用户名: 密码: 验证码:
犬尿氨酸对体液免疫应答的影响及其机制的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自身免疫性疾病严重危害着人类的健康,其发病率呈现升高趋势。然而,目前临床上用于治疗自身免疫性疾病的药物,存在着诱发感染、肿瘤形成,尤其是弱的靶向性等副作用。急需寻找新的自身免疫性疾病的治疗策略。疫苗接种具有诱发抗原特异性免疫应答及形成长久免疫记忆的特点。因此,采用特异性抗原与致耐受性或抑制性佐剂联合免疫机体,诱导机体产生针对特异性抗原的免疫耐受或免疫抑制,是一种较为理想的治疗策略。多种诱发自身免疫性疾病形成的自身抗原已经被鉴别,但是,目前尚无合适的致耐受性或抑制性佐剂能被用于新的自身免疫性疾病的治疗策略。为了能确保新的治疗策略的顺利进行,需要探讨新的致耐受或抑制性佐剂及其作用机制。
     犬尿氨酸是一种生理性物质,作为佐剂较其它外源性物质具有更好的安全性。在本论文中,首先,通过将犬尿氨酸与抗原(甲型肝炎病毒)联合免疫动物,阐明了在体内,犬尿氨酸具有作为抑制性佐剂的能力;ELISA数据表明犬尿氨酸可以显著性的下调甲型肝炎病毒诱导的特异性体液免疫应答,且在试验期内均具有较好的效果。B细胞是参与体液免疫应答的主要细胞,而且体外培养的B细胞在受到TD或TI抗原的刺激后,具有免疫球蛋白类别转化重排及向抗体分泌型的浆细胞分化的能力,所以,为体外研究体液免疫应答提供了一个很好的试验平台。随后,通过体外培养B淋巴细胞,并给予特定浓度犬尿氨酸+脂多糖处理,进一步阐明了在体外,犬尿氨酸同样具有作为抑制性佐剂的能力;ELISA结果表明特定浓度的犬尿氨酸能使脂多糖诱导的体液免疫应答明显下降。体内外的实验数据均表明犬尿氨酸是一种新型的抑制性佐剂,具有下调抗原免疫原性的能力。
     MicroRNA在多种生理过程中发挥着重要作用,包括胚胎发育、肿瘤形成、细胞增殖、凋亡及分化、信号转导等。MicroRNA与其靶基因的相互作用是“中心法则”之外的一种基因表达调控方式。在生物体内,大约30-60%的基因表达受microRNA的调解,并且,也发现多种microRNA参与了B细胞末端分化过程。我们提出某种microRNA可能参与了犬尿氨酸抑制脂多糖诱导的体液免疫应答过程。Real-time PCR证实了犬尿氨酸能够引起microRNA30b (miR30b)的表达下调,而且其也可削弱脂多糖诱导的miR30b表达上调。ELISA数据进一步表明miR30b参与了脂多糖诱导的体液免疫应答,而且证明了miR30b参与了犬尿氨酸抑制脂多糖诱导的体液免疫应答过程。
     在RNA沉默复合体中,microRNA通过2-7个核酸种子序列与靶基因3'UTR的互补序列结合,导致靶基因的直接降解或稳定性减弱,进而达到抑制靶基因的表达。通过荧光素霉双报告系统,human Bach2mRNA和human Foxo3mRNA均被证明为miR30b的靶基因:Western blot分析也表明,在人正常B淋巴细胞中,miR30b能够下调human Bach2和human Foxo3的蛋白表达水平;同时也证实了在犬尿氨酸抑制脂多糖诱导的体液免疫应答过程中,miR30b可以影响human Bach2和human Foxo3的蛋白表达水平。
     Bach2作为一种转录抑制子参与B细胞末端分化的调控,已经被众多学者接受。Foxo3是FOXO转录因子家族成员之一;广泛分布于多种细胞,包括T细胞、B细胞和树突状细胞;其除了在细胞存活、增殖、凋亡、代谢、应急反应、衰老、维持机体内环境稳态等生理过程中发挥着重要作用,还在调节免疫应答方面起着一定的作用。由于尚无商品化的human Foxo3蛋白,我们利用基因重组技术成功构建了pcDNA3.1(+)-human Foxo3过表达质粒,并利用human Foxo3的过表达、敲除探讨了其对犬尿氨酸抑制脂多糖诱导的体液免疫应答的影响,以及其在miR30b影响脂多糖诱导的体液免疫应答过程中发挥的作用。ELISA数据表明human Foxo3蛋白参与了miR30b影响脂多糖诱导的体液免疫应答的过程。
     本论文证实了犬尿氨酸能够抑制抗原诱导的体液免疫应答及削弱抗原免疫原性;在体外培养的B淋巴细胞中,miR30b参与了犬尿氨酸作为抑制性佐剂发挥作用的过程;并且也证实了human Bach2mRNA和human Foxo3mRNA均为miR30b的靶基因;另外,也证实了human Foxo3参与了miR30b影响脂多糖诱导的体液免疫应答的过程。这些数据表明犬尿氨酸是一种有效的抑制性佐剂,为新的自身免疫性疾病的治疗策略提供了一种新型的抑制性佐剂。
There is a seriously effect of autoimmune diseases on human health. The data showed that the incidence of autoimmune diseases is gradually trend to increase. However, there are many side effects of the currently-used therapeutic strategies, including immunosuppressive agents, cytokines, and TNF-a antagonists, such as causing tumors, infection, as well as delayed dysfunction, and especially reduced targeting effectiveness. Thus, a novel strategy is required to improve therapeutic effects. Vaccination against autoimmune diseases is a feasible strategy because vaccines induce immune response memory and the antigen specificity. Recovering tolerance or down-regulating the immune response to non-harmful antigens is a better ideal way to treat autoimmune diseases through administrating a mixture of special antigen with adjuvant that decreases the strength of the immune response. Recent medical advances have included determining the self-antigens for various autoimmune diseases. However, no suitable adjuvant is available to direct the immune response toward tolerance or suppression. Thus, it is difficult to find novel tolerogenic/suppressive adjuvants and to understand their biological mechanisms of action for a successful new therapeutic strategy.
     Kynurenine (Kyn), an endogenous substance, is safer than exogenous substances when considered as a vaccine adjuvant. In this thesis, firstly, we evaluated whether Kyn could serve as a novel tolerogenic or suppressive adjuvant to decrease the humoral immune responses against hepatitis A virus (HAV) in the ICR mouse model in vivo. The data showed that Kyn significantly decreased HAV immunogenicity when co-administered with HAV and that the effect appeared throughout the test period. B cells play a key role in the humoral immune response. In addition to the experimental animal model, B cell terminal differentiation also can be studied successfully in vitro, because B cells are capable of both immunoglobulin class switch recombination and differentiation toward antibody-secreting plasma cells in response to a TD stimulus or a T1-related signal such as lipopolysaccharide (LPS). B cell responses in vitro thus provide a controlled system to investigate the humoral immune response on both a cellular and molecular level. Subsequently, the function of Kyn as a novel suppressive adjuvant in vitro was evaluated by stimulating B cells with the mixture of Kyn and LPS. The results showed that Kyn (100μM/1000μM) impaired IgM generation compared to that induced by LPS alone. These findings suggest that Kyn is able to attenuate the antigenic immunogenicity, and that can serve as a novel and effective suppressive adjuvant for vaccines.
     MicroRNAs play important and broad roles in a wide variety of biological processes, including embryogenesis, carcinogenesis, proliferation and apoptosis, differentiation and signal transduction. The interaction between microRNA and its target gene is a regulation of gene expression except for 'Central Dogma of Molecular Biology'. It has been estimated that30-60%of the genes in a given genome are regulated in this manner. Furthermore, several microRNAs were identified involving in the progress of B cell terminal differentiation. We provide the hypothesis that some microRNA involves in the progress of Kyn-mediated suppressive humoral immune responses induced by LPS. In this study, we analyzed the contribution of microRNAs to the process of humoral immune responses suppressed by Kyn, and found that, in the presence of Kyn, the level of microRNA30b (miR30b) was significantly decreased compared to that in the corresponding control group. We also demonstrated that miR30b played a critical role in the process of Kyn-mediated suppression of IgM responses induced by LPS.
     In the RNA-induced silencing complex, microRNA down-regulates the expression of the target gene either by direct degradation or destabilization and eventually suppresses translation of the target through binding to the target sequence in the3'UTR via the2-7nucleotide seed region. Our results demonstrated that human Bach2and human Foxo3were novel targets of miR30b through Dual-Luciferase Reporter Assay System. Next, the results were further strengthened by reducing the protein levels of human Bach2and human Foxo3by miR30b in normal human B cells through Western blot assay. At same time, we also demonstrated that there are effects of miR30b on the protein levels of human Bach2and human Foxo3in the process of Kyn-mediated suppression of IgM responses induced by LPS.
     Bach2, a transcriptional repressor, is well known for the regulation of B cell terminal differentiation. Foxo3is one of the members of the FOXO transcription factor family, exists in a variety of cells such as T cell, B cell and dendritic cell, and plays a role in many physiological processes, including cell survival, proliferation, apoptosis, metabolism, emergency response, aging, maintaining homeostasis and immune response. Since there is no commercial human Foxo3 protein, we successfully constructed recombination plasmid of pcDNA3.1(+)-human Foxo3, and evaluated that the effect of Foxo3on the process of IgM responses induced by LPS in normal human B cells treated with Kyn or miR30b on the basis of it. The data of ELISA showed that human Foxo3plays an important role in the process of miR30b-mediated humarol immune responses.
     In conclusion, our data demonstrate that Kyn can suppress the humoral immune responses induced by special antigen and attenuate antigenic immunogenicity. In B cells in vitro, miR30b plays an important role in Kyn-mediated suppression of IgM responses induced by LPS. Bach2and Foxo3were novel targets of miR30b. In addition, we also successfully constructed the recombination plasmid of pcDNA3.1(+)-human Foxo3, and demonstrate that Foxo3plays an important role in the process of miR30b-mediated humarol immune responses. These findings suggest that Kyn can serve as a novel and effective suppressive adjuvant for vaccines.
引文
[1]. Vyse TJ, Todd JA. Genetic analysis of autoimmune disease [J]. Cell,1996,85: 311-318.
    [2].李沛寰,陈辉树.树突状细胞与自身免疫性疾病关系的研究进展[J].医学综述,2007,13(6):411-413.
    [3].马建新,卢洪洲.病原微生物感染与自身免疫性疾病[J].国际流行病学传染病学杂志,2006,33(6):409-412.
    [4]. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17 [J]. Nat Immunol,2005,6(11):1133-1141.
    [5]. Skapenko A, Leipe J, Lipsky PE, et al. The role of the T cell in autoimmune inflammation [J]. Arthritis Res Ther,2005,7(S2):S4-14.
    [6]. Steinman RM, Banchereau J. Taking dentritic cells into medicine [J]. Nature,2007, 49(27):419-426.
    [7].朱可建.树突状细胞与自身免疫性疾病关系的研究进展[J].浙江大学学报(医学版),2003,32(1):81-84.
    [8]. Mahnke K, Enk AH. Dendritic cells:key cells for the induction of regulatory T cells? [J]. Curr Top Microbiol Immunol,2005,293(1):133-150.
    [9].孟荔,欧阳建.CD4+CD25+调节性T细胞与自身免疫病[J].中国组织工程研究与临床康复,2007,11(33):65-68.
    [10].徐素粉,王艳玲.Fas/FasL与自身免疫性疾病[J].医学综述,2011,17(7):969-971.
    [11]. Sakagunchi S. Naturally arising CD4+regulatory t cells for immunologic self-tolerance and negative control of immune responses [J]. Annu Rev Immunol,2004,22:531-562.
    [12]. Billiard F, Litvinova E, Saadoun D, et al. Regulatory and effector T cellactivation levels are prime determinants of in vivo immune regulation [J]. Immunol,2006,177(4): 2167-2174.
    [13]. Korhonen R and Moilanen E. Anti-CD20 antibody rituximab in the treatment of rheumatoid arthritis [J]. Basic Clin Pharmacol Toxicol,2010,106(1):13-21.
    [14]. Sakuma Y, Ohtori S, Miyagi M, et al. Up-regulation of p55 TNF alpha-receptor in dorsal root ganglia neurons following lumbar facet joint injury in rats [J]. Eur Spine J, 2007,16(8):1273-1278.
    [15]. Caramaschi P, Bambara LM, Pieropan S, et al. Anti-TNF alpha blochers, autoantibodies and autoimmune diseases [J]. Joint Bone Spine,2009,76(4):333-342.
    [16]. Bliddal H, Terslev H, Qvistgaard E, et al. A randomized, controlled study of a single intra-articular injection of etanercept or glucocorticosteroids in patients with rheumatoid arthritis [J]. Scand J Rheumatol,2006,35(3):341-345.
    [17]. Weiner HL, Mackin GA, Matsui M, et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis [J]. Science,1993,259(5099):1321-1324.
    [18]. Trentham DE. Oral tolerization as a treatment of rheumatoid arthritis [J]. Rheum Dis Clin North Am,1998,24(3):525-536.
    [19]. Hoynowski SM, Fry MM, Gardner BM, et al. Characterization and differentiation of equine umbilical cord-derived matrix cells [J]. Biochem Biophys Res Commun,2006, 362(2):347-353.
    [20]. Guillot PV, O Donoghue K, Kurata H, et al. Fetal stem cells:betwixt and between [J]. Semin Reprod Med,2006,24(5):340-347.
    [21]. Stamm C, Liebold A, Steinhoff G, et al. Stem cell therapy for ischemic heart disease: beginning or end of the road? [J]. Cell Transplant,2006,15(S1):S47-56.
    [22]. Friedenstein AJ, Piatetzky-shapiro ll, Petrakova KV. Osteogenesis in transplants of bone marrow cells [J]. Embryol exp Morph,1966,16(3):381-390.
    [23]. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science,1999,284(5411):143-147.
    [24], Kang YM, Xu LP, Wang B, et al. Cutting Edge:Immunosuppressant as adjuvant for tolerogenic immunization [J]. J Immunol,2008,180:5172-5176.
    [25]. Rachael K, Tomer H, Marie W, et al. The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus [J]. Nature Immunology,2013,14(12):1266-1276.
    [26]. Watanabe Y, Fujiwara M, Yoshida R, Hayaishi O. Stereospecificity of hepatic L-tryptophan 2,3-dioxygenase [J]. Biochem J,1980,189:393-405.
    [27], Heyes MP, Saito K, Major EO, et al. A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate [J]. Brain,1993,116(Pt6): 1425-1450.
    [28]. Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? [J]. Immunol Today,1999,20:469-473.
    [29]. Takikawa O, Yoshida R, Kido R, Hayainshi O. Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase [J]. J Biol Chem,1986,261:3648-3653.
    [30]. Sioud M, Saebe-Larssen S, Hetland TE, et al. Silencing of indoleamine 2, 3-dioxygenase enhances dendritic cell immunogenicity and antitumour immunity in cancer patients [J]. Int J Oncol,2013,43(1):280-288.
    [31]. Platten M, Wick W, Vanden Eynde BJ. Tryptophan catabolism in cancer:beyond IDO and tryptophan depletion [J]. Cancer Res,2012,72(21):5435-5440.
    [32]. Munn DH, Zhou M, Attwoll JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism [J]. Science,1998,281(5380):1191-1193.
    [33]. Liu H, Liu L, Flereher BS, et al. Novel action of indoleamine 2,3-dioxygenase attenuating acute lung allograft injury [J]. Am J Respir Crit Care Med,2006,173(5): 566-572.
    [34]. Hoshi M, Ito H, Fujigaki H, Takemura M, et al. Indoleamine 2,3-dioxygenase is highly expressed in human adult T-cell leukemia/lymphoma and chemotherapy changes tryptophan catabolism in serum and reduced activity [J]. Leuk Res,2009,33:39-45.
    [35]. Frumento G, Rorondo R, Tonetti M, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase [J]. J Exp Med,2002,196(4):459-468.
    [36]. Bauer TM, Jiga LP, Chuang JJ, et al. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase:tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo [J]. Transpl Int 2005,18(1):95-100.
    [37]. Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism [J]. Cell Death Differ,2002,9(10):1069-1077.
    [38]. Nauyen NT, Kimura A, Nakahama T,et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via kynurenine-dependent mechanism [J]. Proc Natl Acad Sci USA,2010,107:19961-19966.
    [39]. Holly M, James H. Roles of EBF and PAX5 in B lineage commitment and development [J]. Immunol,2002,14(6):415-422.
    [40]. Nutt SL, Kee BL. The transcriptional regulation of B cell lineage commitment [J]. Immunity,2007,26(6):715-725.
    [41]. Fairfax KA, Kallies A, Nutt SL, Tarlinton DM. Plasma cell development:from B-cell subsets to long-term survival niches [J]. Semin Immunol,2008,20:49-58.
    [42]. Calame KL, Lin Kl, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells [J]. Annu Rev Immunol,2003,21:205-230.
    [43]. Kallies A, Nutt SL. Terminal differentiation of lymphocytes depends on Blimp-1 [J]. CurrOpin Immunol,2007,19:156-162.
    [44]. Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells [J]. Immunity,2007,27:847-859.
    [45]. Lee CH, Melchers M, Wang H, et al. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein [J]. J Exp Med,2006,203:63-72.
    [46], Lin L, Gerth AJ, Peng SL. Active inhibition of plasma cell development in resting B cells by microphthalmia-associated transcription factor [J], J Exp Med,2004,200: 115-122.
    [47]. John SA, Clements JL, Russell LM, et al. Ets-1 regulates plasma cell differentiation by interfering with the activity of the transcription factor Blimp-1[J]. J Biol Chem,2008, 283:951-962.
    [48]. Rahman M, Hirabayashi Y, Ishii T. A repressor element in the 5'-untranslated region of human PAX5 exon 1A[J]. Gene,2001,263(1-2):59-66.
    [49]. Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5:the guardian of B cell identity and function [J]. Nat Immunol,2007,8(1):463-470.
    [50]. Fuxa M, Busslinger M. Reporter gene insertions reveal a strictly B lymphoid specific expression pattern of pax5 in support of its B cell identity function [J]. J Immunol,2007, 178:3031-3037.
    [51]. Nutt SL, Heavey B, Rolink A. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 [J]. Nature,1999,401(10):556-562.
    [52]. Pridans C, Holmes ML, Polli M, et al. Identification of Pax5 target genes in early B cell differentiation [J]. J Immunol,2008,180:1719-1728.
    [53]. Schebesta A, McManus S, Salvagiotto G, et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function [J]. Immunity,2007,27:49-63.
    [54]. Nera KP, Kohonen P, Narvi E, et al. Loss of Pax5 promotes plasma cell differentiation [J]. Immunity,2006,24:283-293.
    [55]. Kallies A, Hasbdd J, Fairfax K, et al. Initiation of plasma cell differeraiation is independent of the trancription factor Blimp-1 [J]. Immunity,2007,26(5):555-566.
    [56]. Basso K, Dalla-Favera R. BCL6:master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis [J]. Adv Immunol,2010,105:193-210.
    [57], Duy C, Yu JJ, Nahar R, et al. BCL6 is critical for the development of a diverse primary B cell repertoire [J]. J Exp Med,2010,207:1209-1221.
    [58]. Cattoretti G, Chang CC, Cechova K, et al. BCL-6 protein is expressed in germinal-center B cells [J]. Blood,1995,86:45-53.
    [59]. Dent AL, Shaffer AL, Yu X, et al. Control of inflammation, cytokine expression, and germinal center formation by BCL-6 [J]. Science,1997,276:589-592.
    [60]. Ye BH, Cattoretti G, Shen Q, et al. The BCL-6 protooncogene controls germinal-centre formation and Th2-type inflammation [J]. Nat Genet,1997,16:161-170.
    [61]. Fukuda T, Yoshida T, Okada S, et al. Disruption of the Bcl6 gene results in an impaired germinal center formation [J]. J Exp Med,1997,186:439-448.
    [62]. Cattoretti G, Pasqualucci L, Ballon G, et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice [J]. Cancer Cell,2005,7:445-455.
    [63]. Basso K, Saito M, Sumazin P, et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells [J]. Blood,2010,115:975-984.
    [64]. Ci W, Polo JM, Cerchietti L, et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL [J]. Blood,2009,113:5536-5548.
    [65]. Tunyaplin C, Shaffer AL, Angelin-Duclos CD, et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation [J]. J Immunol,2004,173:1158-1165.
    [66]. Linterman MA, Beaton L, Yu D, et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses [J]. J Exp Med,2010,207:353-363.
    [67]. Zotos D, Coquet JM, Zhang Y, et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism [J]. J Exp Med, 2010,207:365-378.
    [68]. Saito M, Gao J, Basso K, et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma [J]. Cancer Cell,2007,12:280-292.
    [69], Cimmino L, Martins GA, Liao J, et al. Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression [J]. J Immunol,2008,181: 2338-2347.
    [70]. Toyama H, Okada S, Hatano M, et al. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells [J]. Immunity,2002,17:329-339.
    [71]. Muto A, Hoshino H, Madisen L, et al. Identification of Bach2 as a B-cell-specific partner for small maf proteins that negatively regulate the immunoglobulin heavy chain gene 3'enhancer [J]. EMBO J,1998,17(19):5734-5743.
    [72]. Muto A, Tashiro S, Nakajima O, et al. The transcriptional programme of antibody class switching involves the repressor Bach2 [J]. Nature,2004,429:566-571.
    [73]. Ochiai K, Muto A, Tanaka H, et al. Regulation of the plasma cell transcription factor Blimp-1 gene by Bach2 and Bcl6 [J]. Int Immunol,2008,20:453-460.
    [74]. Muto A, Ochiai K, Kimura Y, et al. Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch [J]. EMBO J,2010,29:4048-4061.
    [75]. Roychoudhuri R, Hirahara K, Mousavi K, et al. BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis [JJ. Nature,2013,498(7455):506-510.
    [76]. Nutt SL, Fairfax KA, Kallies A. BLIMP1 guides the fate of effector B and T cells [J]. Nat Rev Immunol,2007,7:923-927.
    [77]. Chan YH, Chiang MF, Tsai YC, et al. Absence of the transcriptional repressor Blimp-1 in hematopoietic lineages reveals its role in dendritic cell homeostatic development and function [J]. J Immunol,2009,183:7039-7046.
    [78], Chang DH, Angelin-Duclos C, Calame K. BLIMP-1:trigger for differentiation of myeloid lineage [J]. Nat Immunol,2000,1:169-176.
    [79]. Kallies A, Carotta S, Huntington ND, et al. A role for Blimp-1 in the transcriptional network controlling natural killer cell maturation [J]. Blood,2010,117:869-879.
    [80]. Smith MA, Maurin M, Cho HI, et al. PRDM1/Blimp-1 controls effector cytokine production in human NK cells [J]. J Immunol,2010,185:6058-6067.
    [81]. Gonzalez-Garcia I, Ocana E, Jimenez-Gomez G, et al. Immunization-induced perturbation of human blood plasma cell pool:progressive maturation IL-6 responsiveness, and high PRDI-BF1/BLIMP1 expression are critical distinctions between antigen-specific and nonspecific plasma cells [J]. J Immunol,2006,176: 4042-4050.
    [82]. Kallies A, Hasbold J, Tarlinton DM, et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression [J]. J Exp Med,2004,200:967-977.
    [83]. Shapiro-Shelef M, Lin Kl, McHeyzer-Williams LJ, et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells [J]. Immunity,2003,19:607-620.
    [84]. Piskurich JF, Lin Kl, Lin Y, et al. BLIMP-I mediates extinction of major histocompatibility class II transactivator expression in plasma cells [J]. Nat Immunol, 2000,1(6):526-532.
    [85]. Lin Kl, Angelin-Duclos C, Kuo TC, Calame K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells [J]. Mol Cell Biol,2002,22:4771-4780.
    [86]. Lin Kl, Lin Y, Calame K. Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro [J]. Mol Cell Biol,2000,20: 8684-8695.
    [87]. Shaffer AL, Lin Kl, Kuo TC, et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program [J]. Immunity,2002,17: 51-62.
    [88]. Doody GM, Care MA, Burgoyne NJ, et al. An extended set of PRDM1/BLIMP1 target genes links binding motif type to dynamic repression [J], Nucleic Acids Res,2010, 38:5336-5350.
    [89]. Kuo TC, Calame KL. B lymphocyte-induced maturation protein (Blimp)-1 IFN regulatory factor (IRF)-1, and IRF-2 can bind to the same regulatory sites [J]. J Immunol,2004,173:5556-5563.
    [90]. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units [J]. Genome Res,2004, 14(10A):1902-1910.
    [91]. Kim VN, Nam JW. Genomics of microRNA [J]. Trends Genet,2006,22(3):165-173.
    [92]. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science,2001,294(5543): 858-862.
    [93]. Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes [J]. Cell,2006,126(6): 1203-1217.
    [94]. Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex [J]. Nature,2004,432(7014):231-235.
    [95]. Lee Y, Ahn C, Han J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing [J]. Nature,2003,425:415-419.
    [96]. Gregory Rl, Yan KP, Amuthan G, et al. The microprocessor complex mediates the genesis of microRNAs [J]. Nature,2004,432(7014):235-240.
    [97]. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-miRNAs and short hairpin RNAs [J]. Genes Dev,2003,17 (24):3011-3016.
    [98]. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors [J]. Science,2004,303:95-98.
    [99]. Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the. RNAi enzyme complex [J]. Cell,2003,115:199-208.
    [100]. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias [J]. Cell,2003,115:209-216.
    [101]. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell,2005, 120(1):15-20.
    [102]. Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2 [J]. Cell,2007,128(6):1105-1118.
    [103]. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation:microRNAs can up-regulate translation [J]. Science,2007,318(5858:1931-1934.
    [104]. Orom UA, Nielsen FC, Lund, AH. MicroRNA-10a bingds the 5'UTR of ribosomal protein mRNAs and enhances their translation [J]. Mol Cell,2008,30(4):460-471.
    [105]. Henke Jl, Goergen D, Zheng J, et al. MicroRNA-122 stimulates translation of hepatitis C virus RNA [J]. EMBO J,2008,27(24):3300-3310.
    [106]. Keating R, Hertz T, Wehenkei M, et al. The kinase TOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus [J]. Nat Immunol,2013,14(12):1266-1276.
    [107]. Sulentic CE, Holsapple MP, Kaminski NE. Aryl hydrocarbon receptor-dependent suppression by 2,3,7,8-tetrachlorodibenzao-p-dioxin of IgM secretion in activated B cells [J]. Mol Pharmacol,1998,53:623-629.
    [108]. Opitz CA, Litzenburger UM, Sahm F, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor [J]. Nature,2011,478:197-203.
    [109]. Lanier LL, Arnold LW, Raybourne RB, et al. Transplantable B-cell lymphomas in B10.H-2aH-4bp/Wts mice[J]. Immunogenetics,1982,16(4):367-371.
    [110]. Arnold LW, LoCascio NJ, Lutz PM, et al. Antigen-induced lymphomagenesis: identification of a murine B cell lymphoma with known antigen specificity [J]. Immunol, 1983,131:2064-2068.
    [111]. Slavin S, Strober S. Spontaneous murine B-cell leukaemia [J]. Nature,1978, 272(5654):624-626.
    [112]. Gronowicz E, Doss C, Howard F, et al. An in vitro line of the B cell tumor BCL1 can be activated by LPS to secrete IgM [J]. J Immunol,1980,125:976-980.
    [113]. Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily:sensors of environmental and developmental signals [J]. Annu Rev Pharmacol Toxicol,2000,40:519-561.
    [114]. Schmidt JV, Bradfield CA. Ah receptor signaling pathways [J]. Annu Rev Cell Dev Biol, 1996,12:55-89.
    [115]. Ingemar P, Camilla A, Murray LW, et al. Role of the PAS Domain in regulation of dimerization and DNA binding specificity of the dioxin receptor [J]. MCB,1998,18: 4079-4088.
    [116]. Jones LC, Okino ST, Gonda TJ, Whitlock JP Jr. Myb-binding protein 1a augments Ahr-dependent gene expression [J]. J Biol Chem,2002,277(25):22515-22519.
    [117]. Reyes-Hernandez OD, Mejia-Garcia A, Sanchez-Ocampo EM, et al. Aromatic hydrocarbons upregulate glyceraldehyde-3-phosphate dehydrogenase and induce changes in actin cytoskeleton. Role of the aryl hydrocarbon receptor (AhR) [J]. Toxicology,2009,266(1-3):30-37.
    [118]. Tian Y. Ah receptor and NF-kappaB interplay on the stage of epigenome [J]. Biochem Pharmacol,2009,77(4):670-680.
    [119]. Korn T. How T cells take developmental decisions by using the aryl hydrocarbon receptor to sense the environment [J]. Proc Natl Acad Sci USA,2010,107(48): 20597-20598.
    [120]. Micka J, Milatovich A, Menon A, et al. Human Ah receptor (AHR) gene:localization to 7p15 and suggestive correlation of polymorphism with CYP1A1 inducibility [J]. Pharmacogenetics,1997,7(2):95-101.
    [121]. Swanson HI, Bradfield CA. The AH-receptor:genetics,structure and function [J]. Pharmacogenetics,1993,3(5):213-230.
    [122]. Puga A, Ma C, Marlowe JL. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways [J]. Biochem Pharmacol,2009,77:713-722.
    [123]. Pendergast JS, Yamazaki S. The mammalian circadian system is resistant to dioxin [J]. J Biol Rhythms,2012,27:156-163.
    [124]. Ray S, Swanson HI. Activation of the aryl hydrocarbon receptor by TCDD inhibits senescence:a tumor promoting event [J]. Biochem Pharmacol,2009,77:681-688.
    [125]. Gouedard C, Barouki R, Morel Y. Dietary polyphenols increase paraoxonase 1 gene expression by an aryl hydrocarbon receptor -dependent mechanism [J]. Mol Cell Biol, 2004,24:5209-5222.
    [126]. Abbott BD, Schmid JE, Pitt JA, et al. Adverse reproductive outcomes in the transgenic Ah receptor-deficient mouse [J]. ToxicolAppl Pharmacol,1999,155(1):62-70.
    [127]. Pongratz I, Mason GG, Poellinger L. Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity [J]. J Biol Chem,1992,267:13728-13734.
    [128]. Kazlauskas A, Poellinger L, Pongratz I. The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor [J]. J Biol Chem,2000, 275:41317-41324.
    [129]. Carver LA, LaPres JJ, Jain S, et al. Characterization of the Ah receptor-associated protein, ARA9 [J]. J Biol Chem,1998,273:33580-33587.
    [130]. Bacsi SG, Hankinson O. Functional characterization of DNA-binding domains of the subunits of the heterodimeric Aryl hydrocarbon receptor complex imputing novel and canonicalbasic helix-loop-helix protein-DNA interactions [J]. J Biol Chem,1996,271: 8843-8850.
    [131]. Chapman-Smith A, Lutwyche J K, Whitelaw M L. Contribution of the Per/Arnt/Sim (PAS) domains to DNA binding by the basic helix-loop-helix PAS transcriptional regulators [J]. J Biol Chem,2004,279:5353-5362.
    [132], Reyes H, Reisz-Porszasz S, Hankinson O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor [J]. Science,1992,256:1193-1195.
    [133].Yao G, Craven M, Drinkwater N, Bradfield CA. Interaction networks in yeast define and enumerate the signaling steps of the vertebrate aryl hydrocarbon receptor [J]. PLoS Biol,2004,2(3):E65.
    [134]. Le Provost F, Riedlinger G, Hee Yim S, et al. The aryl hydrocarbon receptor (AhR) and its nuclear translocator (Arnt) are dispensable for normal mammary gland development but are required for fertility [J]. Genesis,2002,32(3):231-239.
    [135]. Minsavage GD, Park SK, Gasiewicz TA. The aryl hydrocarbonreceptor (AhR) tyrosine9, a residue that is essential for AhR DNA binding activity, is not a phosphoresidue but augments AhR phosphorylation [J]. J Biol Chem,2004,279(20): 20582-20593.
    [136]. Coe K J, Nelson SD, Ulrich RG. Profiling the hepatic effects of flutamide in rats:a microarray comparison with classical aryl hydrocarbon receptor ligands and atypical CYP1Ainducers [J]. Drug Met,2006,34:1266-1275.
    [137].Leng XF, Qiu XH. The structure, function and prospertive of cytochrome P450 [M]. Beijing:The Science Press,2001:5-7.
    [138]. Jin B, Park DW, Nam KW, et al. CpG methylation of the mouse CYP1A2 promoter [J]. oxicol Lett,2004,152:11-8.
    [139]. Boverhof DR, Burgoon LD, Tashiro C, et al. Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice [J]. Toxicol Sci,2006,94:398-416.
    [140]. Chang TK, Chen J, Yang G, Yeung EY. Inhibition of procarcinogen bio-activating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin [J]. J Pineal Res,2010, 48(1):55-64.
    [141]. Duffy JE, Zelikoff JT. The Relationship between noncoplanar PCB-induced immunotoxicity and hepatic CYP1A induction in a fish model [J]. J Immunotoxicol, 2006,3(1):39-47.
    [142]. Ikuta T, N am iki T, Fujii-Kuriyama Y, et al. AhR protein trafficking and function in the skin [J]. Biochem Pharmacol,2009,77(4):588-596.
    [143]. Kajta M, Wojtowicz AK, Mackowiak M, Lason W. Aryl hydrocarbon receptor-mediated apoptosis of neuronal cells:a possible interaction with estrogen receptor signaling [J]. Neuroscience,2009,158(2):811-822.
    [144]. Nebert DW, Dalton TP, Okey AB, et al. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer [J]. J Biol Chem, 2004,279:23847-23850.
    [145]. Currier N, Solomon SE, Demicco EG, et al. Oncogenic signaling pathways activated in DMBA-induced mouse mammary tumors [J]. Toxicol Pathol,2005,33:726-737.
    [146]. Walisser JA, Bunger MK, Glover E, Bradfield CA. Gestational exposure of Ahr and Arnt hypomorphs to dioxin rescues vascular development [J]. Proc Natl Acad Sci USA, 2004,101:16677-16682.
    [147]. Kodama S, Okad aK, Ak im oto K, et al. Recombinant aryl hydrocarbon receptors for bioassay of aryl hydrocarbon receptor legends in transgenic tobacco plants [J]. Plant Biotechnol J,2009,7(2):119-128.
    [148]. Kung T, Murphy KA, White LA. The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism [J]. Biochem Pharmacol, 2009,77 (4):536-546.
    [149]. Marshall NB, Kerkvliet Nl. Dioxin and immune regulation:emerging role of aryl hydrocarb on receptor in the generation of regulatory T cells [J]. Ann N Y Acad Sci, 2010,1183:25-37.
    [150]. Gao Y, Sahlberg C, Kiukkonen A, et al. Lactational exposure Han/Wistar rats to 2,3,7, 8-tetrachlorodibenzo-P-dioxin interferes with enamel maturation and retards dentin mineralization [J]. J Dent Res,2004,83(2):139-144.
    [151]. Ovrevik J, Arlt VM, Oya E, et al. Differential effects of nitro-PAHs and amino-PAHs on cytokine and chemokine responses in human bronchial epithelial BEAS-2B cells [J]. Toxicol Appl Pharmacol,2010,242(3):270-280.
    [152]. Park JH, Mangal D, Frey AJ, et al. Aryl hydrocarbon receptor facilitates DNA strand breaks and 8-oxo-2'-deoxyguanosine formation by the aldo-keto reductase product benzo [a] pyrene-7,8-dione [J]. J Biol Chem,2009,284(43):29725-29734.
    [153].Sergent T, Dupont I, Van der Heiden E, et al. CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal Caco-2 cells [J]. Toxicol Lett,2009,191(2-3): 216-222.
    [154]. Guengerich FP, Martin MV, McCormick WA, et al. Aryl hydrocarbon receptor response to indigoids in vitro and in vivo [J]. Arch Biochem Biophys,2004,423:309-316.
    [155]. Helferich WG, Denison MS. Ultraviolet photoproducts of tryptophan can act as dioxin agonists [J]. Mol Pharmacol,1991,40:674-678.
    ^156]. Quintana FJ, Basso AS, Iglesias AH, et al. control ot i (reg) ana (?)(H) (?) cell differentiation by the aryl hydrocarbon receptor [J]. Nature,2008,453(7191):65-71.
    157]. Gandhi R, Kumar D, Burns EJ, et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells [J]. Nat Immunol,2010,11(9):846-853.
    [158].Apetoh L, Quintana FJ, Pot C, et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27 [J]. Nat Immunol,2010,11(9):854-861.
    [159]. Nauyen NT, Kimura A, Nakahama T, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via kynurenine-dependent mechanism [J]. Proc Natl Acad Sci USA,2010,107:19961-19966.
    [160]. Song H, Park H, Kim YS, et al. L-kynurenine-induced apoptosis in human NK cells is mediated by reactive oxygen species [J]. Int Immunopharmacol,2011,11:932-938.
    [161]. Belladonna ML, Grohmann U, Guidetti P, et al. Kynurenine pathway enzymes in dendritic ceils initiate tolerogenesis in the absence of functional IDO [J]. J Immunol, 2006,177:130-137.
    [162]. Suh J, Jeon YJ, Kim HM, et al. Aryl hydrocarbon receptor-dependent inhibition of AP-1 activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin in activated B cells [J]. Toxicol Appl Pharmacol,2002,181:116-123.
    [163]. Schneider D, Manzan MA, Yoo BS, et al. Involvement of blimp-1 and AP-1 dysregulation in the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated suppression of the IgM response by B cells [J]. Toxicol Sci,2009,108:377-388.
    [164]. Karin M, Liu ZG, Zandi E. AP-1 function and regulation [J]. Curr Opin Cell Biol,1997,9: 240-246.
    [165]. Sulentic CE, Holsapple MP, Kaminski NE. Putative link between transcriptional regulation of IgM expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin and the aryl hydrocarbon receptor/dioxin-responsive enhancer signaling pathway [J]. J Pharmacol Exp Ther,2000,295:705-716.
    [166]. Yoo BS, Boverhof DR, Shnaider D, et al.2,3,7,8-tetrachlorodibenzao-p-dioxin (TCDD) alters the regulation of Pax5 in lipopolysaccharide-activated B cells [J]. Toxicol Sci, 2004,77:272-279.
    [167]. Wienholds E, Plasterk RH. MicroRNA function in animal development [J]. FEBS Lett, 2005,579:5911-5922.
    [168]. Bushati N, Cohen SM. MicroRNA functions [J]. Annu Rev Cell Dev Biol,2007,32: 175-205.
    [169]. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs [J]. Genome Res,2009,19:92-105.
    [170]. Xu S, Guo K, Zeng Q, et al. The RNase III enzyme Dicer is essential for germinal center B-cell formation [J]. Blood,2012,119:767-776.
    [171]. Thai TH, Calado DP, Casola S, et al. Regulation of the germinal center response by microRNA-155 [J]. Science,2007,316:604-608.
    [172]. Fragoso R, Mao T, Wang S, et al. Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1 [J]. PLoS Genet,2012,8(8):e1002855.
    [173]. Moffat ID, Boutros PC, Celius T, et al. MicroRNAs in adult rodent liver are refractory to dioxin treatment [J]. Toxicol Sci,2007,99:470-487.
    [174]. Ichikawa T, Sato F, Terasawa K, et al. Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells [J]. PLoS One,2012,7: e31422.
    [175]. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120: 15-20.
    [176]. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression [J]. Genes Dev,2004,18:504-511.
    [177]. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs [J]. Nature,2005,433: 769-773.
    [178]. Chang CC, Zhang QY, Liu Z, et al. Downregulation of inflammatory microRNAs by Ig-like transcript 3 is essential for the differentiation of human CD8(+) T suppressor cells [J]. J Immunol,2012,188:3042-3052.
    [179]. Zhang J, Jima DD, Jacobs C, et al. Patterns of microRNA expression characterize stages of human B-cell differentiation [J]. Blood,2009,113:4586-4594.
    [180]. Tynyaplin C, Shaffer AL, Angelin-Duclos CD, et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation [J]. J Immunol,2004,173:1158-1165.
    [181]. Vasanwala FH, Kusam S, Toney LM, Dent AL. Repression of AP-1 function:a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene [J]. J Immunol,2002,169:1922-1929.
    [182]. Reljic R, Wagner SD, Peakman LJ, Fearon DT. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6 [J]. J Exp Med,2000,192:1841-1848.
    [183]. Sciammas R, Davis MM. Modular nature of Blimp-1 in the regulation of gene expression during B cell maturation [J]. J Immunol.2004,172:5427-5440.
    [184].Calame K. Activation-dependent induction of Blimp-1 [J]. Curr Opin Immunol,2008, 20:259-264.
    [185]. De Abrew KN, Kaminski NE, Thomas RS. An integrated genomic analysis of aryl hydrocarbon receptor-mediated inhibition of B-cell differentiation [J]. Toxicol Sci,2010, 118:454-469.
    [186]. Furuyama T, Nakazawa T, Nakano I. et al. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues [J]. Biochem J,2000,349(Pt 2):629-634.
    [187]. Lin L, Hron JD, Peng SL. Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a [J]. Immunity,2004,21: 203-213.
    [188]. Kerdiles, YM, Stone, EL, Beisner, DL, et al. Foxo transcription factors control regulatory T cell development and function [J]. Immunity,2010,33:890-904.
    [189]. Dejean AS, Beisner DR, Ch'en IL, et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cell [J]. Nat Immunol,2009,10:504-513.
    [190], Jeremy A, Sullivan, Eui Ho Kim, et al. FOXO3 regulates the CD8 T cell response to a chronic viral infection [J]. Journal of Virology,2012,86(17):9025-9034.
    [191]. Dengler HS, Baracho GV, Omori SA, et al. Distinct functions for the transcription factor Foxoi at various stages of B cell differentiation [J]. Nature Immunology,2008,9(12): 1388-1398.
    [192], Snoeks L, Weber CR, Turner JR, et al. Tumor suppressor Foxo3a is involved in the regulation of lipopolysaccharide-induced interleukin-8 in intestinal HT-29 cells [J]. Infect Immun,2008,76:4677-4685.
    [193]. Snoeks L, Weber CR, Wasland K, et al. Tumor suppressor FOXO3 participates in the regulation of intestinal inflammation [J]. Laboratory Investigation,2009,89: 1053-1062.
    [194]. Wstkins SK, Zhu Z, Riboldi E, et al. Foxo3a programs tumor associated dendritic cells to become tolerogenic in Human and Murine Prostate Cancer [J]. J Clin Invest,2011, 121:1361-1372.
    [1]. Chen Y, Kuchroo V, Inobe J, et al. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis [J]. Science,1994,265(5176): 1237-1240.
    [2]. Sakaguchi S, Wing K, Miyara M. Regulatory T cells? A brief history and perspective [J]. EurJ Immunol,2007,37(S1):S116-123.
    [3]. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work [J]. Nat Revlmmunol, 2008,8(7):523-532.
    [4], Shevach EM. Mechanisms of foxp3+T regulatory cell-mediated suppression [J]. Immunity,2009,30(5):636-645.
    [5]. Thornton A, Shevach E. Suppressor effector function of CD4(+)CD25(+) immunoregulatory T cells is antigen nonspecific [J]. J Immunol,2000,164(1):183-190.
    [6], Strachan DP. Hay fever, hygiene, and household size [J]. BMJ,1989,299(6710): 1259-1260.
    [7]. Rook GA.99th Dahlem conference on infection, inflammation and chronic inflammatory disorders:Darwinian medicine and the'hygiene'or'old friends' hypothesis [J]. Clin Exp Immunol,2010,160(1):70-79.
    [8]. Van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation [J]. Nat Rev Immunol,2005,5(4):318-330.
    [9]. Petrarca C, Lazzarin F, Pannellini T, et al. Monomeric allergoid intragastric administration induces local and systemic tolerogenic response involvinglL-10-producing CD4(+)CD25(+) T regulatory cells in mice [J]. Int J Immunopathol Pharmacol,2010, 23(4):1021-1031.
    [10]. Wu HY, Nguyen HH, Russell MW. Nasal lymphoid tissue (NALT) as a mucosal immune inductive site [J]. Scand J Immunol,1997,46(5):506-513.
    [11].Davis SS. Nasal vaccines [J]. Adv Drug Deliv Rev,2001,51(1-3):21-42.
    [12].Unger WWJ, Hauet-Broere F, Jansen W, et al. Early events in peripheral regulatory T cell induction via the nasal mucosa [J]. J Immunol,2003,171(9):4592-4603.
    [13].Horwitz DA, Zheng SG, Gray JD. Natural and TGF-β-induced Foxp3+CD4+CD25+ regulatory T cells are not mirror images of each other [J]. Trendslmmunol,2008,29(9): 429-435.
    [14].Hackstein H, Thomson AW. Dendritic cells:emerging pharmacological targets of immunosuppressive drugs [J]. Nat Rev Immunol,2004,4(1):24-35.
    [15]. Laplante M, Sabatini DM. Regulation of mTORCI and its impact on gene expression at a glance [J]. J Cell Sci,2013,126(Pt8):1713-1719.
    [16].Wang C, Yi T, Qin L, et al. Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells [J]. J Clin Invest,2013,123(4):1677-1693.
    [17].Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+regulatory T cells [J]. Blood,2005,105(12):4743-4748.
    [18].Battaglia M, StabiliniA, Migliavacca B, et al. Rapamycin promotes expansion of functional CD4 CD25 FOXP3 regulatory T cells of both healthy subjects and type1 diabetic patients [J]. J Immunol,2006,177(12):8338-8347.
    [19]. Monti P, Scirpoli M, Maffi P, et al. Rapamycin monotherapy in patients with type 1 diabetes modifies CD4 CD25 FOXP3 regulatory T cells [J]. Diabetes,2008,57(9): 2341-2347.
    [20].Ogino H, Nakamura K, Iwasa T, et al. Regulatory T cells expanded by rapamycin in vitro suppress colitis in an experimental mouse model [J]. J Gastroenterol,2012 47(4): 366-376.
    [21].Esposito M, Ruffini F, Bellone M, et al. Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation [J]. J Neuroimmunol,2010,220(1):52-63.
    [22].Donia M, Mangano K, Amoroso A, et al. Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitiss in Dark Agouti rats and induces expansion of peripheral CD4 CD25 Foxp3 regulatory T cells [J]. J Autoimmun,2009,33(2):135-140.
    [23].Wu T, Zhang L, Xu K, et al. Immunosuppressive drugs on inducing Ag-specific CD4 CD25 Foxp3 Treg cells during immune response in vivo [J]. Transpl Immunol,2012, 27(1):30-38.
    [24], Daniel C, Wennhold K, Kim H, von Boehmer H. Enhancement of antigen-specific Treg vaccination in vivo [J]. Proc Natl Acad Sci USA,2010,107(37):16246-16251.
    [25].Kang Y, Zhao J, Liu Y, et al.FK506 as anadjuvant of tolerogenic DNA vaccination for the prevention of experimental autoimmune encephalomyelitis [J]. J GeneMed,2009,11(11): 1064-1070.
    [26].Taher YA, van Esch BC, Hofman GA, et al.1a,25-dihydroxyvitamin D3 potentiates the beneficial effects of allergen immunotherapy in a mouse model of allergic asthma:role forlL-10 and TGF-β[J]. J Immunol,2008,180(8):5211-5221.
    [27].Ghoreishi M, Bach P, Obst J, et al. Expansion of antigen-specific regulatory T cells with the topical vitamin d analog calcipotriol [J]. J Immunol,2009,182(10):6071-6078.
    [28].Manicassamy S, Pulendran B. Retinoic acid-dependent regulation of immune responses by dendritic cells and macrophages [J]. Seminlmmunol,2009,21 (1):22-27.
    [29]. Hall JA, Grainger JR, Spencer SP, Belkaid Y. The role of retinoic acid in tolerance and immunity [J]. Immunity,2011,35(1):13-22.
    [30].Kwok S, Park M, Cho M, et al. Retinoic acid attenuates rheumatoid inflammation in mice [J]. J Immunol,2012,189(2):1062-1071.
    [31]. Van Y, Lee W, Ortiz S, et al. All-trans retinoic acid inhibits type 1 diabetes by T regulatory (Treg)-dependent suppression of interferon-y-producing T-cells without affecting Th17 cells [J]. Diabetes,2009,58(1):146-155.
    [32]. Kishi M, Yasuda H, Abe Y, et al. Regulatory CD8+T cells induced by exposure to all-trans retinoic acid and TGF-β suppress autoimmune diabetes [J]. Biochem Biophys Res Commun,2010,394(1):228-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700