95] Zhao R.L.,Chen J.,Li Z. K-order spatial neighbor based on voronoi diagram: description, computataion and application[C]. In:Proceeding of ISPRS Technical Commission IV, Ottawa, 2002.
    [96] Rogers, James,Barbar,Daniel,Domeniconi,Carlotta. Detecting spatio-temporal outliers with kernels and statistical testing[C].17th International Conference on Geoinformatics,2009.
    [97] S T Roweis, L K Saul. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000: 2323-2326.
    [98]王和勇,郑杰,姚正安,李磊.基于聚类和改进距离的LLE方法在数据降维中的应用[J].计算机研究与发展,2006,43(8):1485-1489.
    [99]姚林.离群点快速挖掘算法的研究[D].江苏大学图书馆,2008:33-46.
    [100] South us county homicides data set[EB/OL].http://www.ncovr.heinz.cmu.edu, 2009-9-2.
    [101]全面解析基于空间数据库的数据挖掘技术[EB/OL]. http://www.gispark.com/html/GIS-Spatial-Database/2006/1124/718.html, 2010-3-1.
    [102] Exploring spatial data with GeoDa: A Workbook[CP/OL]. http://geodacenter.asu.edu, 2009-10-15.
    [103] Spatial data in R[EB/OL]. http://r-spatial.sourceforge.net,2010-1-21.
    [104] SaTScan User Guide[EB/OL]. http://www.satscan.org./techdoc.html, 2010-1-21.
    [105] CrimeStat III User Workbook and Data[EB/OL]. http://www.icpsr.umich.edu/icpsrweb/CRIMESTAT, 2010-1-21.
    [106] Bertrand Meyer.Object Oriented Software Construction[M].Prentice Hall PTR,2000:1-19.
    [107] MapWinGIS ActiveX Control .[ EB/OL]. http://www.mapwindow.com,2009-10-12.
    [108]国家基础地理信息系统数据[EB/OL].http://nfgis.nsdi.gov.cn/nfgis/chinese/c_xz.htm, 2009-1-23.
    [109]江苏省统计局县市数据[EB/OL]. http://www.jssb.gov.cn/jstj/tjsj/sxsj, 2009-11-10.
    [110]地区农业受灾统计数据[EB/OL]. http://219.235.129.58/welcome.do, 2009-11-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700