用户名: 密码: 验证码:
改性炭黑/聚合物高折射复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次采用炭黑作为一种新型高折射率粒子来制备高折射率复合材料,并通过炭黑改性来改善高折射率无机粒子的各项物理化学特性,并对炭黑/聚合物高折射率复合材料的制备和特性进行系统研究。本文对炭黑的改性和光学特性研究,并基体与无机粒子之间的相互作用及高折射机理进行的研究,对今后进一步研究有机/无机高折射率复合材料性能有很好的启发和实践指导作用。论文的主要研究内容如下:
     1.对于炭黑样品,采用了不同条件下氧化处理和超声处理等改性方法,得到氧化炭黑(OCB)和超声处理炭黑(UCB),使炭黑的表面、微结构和电子结构发生多种变化,并通过Raman、XRD、HRTEM、TGA、BET和EELS等测试手段对改性炭黑的结构变化进行了表征,得到了一系列的改性炭黑的微观结构参数,如石墨层尺寸、sp2/sp3-杂化碳原子比值、π-π*键位置等,并通过这些不同来获得需要的微观结构的CB。适度的氧化会使CB形成一定的有序结构,而超声处理则会有一个相反的作用。炭黑样品的sp2杂化碳含量与样品微结构的有序度是密切关联的,通常sp2杂化碳含量越大,其有序度也越高。
     2.研究了各种改性方法制备得到的改性炭黑的光谱特性,并考察了其微结构变化即sp2杂化碳原子及电子结构与光学性能的关系。这些改性炭黑包括OCB、UCB和PVA包覆CB。研究发现CB粒子的光学特性和消光行为是由材料中的中程有序度决定的,尤其是相邻或聚集在一起的sp2键合环的数量,CB粒子中碳碳sp2杂化键合区域尺寸的增加,会降低样品的光学带宽,但亦会增强其UV吸收,反之亦然。另外,PVA包覆炭黑会显著降低其UV和VIS区的吸光度。总之,通过不同的改性方法来获得所需微结构及性能的CB粒子,可以有效的改善炭黑的光吸收性能及拓展其在光学及高折射率领域的应用。
     3.通过酰氯化改性炭黑(CB-COC1)存在下,联苯四羧酸二酐和二氨基二苯醚缩合,并经过热亚胺化反应制备得到聚酰亚胺(PI)/炭黑杂化制备高折射复合材料。红外光谱证实了PI和CB-COC1之间的化学键合作用的存在,并对PI膜的各项性能有显著影响。复合薄膜的结构发生了变化,其热分解温度增加,玻璃化转变温度也有轻微增大。随着CB-COC1含量的增加,复合薄膜的拉伸模量和强度增加,断裂伸长率减小。CB以及五元胺环和CB的芳香环之间的相互作用对复合薄膜的光学性能的影响也进行了讨论。复合薄膜在633nm处的折射率随着CB含量的增加在1.711~1.833范围内变化。复合薄膜折射率的增加不只是因为CB-COC1粒子的本征高折射,更主要的是因为分子内和分子间电子的相互转移(CT)作用。利用荧光光潜验证了这种CT相互作用的存在;并根据实验结果及折射率变化的影响因素,在Lorentz-Lorenz方程中定义了一个新的项式即CT相互作用因子修郑了Lorentz-Lorenz方程。
     4.高折射率且低密度的CB粒子是一种优异的制备高折射率复合材料的选择。通过PVA的炭二亚胺酯化反应对CB进行官能化,水溶性聚合物PVA作为聚合物基体,利用在PVA基体中混合入水溶性高折射添加剂(PVA共价官能化CB)以达到增加折射率的目的,制备得到一种新的有机/无机杂化高折射率复合薄膜。透射电镜照片显示CB粒子在PVA基体中分散良好。PVA-es-CB/PVA复合薄膜的折射率随PVA-es-CB体积分数的增加而线性增大,而其Abbe数则成相反的变化趋势,这也表明制备到的复合薄膜可以通过改变其组成来调节其光学特性。利用Maxwell-Garnett理论给出的理论曲线比使用Lorentz-Lorenz方程计算得到的值要低,Lorentz-Lorenz方程对于大多数实验值有更好的匹配性。
In this paper, we report a novel high refractive index (RI) additive-functionalized carbon black (CB), especially to deserve to be mentioned, CB has not been reported to incorporate into polymer matrix to fabricate high RI nanocomposites. The optical properties of CB nanoparticles modified by different experimental methods and their relation with particle structural variations were also studied. The mechanism of high RI CBs and the compatibility between CBs and polymer matrix were investigated. It may be a good inspiration and practical guidance for further study of high RI organic/inorganic composites. The main content as follow:
     1. The microstructure and electronic structure of modified CB were investigated by Raman spectroscopy, transmission electron microscopy, electron energy loss spectroscopy and ultraviolet spectroscopy. The modified CB samples include oxidised CB (OCB) and ultrasound-treated CB (U-CB) under different modification conditions. Typical parameters, such as graphene layer size, the ratio of sp2/sp3-hybridised carbon atoms, andπ-π* band position, provide information on the microstructure and electronic structure, and these parameters also allow discrimination between different modified CB samples to achieve a desired structure. Oxidation conditions could be carefully chosen to prevent excessive corrosion and form an ordered structure. However, ultrasound has a reverse effect; the graphite layers of the CB samples were exfoliated, and a disordered microstructure was visible. The results indicate that increasing sp2-island size in CB samples increases the order of CBs.
     2. We study the micromorphology, spectral behavior and electronic structure of modified CBs. The modified CB samples, including OCB, UCB and poly (vinyl alcohol)-encapsulated CB (PVA-CB) are investigated. The aim is to show that the microstructure of the investigated carbon materials correlates with the electronic structure and optical properties in this case with the predominant carbon hybridization. Characterization parameters of optical properties and the extinction behavior are found to be strongly affected by the microstructure and the content of sp2 hybridization of the C atoms. The lower the content of sp2 hybridized carbon, the lower the UV peak position in wavelength and the UV absorption. In addition, PVA-encapsulated-CB particles showed a low absorbance in UV and visible light range. Our results imply that optical properties of CB are significantly altered within its modification methods. Overall, this study is useful to get a better knowledge of the structure-optical properties correlations through the different modification experiments of CB, and also a step toward the possibilities for further optical or high RI application.
     3. The high RI composite films based on polyimide (PI) and chloride modified CB (CB-COC1) were prepared by conversion of biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline in the presence of CB-COC1, followed by thermal imidization. The presence of chemical bonds between PI and CB-COC1, proved by FTIR spectra of the composites, has a considerable effect on the properties of PI films. The PI/CB-COC1 membranes showed changed morphology compared to reference membranes without CB-COC1. The hybrid films showed an increase in thermal decomposition temperature and a slightly enhanced glass transition temperature. On their mechanical properties, the modulus and ultimate strength of the hybrid films increased and elongation at break decreased with increased CB-COC1 content. The effect of CBs and the interaction between the five-membered imide rings and aromatic rings of CBs on the optical properties of the resulted PI/CB nanocomposites was also discussed. The off-resonant refractive indices of the prepared hybrid films at 633 nm were in the range of 1.711-1.833 as the CB content increased from 0 to 10 wt%. According to the comparison of theory and experimental values, it demonstrates that the increasing of refractive index is mainly from the contribution of the increase in charge transfer interaction between PI and CB. Theoretical equation based on the modified Lorentz-Lorenz theory provided reasonably close estimation of the refractive indices to the experimentally observed values.
     4. High RI CB particles with low densities would be an optimal candidate for high RI nanocomposite. Nano-CB/polymer composites with high RI were fabricated from poly (vinyl alcohol) (PVA) and covalently functionalized CB (PVA-cs-CB) by simple esterification reaction. Transmission electron microscope showed that a uniform aggregate of PVA-es-CB nanoparticles with a size smaller than 100 nm formed in the nanocomposite films. Ellipsometric measurement indicated that the PVA-es-CB/PVA composite films had a RI in the range 1.52-1.598 linearly increased with the PVA-es-CB volume content. Theoretical equation based on Lorentz-Lorenz theory provided reasonably close estimation of the refractive indices to the experimentally observed values. The hybrid films also revealed relatively good surface planarity, thermal stability, and optical transparency
引文
[1]Sun R, Ltaru AW, et al. TiO2-Coated Optical FiberBundles Used as a Photocatalytic Filter for Composition of Gaseous Organic Compounds [J]. Photochemistry and Photobiology A: Chemistry,2000,136(1):111-116.
    [2]Mardare D, Stancu A. On the optical Constants of TiO2 thin Films, Ellipsometric Studies [J]. Materials Research Bulletin,2000,35:2017-2025.
    [3]Zhao JW, Yang T, Zhang HY, et al. The Optical Waveguiding Properties of TiO2-SiO2 Composite Films Prepared by the Sol-gel Process [J]. Ceramics International,1999, 25(7):667-670.
    [4]Campbell SA, Kim HS, Gilmer DC, He B, Ma T, Gladfelter WL. Titanium dioxide (TiO2)-based gate insulators [J]. IBM Journal of Research and Development,1999,43: 383-391.
    [5]Kim JH, Lee S, Im HS, The effect of target density and its morphology on TiO2 thin films grown on Si (100) by PLD [J]. Applied surface science,1999,151(1-2):6-16.
    [6]Tang H, Prasad K, Sanjines R, Schmid PE, Levy F. Electrical and optical properties of TiO2 anatase thin films [J]. J. Appl. Phys.,1994,75(4):2042-2047.
    [7]Brinker CJ, Frye GC, Hurd AJ, et al. Fundamentals of sol-gol dip coating [J]. Thin Solid Films,1991,201:97-108.
    [8]Mosaddeq-ur-Rahrnan M, Yu G, Soga T, et al. Refractive index and degree of inhomogeneity of nanocrystalline TiO2 thin films:Effects of substrate and annealing temperature [J]. J. Appl. Opt.,1998,37:1867-1872.
    [9]盛永刚,徐耀,张磊,等.溶胶-凝胶法制备高折射率TiO2薄膜[J].强激光与粒子束,2008,20(1):75-78.
    [10]Xu Y, FanWH, Huang ZY, et al. Preparation of hydrophobic anti-reflective SiO2 films for high laser resistance by Sol-Gel process [J]. Hilgh Power Laser and Particle Beams,2004, 16(1):40-44.
    [11]Xiao YQ, Xie ZY, Shen J, et al. Structure control and stability in preparation of silica film via Sol-Gel process [J]. High Power Laser and Particle Beams,2006,18(8):1302-1 306.
    [12]Stamate MD. Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system [J]. Thin Solid Films,2000,372(1-2):246-249.
    [13]Richards BS, Rowlands SF, Ueranatasun A, Cotter JE, and Honsberg CB. Potential cost reduction of buried-contact solar cells through the use of titanium dioxide thin films [J]. Solar Energy,2004,76(1-3):269-276.
    [14]Ayouchi R, Casteleiro C, Schwarz R, Barrado JR, and Martin F. Optical properties of TiO2 thin films prepared by chemical spray pyrolysis from aqueous solutions[J]. Phys. Status Solidi C 2010,7(3-4):933-936.
    [15]宋晓岚,屈一新,许超,蒋明慧。BaO-SiO2-B2O3-TiO2系统玻璃结构x射线光电子能谱和核磁共振[J].北京化工大学学报,1998,25(1):6-11.
    [16]宋晓岚,屈一新。Ti02含量对BaO-SiO2-B2O3-TiO2系统玻璃性能的影响[J]。硅酸盐学报,1998,26(5):679-682.
    [17]吴爱英,沈菊云,沈奇咏。代稀土无Pb高折射率光学玻璃[J].材料研究学报,1995,9(6):543-546.
    [18]刘雪敬,邓再德,英廷照,等.BaO-TiO2-SiO2系统高折射率光学玻璃[J].玻璃与搪瓷,2006,34(1):5-9.
    [19]Molla AR, Tarafder A, Karmakar. Synthesis and properties of glasses in the K2O-SiO2-Bi2O3-TiO2 system and bismuth titanate (Bi4Ti3O12) nano glass-ceramics thereof[J]. J Mater Sci,2011,46:2967-2976.
    [20]朱玲心,张文德,等.碲化铅材料及其沉积膜的性质[J].红外研究,1985,4(1):1-8.
    [21]魏迎春,马勉军,沉积温度对PbTe薄膜结构和光学性能的影响[J].红外,2008,29(8):26-29.
    [22]Dauscher A, Dinescu M, Boffoue M. Temperature-dependant growth of PbTe pulsed laser deposited films on various substrates [J]. Thin Solid Films.2006,497:170-176.
    [23]Zhang LZ, Yu JC, Mo MS, Wu L, Kwong KW, Li Q. A general in situ hydrothcrmal rolling-up formation of one-dimensional, single-crystalline lead telluride nanostructures [J]. Small.2005,1(3):349-354.
    [24]Urban JJ, Talapin DV, Shevchenko EV, Murray CB. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films [J]. Journal of the American Chemical Society 2006,128(10):3248-3255.
    [25]Ahluwalia BS, Helleso OG, Subramanian AZ, Wilkinson JS, Chen J, Chen XY. Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting. Proceedings of SPIE-The International Society for Optical Engineering.2010,7613.
    [26]Chaneliere C, Four S, Autran JL et al. Comparison between the properties of amorphous and crystalline Ta2O5 thin films deposited on Si [J]. Microelectronics Reliability.1999, 39(2):261-268.
    [27]Duenas S, Castan H, Barbolla J et al. Microstructure and electromigration in copper damascene lines [J]. Microelectronics Reliability,2000,40(1):659-662.
    [28]Chang PH, Liu HY. Structures of tantalum pentoxide thin films formed by reactive sputtering of Ta metal [J], Thin Solid Films.1995.258:56-63.
    [29]Wathtman JB, Haber RA. Ceramic Thin Films and Coatings[M]. Noyes Publications, New Jersey, USA,1993.
    [30]Antoneli DM, Jackie Y, Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism [J]. Angew. Chem. Int. Ed. Engl,1996,35(4):426-430
    [31]Takahara Y, Kondo JN, Takata T, Lu DL, Domen K, Mesoporous tantalum oxide.1. Characterization and photocatalytic activity for the overall water decomposition [J]. Chem Mater,2001,13(4):1194-1199.
    [32]Kondo JN, Takahara Y, Lu D L, Domen K, Mesoporous Ta Oxide.2. Improvement of the synthetic method and Observation of mesostructure formation [J]. Chem Mater,2001, 13(4):1200-1206.
    [33]王超,庄大明,张弓,等.五氧化二钽薄膜的制备及其I-U特性[J].真空科学与科技,2003,23(1):61-67.
    [34]谈国强,贺中亮,苗鸿雁,刘剑,夏傲.二氧化铪(HfO2)晶态薄膜的液相自组装制备与表征[J].稀有金属材料与工程,2009,38:349-352.
    [35]王生钊,沈军,罗爱云,刘春泽。水热法制备高折射率的Hf02光学薄膜[J]。同济大学学报(自然科学版),2007,35:1666-1669.
    [36]Woo JB, Trikeriotis M, Jing S, Schwartz EL, Rodriguez R, Zimmerman P, Giannelisa EP and Ober CK. High refractive index and high transparency HfO2 nanocomposites for next generation lithography [J]. J. Mater. Chem.,2010,20:5186-5189.
    [37]Nakamura T, Fujii H, Juni N and Tsutsumi N. Enhanced coupling of light from organic electroluminescent device using diffusive particle dispersed high refractive index resin substrate [J]. Opt. Rev.,2006,13(2):104-110.
    [38]Mosley DW, Auld K, Conner D, Gregory J, Liu XQ, Pedicini A, Thorsen D, Wills M, Khanarian G and Simon ES. High performance encapsulants for ultra high-brightness LEDs -art. No.691017 [J]. Proc. SPIE,2008,6910:91017.
    [39]Krogman KC, Druffel T and Sunkara MK. Anti-reflective optical coatings incorporating nanoparticles [J]. Nanotechnology,2005,16(7):S338-S343.
    [40]Allen RD, Wallraff GM, Hofer DC and Kunz RR. Photoresists for 193-nm lithography [J]. IBM Res. Develop.,1997,41(1-2):95-104.
    [41]Regolini JL, Benoit D and P. Morin. Passivation issues in active pixel CMOS image sensors [J]. Microelectron. Reliab.,2007,47(4-5):739-742.
    [42]Brandrup J, Immergut EH, Gruike EA, Abe A and Bloch DR. Polymer Handbook,4th ed.[M]; John Wiley & Sons, New York,2005.
    [43]Seferis JC, in:Brandrup J, Immergut EH (Eds.), Polymer Handbook,3rd Edition [M], Wiley, New York,1989.
    [44]Speight JG, Lange's Handbook of Chemistry (16th Edition) [M], McGraw-Hill,2005.
    [45]Liu JG, Shang YM, Fan L, Yang SY. Synyhesis and characterization of fluorinated polyimides with high heat resistance and low dielectric constant [J]. Acta Polymerica Sinica, 2003,4:565-570.
    [46]Tanio N, Irie M. Jpn J Appl Phys,1994,33:3942-3946.
    [47]Badarau C, Wang ZY. Synthesis and optical properties of thermally and photochemically cross-linkable diacetylene-containing polymers [J]. Macromolecules,2004,37(1):147-153.
    [48]刘金刚,李卓,杨海霞,等。高折射率高透明性半脂环聚酰亚胺的合成与性能[J].高分子学报,2008,5:460-465.
    [49]Suzuki Y, Liu JG, Nakamura Y, Shibasaki Y, Ando S and Ueda M, Synthesis of highly refractive and transparent polyimides derived from 4, 4' -[p-sulfonylbis(phenylenesulfanyl)] diphthalic anhydride and various sulfur-containing aromatic diamines [J]. Polymer Journal, 2008,40(5):414-420.
    [50]Terraza CA, Liu JG, Nakamura Y, Shibasaki Y, Ando S and Ueda M, Synthesis and properties of highly refractive polyimides derived from fluorene-bridged sulfur-containing dianhydrides and diamines [J]. J. Polym. Sci., Part A:Polym. Chem.,2008,46(4):1510-1520.
    [51]Liu JG, Nakamura Y, Suzuki Y, Shibasaki Y, Ando S and Ueda M, Highly Refractive and Transparent Polyimides Derived from 4,4'-[m-Sulfonylbis(phenylenesulfanyl)]diphthalic Anhydride and Various Sulfur-Containing Aromatic Diamines [J]. Macromolecules,2007, 40(22):7902-7909.
    [52]Liu JG and Ueda M, High refractive index polymers:fundamental research and practical applications [J]. J. Mater. Chem.,2009,19:8907-8919.
    [53]吕长利,崔占臣,赵冬雪,等.新型复合环氧光学树脂的制备与性能研究[J].高等学校校化学学报,2001,22(11):1924-1928.
    [54]Hammichi A, Yoshinobu K. Sulfur-containing epoxy compound and sulfur-containing epoxy resin [P]. JP10130250,1998.
    [55]Nagata, Teruyuld, Okazaki. CN1039429A (EP351073). Lens comprising a resin having a large refractive index andprocess for preparing the lens 1990.
    [56]张道洪,伍华东,吴璧耀.高折射率含硫环氧树脂P俚TE的合成与表征[J].粘接,2005,26(4):1-2.
    [57]Okutsu R. Ando S. Ueda M. Sulfur-Containing Poly(meth) acrylates with High Refractive Indices and High Abbe's Numbers [J]. Chem. Mater.2008,20:4017-4023.
    [58]Matsuda Y, Funae Y. Yoshida M, Yamamoto T, Takaya T. Optical material of high refractive index resin composed of sulfur-containing aromatic methacrylates [J]. J. Appl. Polym. Sci.,2000,76:50-54.
    [59]Matsuda Y, Funae Y, Yoshida M. Yamamoto T, Takaya T.Optical material of high refractive index resin composed of sulfur-containing aliphatic and alicyclic methacrylates [J]. J. Appl. Polym. Sci.,2000,76:45-49.
    [60]Minns RA and Gaudiana RS, Design and Synthesis of High Refractive Index Polymers. Ⅱ[J]. Journal of Macromolecular Science, Part A -Pure Appl. Chem.,1992,29(1):19-30.
    [61]Goosey E, Brominated flame retardants:their potential impacts and routes into the environment [J]. Circuit World,2006,32(4):32-35.
    [62]Olshavsky MA and Allcock HR, Polyphosphazenes with High Refractive Indices: Synthesis, Characterization, and Optical Properties [J]. Macromolecules,1995,28(18): 6188-6197.
    [63]Olshavsky MA and Allcock HR, Polyphosphazenes with High Refractive Indices:? Optical Dispersion and Molar Refractivity [J]. Macromolecules,1997,30(14):4179-4183.
    [64]Fushimi T and Allcock HR, Cyclotriphosphazenes with sulfur-containing side groups: refractive index and optical dispersion [J]. Dalton Trans.,2009,14:2477-2481.
    [65]Shobha HK, Johnson H, Sankarapandian M, Kim YS, Rangarajan P, Baird DG and Mcgrath JE, Synthesis of high refractive-index melt-stable aromatic polyphosphonates [J]. J. Polym. Sci., Part A:Polym. Chem.,2001,39(17):2904-2910.
    [66]Shobha HK, Sekharipuram V, Mcgrath JE and Bhatnagar A, High refractive index thermoplastic polyphosphonates. US Pat.,7375 178,2008.
    [67]Matsumura S, Kiharan, Takta T. Properties of a few aromatic poly(thioether ketones) as sulfur-contaimng high performance polymer [J]. J. Appl. Polym. Sci.,2004,92:1869-1874.
    [68]Okutsu R, Suzuki Y, Ando S, and Ueda M. Poly(thioether sulfone) with High Refractive Index and High Abbe's Number [J]. Macromolecules 2008,41:6165-6168.
    [69]Paquet C, Cyr PW, Kumacheva E and Manners I, Polyferrocenes:metallopolymers with tunable and high refractive indices [J]. Chem. Commun.,2004,2:234-235.
    [70]Manners I, Polyferrocenylsilanes:metallopolymers for electronic and photonic applications [J]. J. Opt. A:Pure Appl. Opt.,2002,4:S221-S223.
    [71]Hauβler M, Lam JWY, Qin AJ, Tse KKC, Li MKS, Liu JZ, Jim CKW, Gao P and Tang BG, Metallized hyperbranched polydiyne:a photonic material with a large refractive index tunability and a spin-coatable catalyst for facile fabrication of carbon nanotubes [J]. Chem. Commun.,2007,25:2584-2586.
    [72]Xiong MN, Zhou SX, Chen H. Wu LM. Preparation of acrylic resin/TiO2 organic-inorganic hybrid by sol-gel process and characterization of its structure [J]. Acta Polymerica Sinica,2005,3:417-422.
    [73]Weibel M, Caseri W, Suter UW, Kiess H and Wehrli E, Preparation of polymer nanocomposites with "ultrahigh" refractive index [J]. Polym. Adv. Technol.,1991,2(2):75-80.
    [74]Zimmermann L, Weibel M, Caseri W. Suter UW and Walther P, Polymer nanocomposites with "ultralow" refractive index [J]. Polym. Adv. Technol.,1993,4(1):1-7.
    [75]Caseri W, Nanocomposites of polymers and metals or semiconductors:IIistorical background and optical properties [J], Macromol. Rapid. Commun.,2000,21:705.
    [76]Althues H, Henle J and Kaskel S, Functional inorganic nanofillers for transparent polymers [J]. Chem. Soc. Rev.,2007,36(9):1454-1465.
    [77]Yuwono AH, Liu BH, Xue JM, Wang J, Elim HI, Ji W, Li Y and White TJ, Controlling the crystallinity and nonlinear optical properties of transparent TiO2-PMMA nanohybrids [J]. J. Mater. Chem.,2004,14:2978.
    [78]Suzuki N, Tomita Y, Ohmori K, Hidaka M and Chikama K, Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording [J]. Opt. Express,2006,14(26):12712-12719.
    [79]Papadimitrakopoulos F, Wisniecki P and Bhagwagar DE, Mechanically Attrited Silicon for High Refractive Index Nanocomposites [J]. Chem. Mater.,1997,9(12):2928-2933.
    [80]Palik ED ed., Handbook of Optical Constants of Solids [M], Academic Press, Orlando, 1985.
    [81]Zhou S, Wu L. Phase Separation and Properties of UV-Curable Polyurethane/Zirconia Nanocomposite Coatings [J]. Macromolecular Chemistry and Physics,2008,209:1170-1181.
    [82]Wang B, Wilkes Q, Smith C, Mcgrath J E. Polym Commun,1991,32(13):400-402.
    [83]Lee LH, Chen WC, High refractive-index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate)-titania materials[J]. Chem Mater,2001, 13:1137-1142.
    [84]Liou GS, Lin PH, Yen HJ, Yu YY, Chen WC. Flexible Nanocrystalline Titania/Polyimide Hybrids with High Refractive Index and Excellent Thermal Dimensional Stability [J]. J Polym Sci:Part A:Polym Chem,2010,48:1433-1440
    [85]Lu CL, Cui ZC, Guan C et al. Research on Preparation, Structure and Properties of TiO2/Polythiourethane Hybrid Optical Films with High Refractive Index [J]. Macromolecular Materials and Engineering,2003,288(9):717-723.
    [86]Nakayama N, Hayashi T. Preparation and characterization of TiO2-ZrO2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerization[J]. Composites Part A:Applied Science and Manufacturing,2007,38: 1996-2004.
    [871 Lu CL, Cui ZC, Wang Y et al. Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index[J]. J. Mater. Chem.,2003,13:2189-2195.
    [88]Kalima V, Vartiainen I, Saastamoinen L, Suvanto M, Kuittinen M, Pakkanen T. T. UV-curable ZnS/polymer nanocomposite for replication of micron and submicron features[J]. Optical Materials,2009,31:1540-1546.
    [89]Lu CL, Cheng Y, Liu Y, Liu F, Yang B. A facile route to Zns-polymer nanocomposite optical materials with high nanophase content via γ-ray irradiation initiated bulk polymerization[J].Adv. Mater.,2006,18:1188-1192.
    [90]Haram SK, Wankhede ME. Synthesis and Characterization of Cd-DMSO Complex Capped CdS Nanoparticles[J]. Chem. Mater.,2003,15:1296-1301.
    [91]Lee S, Shin HJ, Yoon SM, Yi DK, Choi JY and Paik U, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites[J]. J. Mater. Chem.,2008,18:1751.
    [92]Aucher JF, Kalin T, and Sakuma Y. CEH Marketing Research Report, Carbon Black, Chemical Economic Handbook. SRI International, Menlo Park, Calif., Jan.2002
    [93]Donnet JB. Structure and reactivity of carbons:from carbon black to carbon composite [J]. Carbon.1982,20 (4):266
    [94]Quinten M. Kreibig U. Henning T. Mutschke H. Wavelength-dependent optical extinction of carbonaceous particles in atmospheric aerosols and interstellar dust [J]. Appl Opt.,2002, 41(33):7102-7112.
    [95]Johnson MP, Locke RW, Donnet JB, Wang TK, Wang CC, Bertrand P. Carbon black and fullerenes:new discoveries in early formation mechanisms and nucleation[J]. Rubber Chem Technol 2000; 73(5):875-88.
    [96]Heidenreich RD, Hess WM, Ban LL. A test object and criteria for high resolution electron microscopy [J]. J Appl Crystallogr.1968,1,1-19.
    [97]Werner H, Wohlers M, Herein D, Bublack D, Blocker J, Schlogl R, Reller A. Fullerene black-soot or something new[J]. Fullerene Sci Technol 1993,1(2):199.
    [98]Michel B. Henning T. Jager C. Kreibig U. Optical extinction by spherical carbonaceous particles [J]. Carbon,1999,37(3):391-400.
    [99]Jager C. Henning Th. Schlogl R. Spillecke O. Spectral properties of carbon black [J]. Journal of Non-Crystalline Solids,1999,258:161-179.
    [100]Llamas-Jansa I, Jager C, Mutschke H, Henning Th. Far-ultraviolet to near-infrared optical properties of carbon nanoparticles produced by pulsed-laser pyrolysis of hydrocarbons and their relation with structural variations[J]. Carbon,2007,45:1542-1557.
    [101]李炳炎.炭黑生产与应用手册[M].北京:化学工业出版社,2000,137-150.
    [102]Lin YN, Thomas WS, Paschalis A. Adsorption of a polymeric siloxane surfactant on carbon black particles dispersed in mixtures of water with polar organic solvents [J]. Journal of Colloid and Interface Science,2002,255(1):1-9.
    [103]Shinozuka M, Nakamura H, Kanbayashi K. Anticlogging and storage-stable jet-printing inks [P]. Japan:W09107470,1991.
    [104]陆锦成.钛酸酯偶联剂[J].涂料工业.1994,(6):42-45.
    [105]Aucher JF, Kalin T, and Sakuma Y. CEH Marketing Research Report, Carbon Black, Chemical Economic Handbook [R], SRI International, Menlo Park, Calif., Jan.2002
    [106]Noruttz G, Galan M. Dissolution of carbon blacks by nitric acid [J]. Carbon,1967,5(4): 287-289.
    [107]张强.流化床臭氧氧化技术研制开发色素炭黑[J].炭黑工业,2006,(4):10-12.
    [108]Nakahara M, Sanada Y. Structural change of a pyrolytic graphite surface oxidized by electrochemical and plasma treatment [J]. Journal of Materials Science,1994,29(12): 3193-3199.
    [109]Nakhara M, Ozawa K, Sanada Y. Change in the chemical structures of carbon black and active carbon caused by CF4 plasma irradiation [J]. Journal of Materials Science,1994,29(6): 1646-1651.
    [110]Takada T, Nakahara M, Kumagai H, Sanada Y. Surface modification and characterization of carbon black with oxygen plasma [J]. Carbon,1996,34(9):1087-1091.
    [111]Ohkita K, Tsubokawa N, Saitch E. The competitive reactions of initiator fragments and growing polymer chains against the surface of carbon black [J]. Carbon,1978,16(1):41-45.
    [112]Yoshikawa S, Tsubokawa N. Grafting of polymers with controlled molecular weight onto carbon black surface [J]. Polymer Journal,1996,28(4):317-322.
    [113]Tsubokawa N, Nagano Y, Sone Y. Grafting of poly-β-alanine onto carbon black:The hydrogen transfer polymerization of acrylamide catalyzed by n-butyllithium in the presence of carbon black [J]. Journal Applied Polymer Science,1984,29(3):985-993.
    [114]Tsubokawa N, Funica A, Hada Y, Sone Y. Grafting polyesters onto carbon black. Ⅰ. Polymerization of β-propiolactone initiated by alkali metal carboxylate group on the surface of carbon black [J]. Journal of Polymer Science Part A:Polymer Chemistry Edition,1982, 20(12):3297-3304.
    [115]Tsubokawa N, Matsumoto H, Sone Y. Grafting polymers onto carbon black:raction of Urethane prepolymer with carbon black surface [J]. Journal of Polymer Science Part A: Polymer Chemistry Edition,1982,20(7):1943-1946.
    [116]李玮,谢志明,李卓美.聚丙烯酸酯接枝炭黑的合成,表征及其应用[J].功能高分子学报,1999,12(3):302-306.
    [117]Tsubokawa N, Hosoya M, Yanadori K, Sone Y. Grafting onto carbon black:reactions of functional groups on carbon black with acyl chloride-capped polymers [J]. Journal of Macromolecular Science-Chemistry,1990,27(4):445-457.
    [118]Tsubokawa N, Kaboyashi K, Sone Y. Grafting onto carbon black by the reaction of reactive carbon black having masked isocyanate or acyl azide group with functional polymers [J]. Journal of Polymer Science Part A:Polymer Chemistry,1988.26(1):223-233.
    [119]坪川纪夫.用端羟基或端胺基官能化聚合物将反应性基团引入到炭黑表面的接枝反应[J].日本化学会志,1993,(9):1012-1023.
    [120]Moteki N, Kondo Y, Nakamura S, Method to measure refractive indices of small nonspherical particles:Application to black carbon particles[J]. J. Aerosol. Sci.2010,41: 513-521.
    [121]Brodd RJ. Carbon in Batteries and Energy Conversion Devices. In:Beguin F, Frackowiak E, editor. Carbons for Electrochemical Energy Storage and Conversion Systems[M]. CRC Press, Boca Raton,2010:411-427.
    [122]Rakov EG. Chemistry of Carbon Nanotubes. In:Gogotsi Y, editor. Carbon Nanomaterials[M]. CRC Press, Boca Raton,2006:105-75.
    [123]Stein A, Wang ZY, Fierke MA. Functionalization of porous carbon materials with designed pore architecture [J]. Adv Mater 2009; 21:265-293
    [124]Banerjee S, Hemraj-Benny T, Wong SS. Covalent surface chemistry of single-walled carbon nanotubes[J]. Adv Mater 2005; 17:17-29.
    [125]Hebert C, Schattschneider P, Franco H, Jouffrey B. ELNES at magic angle conditions[J]. Ultramicroscopy 2006; 106:1139-43.
    [126]Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials [J]. Carbon.1995,33(11):1561-1565.
    [127]Tuinstra F, Koenig JL. Raman Spectrum of Graphite[J]. The journal of chemical physics.1970,53(3):1126-1130.
    [128]Talaty ER, Raja S, Storhaug VJ, Doelle A, Carper WR. Raman and infrared spectra and a initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids[J]. J Phys Chem B 2004; 108:13177-13184.
    [129]Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B 2000; 61:14095-14107.
    [130]Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, Endo M. Origin of dispersive effects of the Raman D band in carbon materials[J]. Phys Rev B 1999; 59: R6585-R6588.
    [131]Ivleva NP, McKeon U, Niessner R, Poschl U. Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI:Soot, humic-like substances, and inorganic compounds[J]. Aerosol Sci Technol 2007; 41: 655-671.
    [132]Knauer M, Carrara M, Rothe D. Niessner R, Ivleva NP. Changes in Structure and Reactivity of Soot during Oxidation and Gasification by Oxygen, Studied by Micro-Raman Spectroscopy and Temperature Programmed Oxidation[J]. Aerosol Sci Technol 2009; 43:1-8.
    [133]Kamegawa K., Nishikubo K. Yoshida H. Oxidative degradation of carbon blacks with nitric acid (Ⅰ)-Changes in pore and crystallographic structures[J]. Carbon 1998; 36: 433-441.
    [134]Skrabalak SE. Ultrasound-assisted synthesis of carbon materials[J]. Phys Chem Chem Phys 2009; 11:4930-4942
    [135]Thomsen C, Reich S. Double resonant Raman scattering in graphite[J]. Phys Rev Lett 2000; 85:5214-7.
    [136]Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy[J]. Carbon 2006; 44:3239-3246.
    [137]Hess VM, Herd CR. Microstructure, Morphology and General Physical Properties. In:Donnet JB, Bansal RC, Wang MJ, editors. Carbon Black, New York; Dekker,1993: 89.
    [138]Kamegawa K, Nishikubo K, Yoshida H. Oxidative degradation of carbon blacks with nitric acid-H Formation of water-soluble polynuclear aromatic compounds[J]. Carbon 2002; 40:1447-1455
    [139]Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, et al. Facile synthesis and characterization of graphene nanosheets[J]. J Phys Chem C 2008; 112:8192-8195.
    [140]Wang ZX, Yu LP. Zhang W, Zhu ZY, He GW, Chen Y, et al. Carbon spheres synthesized by ultrasonic treatment[J]. Phys Lett A 2003; 307:249-252.
    [141]Robertson J. Properties and Characterization of Amorphous Carbon Films. In:Pouch JJ, Alterovitz SA, editor. Materials Science Forum, vols.52&53, TransTech., Zurich,1990: 125
    [142]Schnaiter M, Gimmler M, Llamas-Jansa I, Linke C, Jager C, Mutschke H. Atmos Chem Phys Discus 2006,6:1841-66.
    [143]Jan CJ, Walton MD, McConnell EP, Jang WS, Kim YS, J. C. Grunlan. Carbon black thin films with tunable resistance and optical transparency[J]. Carbon,2006,44(10): 1974-1981
    [144]Akhter MS, Chughtai AR, Smith DM. The Structure of Hexane Soot I: Spectroscopic Studies[J]. Applied spectroscopy,1985,39:143-153.
    [145]Bond TC, Bergstrom RW. Light absorption by carbonaceous particles:An investigative review[J]. Aerosol Sci. Technol.2006,40:27-67.
    [146]Henning T, Jager C. Mutschke H. Laboratory studies of carbonaceous dust analogs. In:Witt AN. Clayton GC, Draine BT, editors. Astrophysics of dust. vol.309. San Francisco:ASP; 2004:603-28.
    [147]Robertson J, O'Reilly EP. Electronic and atomic structure of amorphous carbon[J]. Phys Rev B 1987; 35:2946-57.
    [148]Minutolo P. Gambi G, D'Alessio A. The Optical Band Gap Model in the Interpretation of the UV-Visible Absorption Spectra of Rich Premixed Flames, in Twenty-Sixth Symposium (International) on Combustion, the Combustion Institute,1996; 951-957.
    [149]Bond TC. Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion[J]. Geophys Res Let 2001; 28:4075-4078.
    [150]Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous Germanium [J]. Phys Stat Sol 1966; 15:627-673.
    [151]Llamas-Jansa I. Experimental study of the optical and structural properties of carbon nanoparticles. Friedrich Schiller University Jena Germany, PhD thesis,2006.
    [152]Theye ML, Paret V. Spatial organization of the sp2-hybridized carbon atoms and electronic density of states of hydrogenated amorphous carbon films[J]. Carbon 2002,40: 1153-1166.
    [153]Jager C, Mutschke H, Henning T. Optical properties of carbonaceous dust analogues[J]. Astron Astrophys 1998;332:291-9.
    [154]Robertson J. Hard amorphous (Diamond-like) carbons[J]. Progress in Solid State Chemistry,1991; 21:199-333.
    [155]Chhowalla M, Ferrari AC, Robertson J. Amaratunga GAJ. Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy[J]. Applied Physics Letter,2000,76:1419-1421.
    [156]Chen ZY, Zhao JP. Optical Constants of Tetrahedral Amorphous Films in the Infrared Region and at a Wavelength of 633 nm[J]. Journal of Applied Physics,2000,87: 4268-4273.
    [157]Palik ED ed., Handbook of Optical Constants of Solids[M], Academic Press, Orlando,1985.
    [158]Liu JG, Nakamura Y, Ogura T, Shibasaki Y, Ando S and Ueda M. Optically Transparent Sulfur-Containing Polyimide-TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)-TiO2 Nanocomposite Film[J]. Chemistry of Materials,2008,20(1):273-281.
    [159]Suzuki S, Miyazaki K., J. Chem. Soc. Japan 1967,6:609-14.
    [160]Hsiao SH, Chen YJ, Structure-property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines[J]. European polymer journal, 2002,38(4):815-828.
    [161]Donnet JB, Voet A. Carbon Black[M], New York:Marcel Dekker,1976
    [162]Echigo Y, Iwaya Y, Tomioka I, Yamadab H. Solvent Effects in Thermal Curing of Poly(4,4'-oxybis(phenylenepyromellitamic acid)) [J]. Macromolecules,1995,28: 4861-4865.
    [163]Jou JH, Huang PT, Effect of Thermal Curing on the Structures and Properties of Aromatic Polyimide Films[J]. Macromolecules,1991; 24(13):3796-3803.
    [164]Darmstadt H, Roy C, Carbon, Solid state 13C-NMR spectroscopy and XRD studies of commercial and pyrolytic carbon blacks[J].2000,38(9):1279-1287.
    [165]Lu L, Sahajwalla V, Kong C, Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon,2001,39(12):1821-1833.
    [166]Yang YN, Zhang HX, Wang P, Zheng QZ, Li J, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane[J]. Journal of Membrane Science,2007,288:231-238.
    [167]Wen J, Wikes GL, Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach[J]. Chemistry of Materials,1996,8(8):1667-1681.
    [168]Van Oss CJ, Chaudhury MK, Good RJ. Mechanism of partition in aqueous media[J]. Separation Science and Technology.1987,22(6):1515-1526.
    [169]Van Oss CJ, Good RJ, Chaudhury MK. Estimation of the polar surface tension parameters of glycerol and formamide for use in contact angle measurements on polar solids[J]. Journal of Dispersion Science and Technology.1990,11(1):75-81.
    [170]Van Oss CJ, Interfacial Forces in Aqueous Media[M], Dekker, New York,1994.
    [171]Hasegawa M, Horie K. Photophysics, photochemistry, and optical properties of polyimides[J]. Progress in Polymer Science,2001,26(2):259-335.
    [172]Davenas J, Boiteux G, Jardin C, Electronic and mass transport in ion beam nanostructured polymers:Role of the irradiation energy[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997,131(l-4):91-96.
    [173]Su HW, Chen WC, High refractive index polyimide-nanocrystalline-titania hybrid optical materials[J]. Journal of Materials Chemistry,2008,18(10):1139-1145.
    [174]Papadimitrakopoulos P, Wisniecki P, Bhagwagar D, Mechanically Attrited Silicon for High Refractive Index Nanocomposites[J]. Chemistry of Materials,1997,9(12): 2928-2933.
    [175]Choi MC, Wakita J, Ha CS, Ando S. Highly Transparent and Refractive Polyimides with Controlled Molecular Structure by Chlorine Side Groups[J]. Macromolecules,2009, 42:5112-5120
    [176]Rodriquez R, Herrera R. Archer LA, Giannelis EP. Nanoscale Ionic Materials, NIMS[J]. Advanced Materials,2008,20(22):4353-4358
    [177]Lu CL, Yang B. High refractive index organic-inorganic nanocomposites:design, synthesis and application[J]. Journal of Materials Chemistry.2009,19:2884
    [178]Zhu JH, Dong GX. Guo XW, Chen L, Li JF, Methylene-blue sensitized dichromated gelatin:wide-range colour adjustment of reflection hologram[J]. Journal of Optics A:Pure and Applied Optics,2004,6:132
    [179]Schmedlen RH, Masters KS, West JL, Photocrosslinkable poly vinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering[J]. Biomaterials,2002,23(22):4325-4332
    [180]Huang M, Yao H, Chen Z, Hou L, Gan F, The changes of holographic characteristics of photopolymer induced by temperature[J]. Chinese Optics Letters,2003,1:41-43
    [181]Bulinski M, Iova I, Belea A, Kuncser V, Filoti G, Experimental investigation of the nonlinear optical response in Fe:PVA[J]. Journal of materials science letters,2000, 19:27-28
    [182]Gaur SS, Ghawana K, Sharma VK, Tripathi KN, Dye-doped polymeric waveguides for integrated optics[J]. Journal of Optics A:Pure and Applied Optics,2004,6:312
    [183]Szabo T, Berkesi O, Dekany I, DRIFT study of deuterium-exchanged graphite oxide Carbon 2005,43:3186-3189.
    [184]Yang SY, Huang CY, Plasma treatment for enhancing mechanical and thermal properties of biodegradable PV A/starch blends[J]. Journal of Applied Polymer Science, 2008,109(4):2452-2459.
    [185]Finch CA, Ed.; Polyvinyl Alcohol Developments[M]; John Wiley & Sons: Chichester,1992.
    [186]Mallapragada SK, Peppas NA, Dissolution mechanism of semicrystalline poly (vinyl alcohol) in water[J]. Journal of Polymer Science:Part B:Polymer Physics 1996,34: 1339-1346.
    [187]Moritani T, Kuruma I, K. Shibatani, Y. Fujiwara, Tacticity of Poly(vinyl alcohol) Studied by Nuclear Magnetic Resonance of Hydroxyl Protons[J]. Macromolecules,1972, 5(5):577-580.
    [188]Wu TK, Ovenall DW, Proton and Carbon-13 Nuclear Magnetic Resonance Studies of Poly(vinyl alcohol)[J]. Macromolecules,1973,6(4):582-584.
    [189]Wang Y, Ono H, Ikeda A, Hori N, Takemura A, Yamada T, Tsukatani T,1H NMR and 13C NMR investigations of sequence distribution and tacticity in poly(vinyl alcohol-co-vinyl levulinate)[J]. Polymer,2006,47(22):7827-7834.
    [190]Fernandez M D, Fernandez MJ, Cyclic ureas as solvents for esterification of poly(vinyl alcohol) and vinyl acetate-vinyl alcohol copolymers with acid chlorides[J]. Journal of Applied Polymer Science,2008,107(4):2509-2519.
    [191]Wu TK, Nuclear magnetic resonance studies on microstructure of ethylene copolymers. VII. Proton resonance spectra of hydrolyzed ethylene-vinyl acetate copolymers[J]. Journal of Polymer Science:Polymer Physics Edition.1976,14(2): 343-352.
    [192]Wu TK, Ovenall DW, Proton and Carbon-13 Nuclear Magnetic Resonance Studies of Poly(vinyl acetate)[J]. Macromolecules 1974,7(6):776-779.
    [193]Martinez G, Synthesis of PVC-g-PS through stereoselective nucleophilic substitution on PVC[J]. Journal of Polymer Science:Part A:Polymer Chemistry.2006, 44:2476-2486.
    [194]Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA. Ultrastrong and Stiff Layered Polymer Nanocomposites[J]. Science 2007,318(5847):80-83.
    [195]Zhang XJ, Yan CM, Fang SM, Zhang CG, Jia TG, Zhang Y. A water-soluble organic-inorganic hybrid material based on polyhedral oligomeric silsesquioxane and polyvinyl alcohol[J]. Journal of Polymer Research,2010,17:631-638。
    [196]Liu LQ, Barber AH, Nuriel S, Wagner HD, Mechanical Properties of Functionalized Single-Walled Carbon-Nanotube/Poly(vinyl alcohol) Nanocomposites[J]. Advanced Functional Materials,2005,15(6):975-980
    [197]Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology, 2008,3:327-331.
    [198]Salavagione HJ, Gomez MA, Martinez G, Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol)[J]. Macromolecules 2009,42(17):6331-6334.
    [199]Yu YY, Chen CY, Chen WC, Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica[J]. Polymer 2003, 44(3):593-601
    [200]Caseri W, Inorganic nanoparticles as optically effective additives for polymers[J]. Chemical Engineering Communications,2009,196(5):549-572
    [201]Lu CL, Guan C, Liu YF, Cheng YR, Yang B, PbS/polymer nanocomposite optical materials with high refractive index[J]. Chemistry of Materials 2005,17(9):2448-54
    [202]Nussbaumer RJ, Caseri WR, Smith P, Tervoort T. Polymer-TiO2 Nanocomposites: A Route Towards Visually Transparent Broadband UV Filters and High Refractive Index Materials[J]. Macromolecular Materials Engineering,2003,288(1):44-49
    [203]Maxwell-Garnett JC. Colours in metal glasses and in metallic films[J]. Philosophical transactions of the royal society of london series a-mathematical physical and engineering sciences,1904,203:385.
    [204]Aspnes DE. Local-field effects and effective-medium theory:a microscopic perspective[J]. American Journal of Physics.1982,50(8):704-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700