用户名: 密码: 验证码:
淀粉样蛋白聚集的机理研究和抑制剂的设计、合成与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉样蛋白的错误折叠和异常聚集通常被认为是阿兹海默症、2型糖尿病、朊病毒蛋白相关疾病等淀粉样变性病的主要致病原因之一。由于淀粉样蛋白聚集的重要性,对于淀粉样蛋白聚集机理以及聚集抑制剂的研究被视为是推进相关疾病药物研发和临床治疗的关键方向之一。在本论文中,我们重点研究了淀粉样蛋白的聚集机理,以及针对一价铜导致聚集的相关抑制剂的合成,这些工作将为我们在相关领域的进一步研究提供支持。
     我们选用胰岛淀粉样蛋白和朊蛋白片段106-126作为淀粉样蛋白聚集机理研究的模型。对于胰岛淀粉样蛋白,我们通过原子力显微镜和微秒力显微镜发现胰岛淀粉样蛋白能够在五氧化二钽表面形成环状聚集体,并推断出环状聚集体的生长模型。通过进一步研究胰岛淀粉样蛋白及其衍生物的碳末端基团对它们的性质的影响,我们发现碳末端酰胺化的天然胰岛淀粉样蛋白与碳末端未酰胺化的胰岛淀粉样蛋白衍生物在聚集速度、聚集体构成、细胞毒性等方面存在明显差异。天然的胰岛淀粉样蛋白能迅速发生聚集,跨越有毒的寡聚体状态。而未酰胺化的胰岛淀粉样蛋白衍生物初始聚集速度较慢,在有毒的寡聚体状态持续时间较长,并最终生成β-折叠含量较高的纤维状聚集体。这些差异可能是由于蛋白在疏水核心区、构象等方面的差异导致的。我们通过计算机分子动力学模拟验证了上述的结果。对于朊蛋白片段106-126,我们通过原子力显微镜发现随着孵育时间的增长,蛋白能够形成非常密集的网膜状结构。我们推断正是这些网膜状结构侵占正常神经元生长的空间,从而导致神经元损伤。我们进一步发现盐酸和乙醇两种溶剂都能够加速网膜状结构的生成,从而推断环境因素可能对朊蛋白的聚集有巨大影响。这为进一步的机理研究和未来的药物开发奠定了基础。
     基于淀粉样蛋白聚集机理的基础性研究工作,我们选用β-淀粉样蛋白Aβ1-40作为蛋白模型,设计并合成出由硫代黄素T衍生出来的小分子抑制剂。该小分子抑制剂可以抑制淀粉样蛋白聚集过程中出现的过量一价铜离子,阻止恶性的氧化还原循环,从而达到保护细胞的目的。这为治疗铜介导的淀粉样蛋白错误折叠所造成的疾病提供了新的策略。
The misfolding and abnormal aggregation of proteins is usually believed as onemain contributing factor of several amyloid diseases, such as Alzheimer’s disease, type2diabetes and prion diseases. Due to the importance of amyloid fibrillization,investigating the underlying mechanism of amyloid protein aggregation and designingappropriate inhibitors have been considered as a promising approach to advance theclinical treatment of these diseases. However, though lots of efforts have beencontributed to related researches on amyloid proteins, the mechanism of amyloidaggregation is still not fully understood. In this thesis, we investigated the aggregationmechanism of amyloid proteins, and designed inhibitors to block the copper-mediatedamyloid aggregation. These works could provide us further insights in relevant areas.
     Amylin and prion106-126were selected as the protein models to study theassembly mechanisms. For amylin, we studied the annular structure of amylin onnegatively-charged Tantalum oxide surface through atomic force microscopy andmicrosecond force spectroscopy, based on which we proposed an accumulation modelon how annular aggregation is initiated and developed. We further investigated theimpacts of C-terminus on amylin assembly and found that the difference at C-terminalregion between natural amylin and an amylin variant could result in different assemblypathways and different composition of the aggregates by influencing the hydrophobiccore, conformations, and intra-sheet interactions of peptides. The differences in theassembly processes further characterize the differences in cytotoxicity.
     For prion106-126, we applied atomic force microscopy to study the aggregation ofprion106-126in different solvents and found that the aggregated prion106-126fibrilscould form highly crowded membrane-like structures, which may occupy the space ofneurons and induce neuron death. Furthermore, we found that HCl and ethanol mightaccelerate prion aggregation and aggravate related negative impacts. Therefore, wepropose that environmental factors may influence the aggregation process of prionprotein. The works on amylin and prion aggregation provides us new clues for furthermechanism studies and drug design.
     Based on the investigation of amyloid aggregation mechanism, we designed smallmolecule inhibitors to target the copper-mediated amyloid aggregation. The designedinhibitors can chelate Cu(I) from the aberrant copper redox cycle, and thus protect cells against Aβ induced neurotoxicity. Our approach on inhibitor design may lead to analternative strategy for developing therapeutic drugs for Cu-mediated protein diseases.
引文
[1] Opie, E.L., The relation oe diabetes mellitus to lesions of the pancreas. Hyalinedegeneration of the islands oe langerhans. J Exp Med,1901.5(5): p.527-40.
    [2] King, H., R.E. Aubert, and W.H. Herman, Global burden of diabetes,1995-2025:Prevalence, numerical estimates, and projections. Diabetes care,1998.21(9): p.1414-31.
    [3] Stumvoll, M., B.J. Goldstein, and T.W. van Haeften, Type2diabetes: Principles ofpathogenesis and therapy. Lancet,2005.365(9467): p.1333-46.
    [4] Kahn, B.B., Type2diabetes: When insulin secretion fails to compensate for insulinresistance. Cell,1998.92(5): p.593-6.
    [5] Yazawa, H., Z.X. Yu, Takeda, et al., Beta amyloid peptide (abeta42) is internalized viathe g-protein-coupled receptor fprl1and forms fibrillar aggregates in macrophages.FASEB J,2001.15(13): p.2454-62.
    [6] Lelliott, C. and A.J. Vidal-Puig, Lipotoxicity, an imbalance between lipogenesis de novoand fatty acid oxidation. Int J Obes Relat Metab Disord,2004.28Suppl4: p. S22-8.
    [7] Hoppener, J.W., C. Oosterwijk, M.G. Nieuwenhuis, et al., Extensive islet amyloidformation is induced by development of type ii diabetes mellitus and contributes to itsprogression: Pathogenesis of diabetes in a mouse model. Diabetologia,1999.42(4): p.427-34.
    [8] Kaiser, N., G. Leibowitz, and R. Nesher, Glucotoxicity and beta-cell failure in type2diabetes mellitus. Journal of pediatric endocrinology&metabolism: JPEM,2003.16(1):p.5-22.
    [9] Zandi, P.P., J.C. Anthony, A.S. Khachaturian, et al., Reduced risk of alzheimer diseasein users of antioxidant vitamin supplements: The cache county study. Arch Neurol,2004.61(1): p.82-8.
    [10] Zaghi, J., B. Goldenson, M. Inayathullah, et al., Alzheimer disease macrophages shuttleamyloid-beta from neurons to vessels, contributing to amyloid angiopathy. ActaNeuropathol,2009.117(2): p.111-24.
    [11] Yu, C., E. Nwabuisi-Heath, K. Laxton, et al., Endocytic pathways mediating oligomericabeta42neurotoxicity. Mol Neurodegener,2010.5: p.19.
    [12] Ying, G., P. Iribarren, Y. Zhou, et al., Humanin, a newly identified neuroprotectivefactor, uses the g protein-coupled formylpeptide receptor-like-1as a functional receptor.J Immunol,2004.172(11): p.7078-85.
    [13] Yonemoto, I.T., G.J. Kroon, H.J. Dyson, et al., Amylin proprotein processing generatesprogressively more amyloidogenic peptides that initially sample the helical state.Biochemistry,2008.47(37): p.9900-10.
    [14] Cai, K., D. Qi, O. Wang, et al., Tnf-alpha acutely upregulates amylin expression inmurine pancreatic beta cells. Diabetologia,2011.54(3): p.617-26.
    [15] Zhao, X. and J. Yang, Amyloid-beta peptide is a substrate of the human20s proteasome.ACS Chem Neurosci,2010.1(10): p.655-660.
    [16] Zerbinatti, C.V., D.F. Wozniak, J. Cirrito, et al., Increased soluble amyloid-beta peptideand memory deficits in amyloid model mice overexpressing the low-density lipoproteinreceptor-related protein. Proc Natl Acad Sci USA,2004.101(4): p.1075-80.
    [17] Yin, K.J., J.M. Lee, H. Chen, et al., Abeta25-35alters akt activity, resulting in badtranslocation and mitochondrial dysfunction in cerebrovascular endothelial cells. J CerebBlood Flow Metab,2005.25(11): p.1445-55.
    [18] Haataja, L., T. Gurlo, C.J. Huang, et al., Islet amyloid in type2diabetes, and the toxicoligomer hypothesis. Endocrine reviews,2008.29(3): p.303-16.
    [19] Janciauskiene, S. and B. Ahren, Fibrillar islet amyloid polypeptide differentially affectsoxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in twoinsulin-producing cell lines. Biochem Biophys Res Commun,2000.267(2): p.619-25.
    [20] Caughey, B. and P.T. Lansbury, Protofibrils, pores, fibrils, and neurodegeneration:Separating the responsible protein aggregates from the innocent bystanders. Annu RevNeurosci,2003.26: p.267-98.
    [21] Zhang, S., J. Liu, M. Dragunow, et al., Fibrillogenic amylin evokes islet beta-cellapoptosis through linked activation of a caspase cascade and jnk1. J Biol Chem,2003.278(52): p.52810-9.
    [22] Zhang, S., J. Liu, G. MacGibbon, et al., Increased expression and activation of c-juncontributes to human amylin-induced apoptosis in pancreatic islet beta-cells. J Mol Biol,2002.324(2): p.271-85.
    [23] Butler, A.E., J. Janson, W.C. Soeller, et al., Increased beta-cell apoptosis preventsadaptive increase in beta-cell mass in mouse model of type2diabetes: Evidence for roleof islet amyloid formation rather than direct action of amyloid. Diabetes,2003.52(9): p.2304-14.
    [24] Kayed, R., E. Head, J.L. Thompson, et al., Common structure of soluble amyloidoligomers implies common mechanism of pathogenesis. Science,2003.300(5618): p.486-9.
    [25] Wong, P.T., J.A. Schauerte, K.C. Wisser, et al., Amyloid-beta membrane binding andpermeabilization are distinct processes influenced separately by membrane charge andfluidity. J Mol Biol,2009.386(1): p.81-96.
    [26] Whitson, J.S., C.G. Glabe, E. Shintani, et al., Beta-amyloid protein promotes neuriticbranching in hippocampal cultures. Neurosci Lett,1990.110(3): p.319-24.
    [27] Oesch, B., D. Westaway, M. Walchli, et al., A cellular gene encodes scrapie prp27-30protein. Cell,1985.40(4): p.735-46.
    [28] Bolton, D.C., P.E. Bendheim, A.D. Marmorstein, et al., Isolation and structural studiesof the intact scrapie agent protein. Arch Biochem Biophys,1987.258(2): p.579-90.
    [29] Turk, E., D.B. Teplow, L.E. Hood, et al., Purification and properties of the cellular andscrapie hamster prion proteins. Eur J Biochem,1988.176(1): p.21-30.
    [30] Stahl, N., D.R. Borchelt, K. Hsiao, et al., Scrapie prion protein contains aphosphatidylinositol glycolipid. Cell,1987.51(2): p.229-40.
    [31] Webster, S., L.F. Lue, L. Brachova, et al., Molecular and cellular characterization of themembrane attack complex, c5b-9, in alzheimer's disease. Neurobiol Aging,1997.18(4):p.415-21.
    [32] Shorter, J. and S. Lindquist, Prions as adaptive conduits of memory and inheritance.Nature reviews. Genetics,2005.6(6): p.435-50.
    [33] Nico, P.B., F. de-Paris, E.R. Vinade, et al., Altered behavioural response to acute stressin mice lacking cellular prion protein. Behav Brain Res,2005.162(2): p.173-81.
    [34] Wang, X., B. Su, S.L. Siedlak, et al., Amyloid-beta overproduction causes abnormalmitochondrial dynamics via differential modulation of mitochondrial fission/fusionproteins. Proc Natl Acad Sci U S A,2008.105(49): p.19318-23.
    [35] Riek, R., S. Hornemann, G. Wider, et al., Nmr structure of the mouse prion proteindomain prp(121-321). Nature,1996.382(6587): p.180-2.
    [36] Pan, K.M., M. Baldwin, J. Nguyen, et al., Conversion of alpha-helices into beta-sheetsfeatures in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A,1993.90(23): p.10962-6.
    [37] Yatin, S.M., S. Varadarajan, C.D. Link, et al., In vitro and in vivo oxidative stressassociated with alzheimer's amyloid beta-peptide (1-42). Neurobiol Aging,1999.20(3):p.325-30; discussion339-42.
    [38] Yankner, B.A., L.K. Duffy, and D.A. Kirschner, Neurotrophic and neurotoxic effects ofamyloid beta protein: Reversal by tachykinin neuropeptides. Science,1990.250(4978):p.279-82.
    [39] Xie, C.W., Calcium-regulated signaling pathways: Role in amyloid beta-inducedsynaptic dysfunction. Neuromolecular Med,2004.6(1): p.53-64.
    [40] Alzheimer, A., R.A. Stelzmann, H.N. Schnitzlein, et al., An english translation ofalzheimer's1907paper,"uber eine eigenartige erkankung der hirnrinde". Clin Anat,1995.8(6): p.429-31.
    [41] Masters, C.L., G. Multhaup, G. Simms, et al., Neuronal origin of a cerebral amyloid:Neurofibrillary tangles of alzheimer's disease contain the same protein as the amyloid ofplaque cores and blood vessels. Embo J,1985.4(11): p.2757-63.
    [42] Kraepelin Emil, D.A.R., Clinical psychiatry: A textbook for students and physicians(reprint)2007: Kessinger Publishing.568.
    [43] Hartmann, T., S.C. Bieger, B. Bruhl, et al., Distinct sites of intracellular production foralzheimer's disease a beta40/42amyloid peptides. Nat Med,1997.3(9): p.1016-20.
    [44] Liu, P., S. Zhang, M.S. Chen, et al., Co-assembly of human islet amyloid polypeptide(hiapp)/insulin. Chem Comm,2012.48(2): p.191-3.
    [45] Sun, X., W.H. Wu, Q. Liu, et al., Hybrid peptides attenuate cytotoxicity of beta-amyloidby inhibiting its oligomerization: Implication from solvent effects. Peptides,2009.30(7):p.1282-7.
    [46] Yao, Z.X. and V. Papadopoulos, Function of beta-amyloid in cholesterol transport: Alead to neurotoxicity. FASEB journal: official publication of the Federation ofAmerican Societies for Experimental Biology,2002.16(12): p.1677-9.
    [47] Mazzitelli, S., M. Borgatti, G. Breveglieri, et al., Encapsulation of eukaryotic cells inalginate microparticles: Cell signaling by tnf-alpha through capsular structure of cysticfibrosis cells. J Cell Commun Signal,2011.5(2): p.157-65.
    [48] Duyckaerts, C. and D.W. Dickson, Neuropathology of alzheimer's disease.Neurodegeneration: The molecular pathology of dementia and movement disorders.2003,Basel: ISN Neuropath Press.47-65.
    [49] Ariga, T., T. Miyatake, and R.K. Yu, Role of proteoglycans and glycosaminoglycans inthe pathogenesis of alzheimer's disease and related disorders: Amyloidogenesis andtherapeutic strategies--a review. J Neurosci Res,2010.88(11): p.2303-15.
    [50] Hardy, J.A. and G.A. Higgins, Alzheimer's disease: The amyloid cascade hypothesis.Science,1992.256(5054): p.184-5.
    [51] Ono, K., M.M. Condron, and D.B. Teplow, Structure-neurotoxicity relationships ofamyloid beta-protein oligomers. Proc Natl Acad Sci U S A,2009.106(35): p.14745-50.
    [52] Dahlgren, K.N., A.M. Manelli, W.B. Stine, Jr., et al., Oligomeric and fibrillar species ofamyloid-beta peptides differentially affect neuronal viability. J Biol Chem,2002.277(35): p.32046-53.
    [53] Shankar, G.M., S. Li, T.H. Mehta, et al., Amyloid-beta protein dimers isolated directlyfrom alzheimer's brains impair synaptic plasticity and memory. Nat Med,2008.14(8): p.837-42.
    [54] Jan, A., O. Adolfsson, I. Allaman, et al., Abeta42neurotoxicity is mediated by ongoingnucleated polymerization process rather than by discrete abeta42species. J Biol Chem,2011.286(10): p.8585-96.
    [55] Sandberg, A., L.M. Luheshi, S. Sollvander, et al., Stabilization of neurotoxic alzheimeramyloid-beta oligomers by protein engineering. Proc Natl Acad Sci U S A,2010.107(35): p.15595-600.
    [56] Klyubin, I., D.M. Walsh, C.A. Lemere, et al., Amyloid beta protein immunotherapyneutralizes abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med,2005.11(5):p.556-61.
    [57] Townsend, M., G.M. Shankar, T. Mehta, et al., Effects of secreted oligomers of amyloidbeta-protein on hippocampal synaptic plasticity: A potent role for trimers. J Physiol,2006.572(Pt2): p.477-92.
    [58] Shankar, G.M., B.L. Bloodgood, M. Townsend, et al., Natural oligomers of thealzheimer amyloid-beta protein induce reversible synapse loss by modulating annmda-type glutamate receptor-dependent signaling pathway. J Neurosci,2007.27(11): p.2866-75.
    [59] Lee, H.G., R.J. Castellani, X. Zhu, et al., Amyloid-beta in alzheimer's disease: The horseor the cart? Pathogenic or protective? Int J Exp Pathol,2005.86(3): p.133-8.
    [60] Ueda, K., Y. Fukui, and H. Kageyama, Amyloid beta protein-induced neuronal celldeath: Neurotoxic properties of aggregated amyloid beta protein. Brain Res,1994.639(2): p.240-4.
    [61] Smith, D.G., R. Cappai, and K.J. Barnham, The redox chemistry of the alzheimer'sdisease amyloid beta peptide. Biochim Biophys Acta,2007.1768(8): p.1976-90.
    [62] Whitson, J.S., D.J. Selkoe, and C.W. Cotman, Amyloid beta protein enhances thesurvival of hippocampal neurons in vitro. Science,1989.243(4897): p.1488-90.
    [63] Clementi, M.E., M. Pezzotti, F. Orsini, et al., Alzheimer's amyloid beta-peptide (1-42)induces cell death in human neuroblastoma via bax/bcl-2ratio increase: An intriguingrole for methionine35. Biochem Biophys Res Commun,2006.342(1): p.206-13.
    [64] Crouch, P.J., K.J. Barnham, J.A. Duce, et al., Copper-dependent inhibition ofcytochrome c oxidase by abeta(1-42) requires reduced methionine at residue35of theabeta peptide. J Neurochem,2006.99(1): p.226-36.
    [65] Butterfield, D.A. and D. Boyd-Kimball, The critical role of methionine35in alzheimer'samyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity. BiochimBiophys Acta,2005.1703(2): p.149-56.
    [66] Moskovitz, J., B.S. Berlett, J.M. Poston, et al., Methionine sulfoxide reductase inantioxidant defense. Methods Enzymol,1999.300: p.239-44.
    [67] Lovell, M.A., C. Xie, S.P. Gabbita, et al., Decreased thioredoxin and increasedthioredoxin reductase levels in alzheimer's disease brain. Free Radic Biol Med,2000.28(3): p.418-27.
    [68] Gabbita, S.P., M.Y. Aksenov, M.A. Lovell, et al., Decrease in peptide methioninesulfoxide reductase in alzheimer's disease brain. J Neurochem,1999.73(4): p.1660-6.
    [69] Koppal, T., R. Subramaniam, J. Drake, et al., Vitamin e protects against alzheimer'samyloid peptide (25-35)-induced changes in neocortical synaptosomal membrane lipidstructure and composition. Brain Res,1998.786(1-2): p.270-3.
    [70] Miyazono, M., T. Kitamoto, T. Iwaki, et al., Colocalization of prion protein and betaprotein in the same amyloid plaques in patients with gerstmann-straussler syndrome.Acta Neuropathol,1992.83(4): p.333-9.
    [71] Ikeda, S.I., N. Yanagisawa, D. Allsop, et al., Gerstmann-straussler-scheinker diseaseshowing beta-protein type cerebellar and cerebral amyloid angiopathy. Acta Neuropathol,1994.88(3): p.262-6.
    [72] Debatin, L., J. Streffer, M. Geissen, et al., Association between deposition ofbeta-amyloid and pathological prion protein in sporadic creutzfeldt-jakob disease.Neurodegener Dis,2008.5(6): p.347-54.
    [73] Kellett, K.A. and N.M. Hooper, Prion protein and alzheimer disease. Prion,2009.3(4): p.190-4.
    [74] Lauren, J., D.A. Gimbel, H.B. Nygaard, et al., Cellular prion protein mediatesimpairment of synaptic plasticity by amyloid-beta oligomers. Nature,2009.457(7233): p.1128-32.
    [75] Nygaard, H.B. and S.M. Strittmatter, Cellular prion protein mediates the toxicity ofbeta-amyloid oligomers: Implications for alzheimer disease. Arch Neurol,2009.66(11):p.1325-8.
    [76] Chen, S., S.P. Yadav, and W.K. Surewicz, Interaction between human prion protein andamyloid-beta (abeta) oligomers: Role of n-terminal residues. J Biol Chem,2010.285(34):p.26377-83.
    [77] Cisse, M. and L. Mucke, Alzheimer's disease: A prion protein connection. Nature,2009.457(7233): p.1090-1.
    [78] Kessels, H.W., L.N. Nguyen, S. Nabavi, et al., The prion protein as a receptor foramyloid-beta. Nature,2010.466(7308): p. E3-4; discussion E4-5.
    [79] Balducci, C., M. Beeg, M. Stravalaci, et al., Synthetic amyloid-beta oligomers impairlong-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A,2010.107(5): p.2295-300.
    [80] Gimbel, D.A., H.B. Nygaard, E.E. Coffey, et al., Memory impairment in transgenicalzheimer mice requires cellular prion protein. J Neurosci,2010.30(18): p.6367-74.
    [81] Parkin, E.T., N.T. Watt, I. Hussain, et al., Cellular prion protein regulates beta-secretasecleavage of the alzheimer's amyloid precursor protein. Proc Natl Acad Sci U S A,2007.104(26): p.11062-7.
    [82] Kim, J. and D.M. Holtzman, Medicine. Prion-like behavior of amyloid-beta. Science,2010.330(6006): p.918-9.
    [83] Payne, R.G., M.J. Yaszemski, A.W. Yasko, et al., Development of an injectable, in situcrosslinkable, degradable polymeric carrier for osteogenic cell populations. Part1.Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatinmicroparticles. Biomaterials,2002.23(22): p.4359-71.
    [84] Wang, F., X. Wang, C.G. Yuan, et al., Generating a prion with bacterially expressedrecombinant prion protein. Science,2010.327(5969): p.1132-5.
    [85] Kim, J., J.M. Basak, and D.M. Holtzman, The role of apolipoprotein e in alzheimer'sdisease. Neuron,2009.63(3): p.287-303.
    [86] Brundin, P., R. Melki, and R. Kopito, Prion-like transmission of protein aggregates inneurodegenerative diseases. Nature reviews. Mol Cell Biol,2010.11(4): p.301-7.
    [87] Macreadie, I.G., Copper transport and alzheimer's disease. Eur Biophys J,2008.37(3): p.295-300.
    [88] Trumbo, P., A.A. Yates, S. Schlicker, et al., Dietary reference intakes: Vitamin a,vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum,nickel, silicon, vanadium, and zinc. J Am Diet Assoc,2001.101(3): p.294-301.
    [89] Barnham, K.J. and A.I. Bush, Metals in alzheimer's and parkinson's diseases. Curr OpinChem Biol,2008.12(2): p.222-8.
    [90] Masad, A., L. Hayes, B.J. Tabner, et al., Copper-mediated formation of hydrogenperoxide from the amylin peptide: A novel mechanism for degeneration of islet cells intype-2diabetes mellitus? FEBS letters,2007.581(18): p.3489-93.
    [91] Brown, D.R., K. Qin, J.W. Herms, et al., The cellular prion protein binds copper in vivo.Nature,1997.390(6661): p.684-7.
    [92] Viles, J.H., F.E. Cohen, S.B. Prusiner, et al., Copper binding to the prion protein:Structural implications of four identical cooperative binding sites. Proc Natl Acad Sci US A,1999.96(5): p.2042-7.
    [93] Batista, M.N., L. Cuppari, L. de Fatima Campos Pedrosa, et al., Effect of end-stage renaldisease and diabetes on zinc and copper status. Biol Trace Elem Res,2006.112(1): p.1-12.
    [94] Cunningham, J., M. Leffell, P. Mearkle, et al., Elevated plasma ceruloplasmin ininsulin-dependent diabetes mellitus: Evidence for increased oxidative stress as a variablecomplication. Metabolism: clinical and experimental,1995.44(8): p.996-9.
    [95] Ward, B., K. Walker, and C. Exley, Copper(ii) inhibits the formation of amylin amyloidin vitro. J Inorg Biochem,2008.102(2): p.371-5.
    [96] Konarkowska, B., J.F. Aitken, J. Kistler, et al., Thiol reducing compounds preventhuman amylin-evoked cytotoxicity. The FEBS journal,2005.272(19): p.4949-59.
    [97] Hoppener, J.W. and C.J. Lips, Role of islet amyloid in type2diabetes mellitus. Int JBiochem Cell Biol,2006.38(5-6): p.726-36.
    [98] Millhauser, G.L., Copper binding in the prion protein. Acc Chem Res,2004.37(2): p.79-85.
    [99] Millhauser, G.L., Copper and the prion protein: Methods, structures, function, anddisease. Annu Rev Phys Chem,2007.58: p.299-320.
    [100] Bush, A.I., W.H. Pettingell, G. Multhaup, et al., Rapid induction of alzheimer a betaamyloid formation by zinc. Science,1994.265(5177): p.1464-7.
    [101] Garzon-Rodriguez, W., A.K. Yatsimirsky, and C.G. Glabe, Binding of zn(ii), cu(ii), andfe(ii) ions to alzheimer's a beta peptide studied by fluorescence. Bioorg Med Chem Lett,1999.9(15): p.2243-8.
    [102] Curtain, C.C., F. Ali, I. Volitakis, et al., Alzheimer's disease amyloid-beta binds copperand zinc to generate an allosterically ordered membrane-penetrating structure containingsuperoxide dismutase-like subunits. J Biol Chem,2001.276(23): p.20466-73.
    [103] Atwood, C.S., R.D. Moir, X. Huang, et al., Dramatic aggregation of alzheimer abeta bycu(ii) is induced by conditions representing physiological acidosis. J Biol Chem,1998.273(21): p.12817-26.
    [104] Mantyh, P.W., J.R. Ghilardi, S. Rogers, et al., Aluminum, iron, and zinc ions promoteaggregation of physiological concentrations of beta-amyloid peptide. J Neurochem,1993.61(3): p.1171-4.
    [105] Huang, X., C.S. Atwood, R.D. Moir, et al., Trace metal contamination initiates theapparent auto-aggregation, amyloidosis, and oligomerization of alzheimer's abetapeptides. J Biol Inorg Chem,2004.9(8): p.954-60.
    [106] Sengupta, P., K. Garai, B. Sahoo, et al., The amyloid beta peptide (abeta(1-40)) isthermodynamically soluble at physiological concentrations. Biochemistry (Mosc),2003.42(35): p.10506-13.
    [107] Chen, W.T., Y.H. Liao, H.M. Yu, et al., Distinct effects of zn2+, cu2+, fe3+, and al3+on amyloid-beta stability, oligomerization, and aggregation: Amyloid-betadestabilization promotes annular protofibril formation. J Biol Chem,2011.286(11): p.9646-56.
    [108] Drew, S.C., C.J. Noble, C.L. Masters, et al., Pleomorphic copper coordination byalzheimer's disease amyloid-beta peptide. J Am Chem Soc,2009.131(3): p.1195-207.
    [109] Faller, P. and C. Hureau, Bioinorganic chemistry of copper and zinc ions coordinated toamyloid-beta peptide. Dalton Trans,2009(7): p.1080-94.
    [110] Hatcher, L.Q., L. Hong, W.D. Bush, et al., Quantification of the binding constant ofcopper(ii) to the amyloid-beta peptide. J Phys Chem B,2008.112(27): p.8160-4.
    [111] Sokolowska, M. and W. Bal, Cu(ii) complexation by "non-coordinating"n-2-hydroxyethylpiperazine-n'-2-ethanesulfonic acid (hepes buffer). J Inorg Biochem,2005.99(8): p.1653-60.
    [112] Hatcher, L.Q., L. Hong, W.D. Bush, et al., Quantification of the binding constant ofcopper(ii) to the amyloid-β peptide. J Phys Chem. B,2008.112(27): p.8160-4.
    [113] Tougu, V., A. Karafin, and P. Palumaa, Binding of zinc(ii) and copper(ii) to thefull-length alzheimer's amyloid-β peptide.J Neurochem,2008.104(5): p.1249-59.
    [114] Sokolowska, M. and W. Bal, Cu(ii) complexation by "non-coordinating"n-2-hydroxyethylpiperazine-n'-2-ethanesulfonic acid (hepes buffer). J Inorg Biochem,2005.99(8): p.1653-60.
    [115] Kowalik-Jankowska, T., M. Ruta, K. Wisniewska, et al., Coordination abilities of the1-16and1-28fragments of β-amyloid peptide towards copper(ii) ions: A combinedpotentiometric and spectroscopic study. J Inorg Biochem,2003.95(4): p.270-82.
    [116] Garzon-Rodriguez, W., A.K. Yatsimirsky, and C.G. Glabe, Binding of zn(ii), cu(ii), andfe(ii) ions to alzheimer's aβ peptide studied by fluorescence. Bioorg Med Chem Lett,1999.9(15): p.2243-8.
    [117] Syme, C.D., R.C. Nadal, S.E. Rigby, et al., Copper binding to the amyloid-β (aβ) peptideassociated with alzheimer's disease: Folding, coordination geometry, ph dependence,stoichiometry, and affinity of aβ-(1-28): Insights from a range of complementaryspectroscopic techniques. J Biol Chem,2004.279(18): p.18169-77.
    [118] Karr, J.W., H. Akintoye, L.J. Kaupp, et al., N-terminal deletions modify the cu2+binding site in amyloid-β. Biochemistry,2005.44(14): p.5478-87.
    [119] Ma, Q.F., J. Hu, W.H. Wu, et al., Characterization of copper binding to the peptideamyloid-β(1-16) associated with alzheimer's disease. Biopolymers,2006.83(1): p.20-31.
    [120] Guilloreau, L., L. Damian, Y. Coppel, et al., Structural and thermodynamical propertiesof cuii amyloid-β16/28complexes associated with alzheimer's disease. J Biol InorgChem: JBIC: a publication of the Society of Biological Inorganic Chemistry,2006.11(8): p.1024-38.
    [121] Raman, B., T. Ban, K. Yamaguchi, et al., Metal ion-dependent effects of clioquinol onthe fibril growth of an amyloid β peptide. J Biol Chem,2005.280(16): p.16157-62.
    [122] Danielsson, J., R. Pierattelli, L. Banci, et al., High-resolution nmr studies of thezinc-binding site of the alzheimer's amyloid β-peptide. The FEBS journal,2007.274(1):p.46-59.
    [123] Faller, P. and C. Hureau, Bioinorganic chemistry of copper and zinc ions coordinated toamyloid-β peptide. Dalton Trans,2009(7): p.1080-94.
    [124] Hou, L. and M.G. Zagorski, Nmr reveals anomalous copper(ii) binding to the amyloidaβ peptide of alzheimer's disease. J Am Chem Soc,2006.128(29): p.9260-1.
    [125] Bush, A.I., W.H. Pettingell, G. Multhaup, et al., Rapid induction of alzheimer aβamyloid formation by zinc. Science,1994.265(5177): p.1464-7.
    [126] Atwood, C.S., R.D. Moir, X. Huang, et al., Dramatic aggregation of alzheimer a beta bycu(ii) is induced by conditions representing physiological acidosis. J Biol Chem,1998.273(21): p.12817-26.
    [127] Ricchelli, F., D. Drago, B. Filippi, et al., Aluminum-triggered structural modificationsand aggregation of beta-amyloids. Cell Mol Life Sci,2005.62(15): p.1724-33.
    [128] Huang, X., M.P. Cuajungco, C.S. Atwood, et al., Cu(ii) potentiation of alzheimer abetaneurotoxicity. Correlation with cell-free hydrogen peroxide production and metalreduction. J Biol Chem,1999.274(52): p.37111-6.
    [129] Schubert, D. and M. Chevion, The role of iron in beta amyloid toxicity. BiochemBiophys Res Commun,1995.216(2): p.702-7.
    [130] Rival, T., R.M. Page, D.S. Chandraratna, et al., Fenton chemistry and oxidative stressmediate the toxicity of the beta-amyloid peptide in a drosophila model of alzheimer'sdisease. Eur J Neurosci,2009.29(7): p.1335-47.
    [131] Danielsson, J., R. Pierattelli, L. Banci, et al., High-resolution nmr studies of thezinc-binding site of the alzheimer's amyloid beta-peptide. FEBS J,2007.274(1): p.46-59.
    [132] Cuajungco, M.P., L.E. Goldstein, A. Nunomura, et al., Evidence that the beta-amyloidplaques of alzheimer's disease represent the redox-silencing and entombment of abeta byzinc. J Biol Chem,2000.275(26): p.19439-42.
    [133] Martins, R.N., C.G. Harper, G.B. Stokes, et al., Increased cerebral glucose-6-phosphatedehydrogenase activity in alzheimer's disease may reflect oxidative stress. J Neurochem,1986.46(4): p.1042-5.
    [134] Balazs, L. and M. Leon, Evidence of an oxidative challenge in the alzheimer's brain.Neurochem Res,1994.19(9): p.1131-7.
    [135] Schipper, H.M., Heme oxygenase expression in human central nervous system disorders.Free Radic Biol Med,2004.37(12): p.1995-2011.
    [136] Markesbery, W.R. and M.A. Lovell, Four-hydroxynonenal, a product of lipidperoxidation, is increased in the brain in alzheimer's disease. Neurobiol Aging,1998.19(1): p.33-6.
    [137] Sayre, L.M., D.A. Zelasko, P.L. Harris, et al.,4-hydroxynonenal-derived advanced lipidperoxidation end products are increased in alzheimer's disease. J Neurochem,1997.68(5): p.2092-7.
    [138] Williams, T.I., B.C. Lynn, W.R. Markesbery, et al., Increased levels of4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain inmild cognitive impairment and early alzheimer's disease. Neurobiol Aging,2006.27(8):p.1094-9.
    [139] Nitsch, R.M., J.K. Blusztajn, A.G. Pittas, et al., Evidence for a membrane defect inalzheimer disease brain. Proc Natl Acad Sci U S A,1992.89(5): p.1671-5.
    [140] Dickson, M. and J.P. Gagnon, Key factors in the rising cost of new drug discovery anddevelopment. Nature reviews. Drug discovery,2004.3(5): p.417-29.
    [141] Crapper McLachlan, D.R., A.J. Dalton, T.P. Kruck, et al., Intramuscular desferrioxaminein patients with alzheimer's disease. Lancet,1991.337(8753): p.1304-8.
    [142] Squitti, R., P.M. Rossini, E. Cassetta, et al., D-penicillamine reduces serum oxidativestress in alzheimer's disease patients. Eur J Clin Invest,2002.32(1): p.51-9.
    [143] Braymer, J.J., A.S. Detoma, J.S. Choi, et al., Recent development of bifunctional smallmolecules to study metal-amyloid-beta species in alzheimer's disease. Int J AlzheimersDis,2010.2011: p.623051.
    [144] Chiti, F. and C.M. Dobson, Protein misfolding, functional amyloid, and human disease.Annu Rev Biochem,2006.75: p.333-366.
    [145] Si, K., S. Lindquist, and E.R. Kandel, A neuronal isoform of the aplysia cpeb hasprion-like properties. Cell,2003.115(7): p.879-891.
    [146] Dobson, C.M., Protein folding and misfolding. Nature,2003.426(6968): p.884-890.
    [147] Schnabel, J., The dark side of proteins. Nature,2010.464(7290): p.828-829.
    [148] Cooper, G.J., A.C. Willis, A. Clark, et al., Purification and characterization of a peptidefrom amyloid-rich pancreases of type2diabetic patients. Proc Natl Acad Sci U S A,1987.84(23): p.8628-8632.
    [149] Westermark, P., C. Wernstedt, E. Wilander, et al., Amyloid fibrils in human insulinomaand islets of langerhans of the diabetic cat are derived from a neuropeptide-like proteinalso present in normal islet cells. Proc Natl Acad Sci U S A,1987.84(11): p.3881-3885.
    [150] Janson, J., W.C. Soeller, P.C. Roche, et al., Spontaneous diabetes mellitus in transgenicmice expressing human islet amyloid polypeptide. Proc Natl Acad Sci U S A,1996.93(14): p.7283-7288.
    [151] Zhang, S., J. Liu, M. Dragunow, et al., Fibrillogenic amylin evokes islet β-cell apoptosisthrough linked activation of a caspase cascade and jnk1. J Biol Chem,2003.278(52): p.52810-52819.
    [152] Hoppener, J.W. and C.J. Lips, Role of islet amyloid in type2diabetes mellitus. Int JBiochem Cell Biol,2006.38(5-6): p.726-36.
    [153] Janson, J., R.H. Ashley, D. Harrison, et al., The mechanism of islet amyloid polypeptidetoxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes,1999.48(3): p.491-8.
    [154] Kayed, R., Y. Sokolov, B. Edmonds, et al., Permeabilization of lipid bilayers is acommon conformation-dependent activity of soluble amyloid oligomers in proteinmisfolding diseases. J Biol Chem,2004.279(45): p.46363-6.
    [155] Bennett, R.G., W.C. Duckworth, and F.G. Hamel, Degradation of amylin byinsulin-degrading enzyme. J Biol Chem,2000.275(47): p.36621-5.
    [156] Caughey, B. and P.T. Lansbury, Protofibrils, pores, fibrils, and neurodegeneration:Separating the responsible protein aggregates from the innocent bystanders. Annu RevNeurosci,2003.26: p.267-98.
    [157] Mirzabekov, T.A., M.C. Lin, and B.L. Kagan, Pore formation by the cytotoxic isletamyloid peptide amylin. J Biol Chem,1996.271(4): p.1988-92.
    [158] Janciauskiene, S. and B. Ahren, Fibrillar islet amyloid polypeptide differentially affectsoxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in twoinsulin-producing cell lines. Biochem Biophys Res Commun,2000.267(2): p.619-25.
    [159] Zraika, S., R.L. Hull, J. Udayasankar, et al., Oxidative stress is induced by islet amyloidformation and time-dependently mediates amyloid-induced beta cell apoptosis.Diabetologia,2009.
    [160] Knight, J.D. and A.D. Miranker, Phospholipid catalysis of diabetic amyloid assembly. JMol Biol,2004.341(5): p.1175-87.
    [161] Bokvist, M., F. Lindstrom, A. Watts, et al., Two types of alzheimer's beta-amyloid (1-40)peptide membrane interactions: Aggregation preventing transmembrane anchoringversus accelerated surface fibril formation. J Mol Biol,2004.335(4): p.1039-49.
    [162] Chirita, C.N., M. Necula, and J. Kuret, Anionic micelles and vesicles induce taufibrillization in vitro. J Biol Chem,2003.278(28): p.25644-50.
    [163] Abbas, T., D. White, L. Hui, et al., Inhibition of human p53basal transcription bydown-regulation of protein kinase cdelta. J Biol Chem,2004.279(11): p.9970-7.
    [164] Lee, H.J., C. Choi, and S.J. Lee, Membrane-bound alpha-synuclein has a highaggregation propensity and the ability to seed the aggregation of the cytosolic form. JBiol Chem,2002.277(1): p.671-8.
    [165] Liu, P., S. Zhang, M.-s. Chen, et al., Co-assembly of human islet amyloid polypeptide(hiapp)/insulin. Chem Comm,2011.
    [166] Knight, J.D., J.A. Hebda, and A.D. Miranker, Conserved and cooperative assembly ofmembrane-bound alpha-helical states of islet amyloid polypeptide. Biochemistry,2006.45(31): p.9496-508.
    [167] Jayasinghe, S.A. and R. Langen, Lipid membranes modulate the structure of isletamyloid polypeptide. Biochemistry,2005.44(36): p.12113-9.
    [168] Sparr, E., M.F. Engel, D.V. Sakharov, et al., Islet amyloid polypeptide-inducedmembrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett,2004.577(1-2): p.117-20.
    [169] Brender, J.R., U.H. Durr, D. Heyl, et al., Membrane fragmentation by an amyloidogenicfragment of human islet amyloid polypeptide detected by solid-state nmr spectroscopyof membrane nanotubes. Biochim Biophys Acta,2007.1768(9): p.2026-9.
    [170] Quist, A., L. Doudevski, H. Lin, et al., Amyloid ion channels: A common structural linkfor protein-misfolding disease. Proc Natl Acad Sci U S A,2005.102(30): p.10427-10432.
    [171] Harper, J.D., C.M. Lieber, and P.T. Lansbury, Atomic force microscopic imaging ofseeded fibril formation and fibril branching by the alzheimer's disease amyloid-betaprotein. Chem. Biol.,1997.4(12): p.951-959.
    [172] Conway, K.A., S.J. Lee, J.C. Rochet, et al., Acceleration of oligomerization, notfibrillization, is a shared property of both alpha-synuclein mutations linked toearly-onset parkinson's disease: Implications for pathogenesis and therapy. Proc NatlAcad Sci U S A,2000.97(2): p.571-576.
    [173] Smith, J.F., T.P.J. Knowles, C.M. Dobson, et al., Characterization of the nanoscaleproperties of individual amyloid fibrils. Proc Natl Acad Sci U S A,2006.103(43): p.15806-15811.
    [174] Dong, M. and O. Sahin, A nanomechanical interface to rapid single-moleculeinteractions. Nat Commun,2011.2: p.247.
    [175] Dong, M.D., S. Husale, and O. Sahin, Determination of protein structural flexibility bymicrosecond force spectroscopy. Nat Nanotechnol,2009.4(8): p.514-517.
    [176] Matsuno, H., A. Yokoyama, F. Watari, et al., Biocompatibility and osteogenesis ofrefractory metal implants, titanium, hafnium, niobium, tantalum and rhenium.Biomaterials,2001.22(11): p.1253-62.
    [177] Rechendorff, K., M.B. Hovgaard, M. Foss, et al., Enhancement of protein adsorptioninduced by surface roughness. Langmuir,2006.22(26): p.10885-8.
    [178] Dong, M., S. Husale, and O. Sahin, Determination of protein structural flexibility bymicrosecond force spectroscopy. Nat Nanotechnol,2009.4(8): p.514-7.
    [179] Dong, M. and O. Sahin, A nanomechanical interface to rapid single-moleculeinteractions. Nat Commun,2011.2: p.247.
    [180] Goldsbury, C., J. Kistler, U. Aebi, et al., Watching amyloid fibrils grow by time-lapseatomic force microscopy. J Mol Biol,1999.285(1): p.33-39.
    [181] Green, J.D., C. Goldsbury, J. Kistler, et al., Human amylin oligomer growth and fibrilelongation define two distinct phases in amyloid formation. J Biol Chem,2004.279(13):p.12206-12212.
    [182] Khemtémourian, L., E. Doménech, J.P.F. Doux, et al., Low ph acts as inhibitor ofmembrane damage induced by human islet amyloid polypeptide. J Am Chem Soc,2011.133(39): p.15598-15604.
    [183] Cao, P. and D.P. Raleigh, Ester to amide switch peptides provide a simple method forpreparing monomeric islet amyloid polypeptide under physiologically relevantconditions and facilitate investigations of amyloid formation. J Am Chem Soc,2010.132(12): p.4052-4053.
    [184] Dzwolak, W., S. Grudzielanek, V. Smirnovas, et al., Ethanol-perturbed amyloidogenicself-assembly of insulin: Looking for origins of amyloid strains. Biochemistry (Mosc),2005.44(25): p.8948-58.
    [185] Jansen, R., S. Grudzielanek, W. Dzwolak, et al., High pressure promotes circularlyshaped insulin amyloid. J Mol Biol,2004.338(2): p.203-6.
    [186] Pountney, D.L., N.H. Voelcker, and W.P. Gai, Annular alpha-synuclein oligomers arepotentially toxic agents in alpha-synucleinopathy. Hypothesis. Neurotox Res,2005.7(1-2): p.59-67.
    [187] Lowe, R., D.L. Pountney, P.H. Jensen, et al., Calcium(ii) selectively inducesalpha-synuclein annular oligomers via interaction with the c-terminal domain. ProteinSci,2004.13(12): p.3245-52.
    [188] Hagn, F., L. Eisoldt, J.G. Hardy, et al., A conserved spider silk domain acts as amolecular switch that controls fibre assembly. Nature,2010.465(7295): p.239-U131.
    [189] Khemtemourian, L., M.F. Engel, R.M. Liskamp, et al., The n-terminal fragment ofhuman islet amyloid polypeptide is non-fibrillogenic in the presence of membranes anddoes not cause leakage of bilayers of physiologically relevant lipid composition.Biochim Biophys Acta,2010.1798(9): p.1805-11.
    [190] Askarieh, G., M. Hedhammar, K. Nordling, et al., Self-assembly of spider silk proteinsis controlled by a ph-sensitive relay. Nature,2010.465(7295): p.236-U125.
    [191] Bitan, G., M.D. Kirkitadze, A. Lomakin, et al., Amyloid β-protein (aβ) assembly: Aβ40and aβ42oligomerize through distinct pathways. Proc Natl Acad Sci U S A,2003.100(1): p.330-5.
    [192] Yan, Y.L. and C.Y. Wang, Aβ42is more rigid than aβ40at the c terminus: Implicationsfor aβ aggregation and toxicity. J Mol Biol,2006.364(5): p.853-862.
    [193] Pozo Ramajo, A., S.A. Petty, A. Starzyk, et al., The alpha-helix folds more rapidly at thec-terminus than at the n-terminus. J Am Chem Soc,2005.127(40): p.13784-5.
    [194] Shen, L., H.F. Ji, and H.Y. Zhang, Why is the c-terminus of aβ(142) more unfoldedthan that of aβ(140)? Clues from hydrophobic interaction. J Phys Chem B,2008.112(10): p.3164-3167.
    [195] Wolfe, L.S., M.F. Calabrese, A. Nath, et al., Protein-induced photophysical changes tothe amyloid indicator dye thioflavin t. Proc Natl Acad Sci U S A,2010.107(39): p.16863-8.
    [196] Fancy, D.A. and T. Kodadek, Chemistry for the analysis of protein-protein interactions:Rapid and efficient cross-linking triggered by long wavelength light. Proc Natl Acad SciU S A,1999.96(11): p.6020-4.
    [197] Bjerrum, M.J., D.R. Casimiro, I.J. Chang, et al., Electron transfer in ruthenium-modifiedproteins. J Bioenerg Biomembr,1995.27(3): p.295-302.
    [198] Bitan, G., A. Lomakin, and D.B. Teplow, Amyloid beta-protein oligomerization:Prenucleation interactions revealed by photo-induced cross-linking of unmodifiedproteins. J Biol Chem,2001.276(37): p.35176-84.
    [199] Patil, S.M., S. Xu, S.R. Sheftic, et al., Dynamic α-helix structure of micelle-boundhuman amylin. J Biol Chem,2009.284(18): p.11982-11991.
    [200] Berendsen, H., Gromacs: A message-passing parallel molecular dynamicsimplementation. Comput Phys Commun,1995.91(1-3): p.43-56.
    [201] Lindahl, E., B. Hess, and D. van der Spoel, Gromacs3.0: A package for molecularsimulation and trajectory analysis. J Mol Mod,2001.7(8): p.306-317.
    [202] Luca, S., W.M. Yau, R. Leapman, et al., Peptide conformation and supramolecularorganization in amylin fibrils: Constraints from solid-state nmr. Biochemistry,2007.46(47): p.13505-22.
    [203] Yu, Y.P., P. Lei, J. Hu, et al., Copper-induced cytotoxicity: Reactive oxygen species orislet amyloid polypeptide oligomer formation. Chem Comm,2010.46(37): p.6909-11.
    [204] Mishra, R., B. Bulic, D. Sellin, et al., Small-molecule inhibitors of islet amyloidpolypeptide fibril formation. Angew Chem Int Ed,2008.47(25): p.4679-4682.
    [205] Lorenzo, A., B. Razzaboni, G.C. Weir, et al., Pancreatic-islet cell toxicity of amylinassociated with type-2diabetes-mellitus. Nature,1994.368(6473): p.756-760.
    [206] Clark, A. and M.R. Nilsson, Islet amyloid: A complication of islet dysfunction or anaetiological factor in type2diabetes? Diabetologia,2004.47(2): p.157-169.
    [207] Zhang, S.P., J.X. Liu, M. Dragunow, et al., Fibrillogenic amylin evokes islet beta-cellapoptosis through linked activation of a caspase cascade and jnk1. J Biol Chem,2003.278(52): p.52810-52819.
    [208] Yonemoto, I.T., G.J.A. Kroon, H.J. Dyson, et al., Amylin proprotein processinggenerates progressively more amyloidogenic peptides that initially sample the helicalstate. Biochemistry,2008.47(37): p.9900-9910.
    [209] Nanga, R.P., J.R. Brender, S. Vivekanandan, et al., Structure and membrane orientationof iapp in its natively amidated form at physiological ph in a membrane environment.Biochim Biophys Acta,2011.1808(10): p.2337-42.
    [210] Hebda, J.A. and A.D. Miranker, The interplay of catalysis and toxicity by amyloidintermediates on lipid bilayers: Insights from type ii diabetes. Annual Review ofBiophysics,2009.38: p.125-152.
    [211] Abedini, A. and D.P. Raleigh, A critical assessment of the role of helical intermediatesin amyloid formation by natively unfolded proteins and polypeptides. Protein Eng DesSel: PEDS,2009.22(8): p.453-9.
    [212] Collinge, J., Prion diseases of humans and animals: Their causes and molecular basis.Annu Rev Neurosci,2001.24: p.519-50.
    [213] Aguzzi, A. and A.M. Calella, Prions: Protein aggregation and infectious diseases.Physiol Rev,2009.89(4): p.1105-52.
    [214] Salmona, M., P. Malesani, L. De Gioia, et al., Molecular determinants of thephysicochemical properties of a critical prion protein region comprising residues106-126. Biochem J,1999.342(Pt1): p.207-14.
    [215] Thellung, S., T. Florio, V. Villa, et al., Apoptotic cell death and impairment of l-typevoltage-sensitive calcium channel activity in rat cerebellar granule cells treated with theprion protein fragment106-126. Neurobiol Dis,2000.7(4): p.299-309.
    [216] De Gioia, L., C. Selvaggini, E. Ghibaudi, et al., Conformational polymorphism of theamyloidogenic and neurotoxic peptide homologous to residues106-126of the prionprotein. J Biol Chem,1994.269(11): p.7859-62.
    [217] Jobling, M.F., L.R. Stewart, A.R. White, et al., The hydrophobic core sequencemodulates the neurotoxic and secondary structure properties of the prion peptide106-126.J Neurochem,1999.73(4): p.1557-65.
    [218] Dupiereux, I., W. Zorzi, L. Lins, et al., Interaction of the106-126prion peptide withlipid membranes and potential implication for neurotoxicity. Biochem Biophys ResCommun,2005.331(4): p.894-901.
    [219] Dupiereux, I., W. Zorzi, W. Rachidi, et al., Study on the toxic mechanism of prionprotein peptide106-126in neuronal and non neuronal cells. J Neurosci Res,2006.84(3):p.637-46.
    [220] Miura, T., M. Yoda, N. Takaku, et al., Clustered negative charges on the lipid membranesurface induce beta-sheet formation of prion protein fragment106-126. Biochemistry,2007.46(41): p.11589-97.
    [221] Kourie, J.I. and A. Culverson, Prion peptide fragment prp[106-126] forms distinct cationchannel types. J Neurosci Res,2000.62(1): p.120-33.
    [222] O'Donovan, C.N., D. Tobin, and T.G. Cotter, Prion protein fragment prp-(106-126)induces apoptosis via mitochondrial disruption in human neuronal sh-sy5y cells. J BiolChem,2001.276(47): p.43516-23.
    [223] Walsh, P., P. Neudecker, and S. Sharpe, Structural properties and dynamic behavior ofnonfibrillar oligomers formed by prp(106-126). J Am Chem Soc,2010.132(22): p.7684-95.
    [224] Greenwald, J. and R. Riek, Biology of amyloid: Structure, function, and regulation.Structure,2010.18(10): p.1244-60.
    [225] Wickner, R.B., F. Shewmaker, H. Edskes, et al., Prion amyloid structure explainstemplating: How proteins can be genes. FEMS yeast research,2010.10(8): p.980-91.
    [226] Bush, A.I. and R.E. Tanzi, Therapeutics for alzheimer's disease based on the metalhypothesis. Neurotherapeutics,2008.5(3): p.421-432.
    [227] Wells, M.A., G.S. Jackson, S. Jones, et al., A reassessment of copper(ii) binding in thefull-length prion protein. Biochem J,2006.399(3): p.435-44.
    [228] Kim, B.E., T. Nevitt, and D.J. Thiele, Mechanisms for copper acquisition, distributionand regulation. Nat Chem Biol,2008.4(3): p.176-185.
    [229] Meloni, G., V. Sonois, T. Delaine, et al., Metal swap between zn-7-metallothionein-3and amyloid-beta-cu protects against amyloid-beta toxicity. Nat Chem Biol,2008.4(6):p.366-372.
    [230] Gaggelli, E., H. Kozlowski, D. Valensin, et al., Copper homeostasis andneurodegenerative disorders (alzheimer's, prion, and parkinson's diseases andamyotrophic lateral sclerosis). Chem Rev,2006.106(6): p.1995-2044.
    [231] Yu, W.H., W.J. Lukiw, C. Bergeron, et al., Metallothionein iii is reduced in alzheimer'sdisease. Brain Res,2001.894(1): p.37-45.
    [232] Uchida, Y., F. Gomi, T. Masumizu, et al., Growth inhibitory factor prevents neuriteextension and the death of cortical neurons caused by high oxygen exposure throughhydroxyl radical scavenging. J Biol Chem,2002.277(35): p.32353-32359.
    [233] Rodriguez-Rodriguez, C., N.S. de Groot, A. Rimola, et al., Design, selection, andcharacterization of thioflavin-based intercalation compounds with metal chelatingproperties for application in alzheimer's disease. J Am Chem Soc,2009.131(4): p.1436-1451.
    [234] Schugar, H., D.E. Green, M.L. Bowen, et al., Combating alzheimer's disease withmultifunctional molecules designed for metal passivation. Angew Chem Int Ed,2007.46(10): p.1716-1718.
    [235] Wu, W.H., P. Lei, Q. Liu, et al., Sequestration of copper from β-amyloid promotesselective lysis by cyclen-hybrid cleavage agents. J Biol Chem,2008.283(46): p.31657-31664.
    [236] Hu, J., Y.P. Yu, W. Cui, et al., Cyclen-hybrid compound captures copper to protect ins-1cells from islet amyloid polypeptide cytotoxicity by inhibiting and lysing effects. ChemComm,2010.46(42): p.8023-5.
    [237] Linder, M. and M. Hazegh-Azam, Copper biochemistry and molecular biology. Am JClin Nutr,1996.63(5): p.797S-811S.
    [238] Leuma Yona, R., S. Mazeres, P. Faller, et al., Thioflavin derivatives as markers foramyloid-beta fibrils: Insights into structural features important for high-affinity binding.ChemMedChem,2008.3(1): p.63-6.
    [239] Mao, Z.Z., Z.Y. Wang, X.M. Song, et al., One-pot synthesis of benzimidazoles fromo-nitroaniline. Chin J Org Chem,2009.29(6): p.985-988.
    [240] Zhu, H., H.W. Z., and J.Q. Pu, Synthesis of benzimidazoles from o-nitroanilines in aone-step reductive cyclization process. J Shanhai Univ,2007.13(1): p.76-81.
    [241] Wu, C.L., F.J. Bai, D.X. Lv, et al., Synthesis and characterization ofbenzimidazolitan-imsed ion-ic liquids. Huaxue Shiji,2009.31(11): p.875-878.
    [242] Opazo, C., X.D. Huang, R.A. Cherny, et al., Metalloenzyme-like activity of alzheimer'sdisease beta-amyloid-cu-dependent catalytic conversion of dopamine, cholesterol, andbiological reducing agents to neurotoxic h2o2. J Biol Chem,2002.277(43): p.40302-40308.
    [243] Smith, D.P., D.G. Smith, C.C. Curtain, et al., Copper-mediated amyloid-beta toxicity isassociated with an intermolecular histidine bridge. J Biol Chem,2006.281(22): p.15145-15154.
    [244] Huang, X.D., M.P. Cuajungco, C.S. Atwood, et al., Cu(ii) potentiation of alzheimer aβneurotoxicity-correlation with cell-free hydrogen peroxide production and metalreduction. J Biol Chem,1999.274(52): p.37111-37116.
    [245] da Silva, G.F.Z. and L.J. Ming, Metallo-ros in alzheimer's disease: Oxidation ofneurotransmitters by cu-ii-beta-amyloid and neuropathology of the disease. AngewChem Int Ed,2007.46(18): p.3337-3341.
    [246] Fang, C.L., W.H. Wu, Q. Liu, et al., Dual functions of β-amyloid oligomer and fibril incu(ii)-induced h2o2production. Regul Pept,2010.163(1-3,9): p.1-6.
    [247] Butterfield, D.A., J. Drake, C. Pocernich, et al., Evidence of oxidative damage inalzheimer's disease brain: Central role for amyloid beta-peptide. Trends Mol Med,2001.7(12): p.548-554.
    [248] Uchida, Y., K. Takio, K. Titani, et al., The growth inhibitory factor that is deficient inthe alzheimers-disease brain is a68-amino acid metallothionein-like protein. Neuron,1991.7(2): p.337-347.
    [249] Hindo, S.S., A.M. Mancino, J.J. Braymer, et al., Small molecule modulators ofcopper-induced aβ aggregation. J Am Chem Soc,2009.131(46): p.16663-16665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700