用户名: 密码: 验证码:
动物源性食品中克百威与蝇毒磷的辐照降解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了一种新型的动物源性食品中农药多残留检测的前处理方法,选择乙腈作为提取溶剂,采用加速溶剂萃取,凝胶渗透色谱净化,是一种自动化程度高、溶剂用量少、简单可靠的前处理方法,适用于样品的批量处理。由此建立了动物源性食品中有机氯、有机磷、氨基甲酸酯和拟除虫菊酯等109种农药(含同分异构体)残留量的气相色谱-质谱联用(GC-MS)检测方法,每种农药选择一个定量离子和两个定性离子,采用选择离子监测(SIM)模式,d0o-毒死蜱作为内标,内标法定量。该方法的重现性较好,方法灵敏度高,最低检测低限(LOD)为0.1μg·kg-1,最大LOD为32.3μg·kg11;最低定量检测低限(LOQ)为0.3μg·kg-1,最大LOQ为108μg·kg-1。以添加浓度分别为0.05、0.1和0.2 mg·kg-1的牛肉样品来验证方法的回收率和精密度,结果表明,添加回收率为64.3±1.7-97.4±9.5%,相对标准偏差不超过21.1%(n=6),在0.05~1.5μg·mL-1浓度范围内,标准曲线的线性相关性较好(r≥0.99)。
     此外,还建立了动物源性食品中55种有机磷和氨基甲酸酯类农药的分析方法,基于超高效液相色谱-串联质谱(UPLC-MS/MS)特有优势,采用多反应离子监测模式(MRM),双离子对检测(一组定量离子对,一组定性离子对),外标法定量。具有检测速度高效、准确、灵敏度高的特点,仅需10min即可完成对55种有机磷与氨基甲酸酯类农药的检测,相对GC-MS方法而言,该方法对于动物源性食品中农药多残留的检测,灵敏度有了数量级的提高,方法最低LOD为0.006μg·kg-1,最大LOD为0.087μg·kg-1;方法最低LOQ为0.019μg·kg-1,最大LOQ为0.286μg·kg-1。以添加浓度分别为0.05、0.1和0.2mg·kg-1的牛肉样品来验证方法的回收率和精密度,结果表明,添加回收率为62.36±5.39-102.79±8.34%,相对标准偏差不超过12.76%(n=6),在0.01~0.1μg·mL-1浓度范围内,标准曲线的线性相关性较好(r≥0.90)。
     两种检测方法都具有检测效率高,操作简便,杂质干扰少,测定结果准确可靠,灵敏度高等特点,适合高通量样品的快速检测,检测低限均低于欧盟(EU)、日本肯定列表、WHO/FAO、国际食品法典委员会(CAC)等国际组织制定的动物源性食品中农药残留的限量标准,能够满足国际标准和国家标准GB 2763-2005等法规对动物源性食品中农药残留量最大残留限量(MRLs)与检测要求。
     利用建立的动物源性食品中农药多残留快速检测与筛选方法检测市售的牛肉、猪肉、鱼肉和鸡肉样品,结果发现50个样品中16%的样品含有农药残留。6个样品检测到p,p’-滴滴依的含量从0.022~0.103 mg·kg-1,1个鱼肉样品中发现含有γ-六六六、克百威、α-硫丹和β-硫丹。p,p’-滴滴依和γ-六六六是样品中最普遍存在的残留农药。此外,在牛肉和猪肉中还检测到毒死蜱和蝇毒磷。表明本文所建立的农药多残留检测方法能够同时检测动物源性食品中有机氯(α-硫丹,β-硫丹,p,p’-滴滴依,γ-六六六)、有机磷(毒死蜱,蝇毒磷)和氨基甲酸酯(克百威)等多类农药,说明该方法适用于动物源性食品中农药多残留的检测。
     基于以上结果,选取克百威和蝇毒磷,研究它们在水溶液和动物源性食品中的辐照降解(简称辐解)。通过以14C苯环标记的克百威和蝇毒磷为示踪剂,综合运用放射性同位素示踪技术以及LSC和LC-MS/MS等现代仪器分析技术,系统研究了克百威和蝇毒磷分别在水溶液和动物源性食品中的辐解动态,并对可能的辐解产物进行了鉴定,对降解机理进行了解析。
     研究结果表明:农药的降解率随着辐照剂量的增大而增加。对于不同浓度的相同农药,要达到相同的降解率,高浓度农药需要的辐照剂量往往高于低浓度农药所需的辐照剂量。原因可能是水溶液中农药的辐解大多表现为间接作用,主要依靠辐照水分子产生的自由基OH、H和eaq-与农药基团的断裂反应,生成小分子物质,辐照剂量一定时,溶液中产生的活性离子数目基本上相同,与溶质分子反应是一个常数,溶液的浓度越高,则溶质分子增大,其降解率也就降低。
     不同农药在水溶液中辐解情况也有差异,克百威在水溶液的辐解过程中,H起最主要作用,OH次之,eaq-起的作用最小,它们对克百威的降解速率常数的比率为k.H:k.OH:keaq-=25:7:6,H、OH、和eaq-的量子效率为η·H:η·OH:η1eaq-=12.7:1:2.6。然而,蝇毒磷水溶液的辐解过程中,eaq-起最主要作用,OH次之,H起的作用再次之,它们对蝇毒磷的降解速率常数的比率为keaq.:k·OH:k·H=3:2.8:1,量子效率为ηeaq-:η·OH:η·H=2.4:1:2.2。
     鱼肉中初始浓度为1mg·kg-1的克百威在6。Co-γ射线下辐解的半衰减剂量(D50)为72.95kGy,而相同浓度的克百威在水溶液中的D50则为6.73kGy。牛肉中初始浓度1mg·kg-1的蝇毒磷在60Co-γ射线下辐解的D50为29.74kGy,而相同浓度的蝇毒磷在水溶液中的D50仅为0.73kGy。同样辐照剂量下,对农药在动物源性食品和水溶液的辐解率进行比较,表明动物源性食品中农药的辐解率远低于水溶液中辐解率,要产生相同的辐解,动物源性食品中的辐照剂量显著高于水溶液中的剂量;辐解的产物也有差异,水溶液中农药辐解产物种类往往多于动物源性食品中农药的辐解产物。这可能由于农药周围介质存在显著差异而造成的两者辐解作用方式不同。
     水溶液中克百威的辐解产物主要是:2,3-二氢-2,2二甲基-3-羟基-7-苯并呋喃基-N-羟甲基氨基甲酸酯、2,3-二氢-2,2-二甲基-3-羰基-7-苯并呋喃基-N-羟甲基氨基甲酸酯、2,3-二氢-2,2二甲基-3-羟基-7-苯并呋喃基-N-醛基氨基甲酸酯、3-羟基-呋喃丹(或2,3-二氢-2,2-二甲基-3-羟基-7-苯并呋喃基-N-甲基氨基甲酸酯)、3-酮基-呋喃丹(或2,3-二氢-2,2-二甲基-3-羰基-7-苯并呋喃基-N-甲基氨基甲酸酯)、3-酮基-呋喃酚(或2,3-二氢-2,2-二甲基-3-羰基-7-苯并呋喃酚)、呋喃酚(或2,3-二氢-2,2-二甲基-7-苯并呋喃酚)和苯并呋喃;而鱼肉中克百威的辐解产物主要是:3-羟基-呋喃丹、2,3-二氢-2,2-二甲基-3-羰基-7-苯并呋喃基-N-羟甲基氨基甲酸酯、2,3-二氢-2,2二甲基-3-羟基-7-苯并呋喃基-N-醛基氨基甲酸酯和3-酮基-呋喃丹。克百威在鱼肉中的主要辐解产物均在水溶液的辐解中产生,但是2,3-二氢-2,2-二甲基-3-羰基-7-苯并呋喃基-N-羟甲基氨基甲酸酯、3-酮基-呋喃酚、呋喃酚和苯并呋喃只在水溶液中辐解产生。
     水溶液中蝇毒磷辐解产物主要是:O,O-二乙基-O-(3-氯-4-甲基香豆素-7)磷酸酯、O,O-二乙基-O-(4-甲基香豆素-7)磷酸酯、O-乙基-O-羟基-O-(3-氯-4-甲基香豆素-7)硫逐磷酸酯、O,O-二乙基-O-(3-氯-4-甲基香豆酸-7)磷酸酯和O,O-二乙基-O-(3-氯-4-甲基香豆酸-7)硫逐磷酸酯。而牛肉中蝇毒磷辐解产物主要是:O,O-二乙基-O-(3-氯-4-甲基香豆酸-7)硫逐磷酸酯、O,O-二乙基-O-(3-氯-4-甲基香豆素-7)磷酸酯和O-乙基-O-羟基-O-(3-氯-4-甲基香豆素-7)硫逐磷酸酯。O,O-二乙基-O-(3-氯-4-甲基香豆酸-7)磷酸酯和O,O-二乙基-O-(4-甲基香豆素-7)磷酸酯是蝇毒磷在水溶液中的辐解产物,不在牛肉中辐解产生;而蝇毒磷在牛肉中的辐解产物均在水溶液的辐解中产生。
     可见,动物源性食品中农药残留的辐解情况比较复杂。为了降低食品中农、兽药残留对人类的危害,首先应该加强源头控制,降低食品的污染:同时需要对辐解过程、降解产物和产物毒理进一步研究,以促进辐解技术在食品安全应用中的发展。
A novel multi-pesticide residues sample preparation method for the foods of animal origin was developed. Acetonitrile was selected for accelerated solvent extraction (ASE) for effectively extracting the pesticides from the fatty samples. The cleanup was performed with an automated gel permeation chromatography (GPC) cleanup system. It is a simple and reliable pre-treatment method for batch processing of samples with a high degree of automation and less solvent.
     A new analytical method was developed to simultaneously determine the residues of 109 pesticides (including isomers) in the foods of animal origin, included organochlorines, organophosphates, carbamates and pyrethroids. The prepared samples were analyzed with GC-MS in the selected ion monitoring (SIM) mode using one target and two qualitative ions for each analyte. Chlorpyrifos-d10 was used as an internal standard. The lowest limit of detection (LOD) was 0.1μg·kg-1, the largest LOD was 32.3μg·kg-1. The lowest limit of quantification (LOQ) was 0.3μg·kg-1, the largest LOQ was 108μg·kg-1. The recoveries and relative standard deviations (RSDs) were checked by spiking untreated samples with pesticides at 0.05,0.1 and 0.2 mg·kg-1. The average recoveries of most pesticides were from 64.3±1.7 to 97.4±9.5%. The precision values expressed as RSDs were all≤21.1% (n=6). Good linearity (r≥0.99) was observed between 0.05 and 1.5μg·mL-1.
     Another analytical method was developed to simultaneously determine residues of 55 organophosphate and carbamate pesticides in the foods of animal origin. The prepared samples were analyzed within 10 min with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in the multiple reaction monitoring (MRM) mode using a set of quantitative ions pair and a set of qualitative ions pair for each analyte. The lowest LOD was 0.006μg·kg-1, the largest LOD was 32.3μg·kg-1. The lowest LOQ was 0.019μg·kg-1, the largest LOQ was 0.286μg·kg-1. The recoveries and RSDs were checked by spiking untreated samples with pesticides at 0.05,0.1 and 0.2 mg·kg-1. The average recoveries of most pesticides were from 62.36±5.39 to 102.79±8.34%. The precision values expressed as RSDs were all≤12.76% (n =6). Good linearity (r≥0.90) was observed between 0.01 and 0.1μg·mL-1.
     Both the two analysis methods were suitable for rapid detection of high-throughput samples with high efficiency and easy operation, less interference of impurities, accurate, reliable and high sensitivity. The LODs of these methods were both lower than the developed maximum residue limits (MRLs) for the pesticide residues in foods of animal origin by European Union (EU), Japan's positive list system, WHO/FAO, Codex Alimentarius Commission (CAC) and other international organizations. Therefore, these methods meet the the lowest LODs and testing requirements of the international standards and China's national standard of GB 2763-2005 and other regulations on pesticide residues in foods of animal origin.
     Samples of pork, beef, chicken and fish from local markets were prepared and analyzed using the developed sample preparation, cleanup and analysis methods. Pesticide residues were detected in 16% of the total samples (or 8 out of 50 samples). The residues were found in the pork, beef, chicken and fish samples, p, p'-DDE was detected in 6 samples at concentrations ranging from 0.022 to 0.103 mg·kg-1, whileγ-BHC, carbofuran,α-endosulfan, and (β-endosulfan were each found in one fish sample. The most common pesticide residues found were p, p'-DDE and y-BHC. Chlorpyrifos or coumaphos was found in the beef and pork samples. The diversity of pesticide classes, including organochlorine (α-endosulfan,β-endosulfan, p, p'-DDE,γ-BHC), organophosphorus (chlorpyrifos, coumaphos) and carbamate (carbofuran), showed that the proposed method was versatile and sensitive for the determination of multi-residues of pesticides in samples of animal origin.
     Based upon the results, carbofuran and coumaphos were selected as the research objects. Theγrays radiation-induced degradation of them in aqueous solvent and foods of animal origin were performed. The degradation dynamics of carbofuran and coumaphos in aqueous and foods of animal origin were systematically investigated by using the 14C labeled benzene ring of carbofuran and coumaphos as radioisotope tracer and the modern equipments, included liquid scientillation counting (LSC) and LC-MS/MS. The structures of the degradation products were derived and identified. As a result, theγrays radiation-induced degradation mechanisms of carbofuran and coumaphos in aqueous and foods of animal origin were resolved.
     The results showed that the degradation rate of pesticides in aqueous solution increased with the increase of irradiation dose. However, in order to achieve the same degradation rate for the different concentrations of the same pesticides, the higher concentration of pesticides often need higher necessary radiation dose than that required for the lower concentrations of pesticide. It was probably due to the y rays radiation-induced degradation of pesticide in aqueous solution induced in most of the performance indirect effects, mainly relying on the cleavage reaction to generate small molecules by the free radicals of'OH,·, and eaq-produced by irradiation of water molecules with the pesticide groups. When the radiation dose keeps constant, the number of active ions in the solution is essentially constant. If the concentration of the solution is increased, the solute molecules will increase, too. Consequently, the degradation rate will decrease.
     The y rays radiation-induced degradation of pesticide in aqueous solution was different from different pesticides. The contribution to carbofuran degradation by the radicals was in the order as follows, H> OH> eaq-. The rate of degradation rate constant for carbofuran was as follows, kH:k.OH:keaq-=5:7:6. The quantum efficiency ratios of H, OH and eaq- for the degradation of carbofuran were calculated as 12.7:1:2.6. However, the contribution to coumaphos degradation by the radicals was in the order as follows, eaq- >'OH>H. The rate of degradation rate constant for coumaphos was as follows, keaq.:k.OH:k.H=3:2.8:1. The quantum efficiency ratios of eaq-,OH and H for the degradation of coumaphos were calculated as 2.4:1:2.2.
     The half decay dose (D50) was 72.95 kGy for carbofuran in fish at the initial concentration of 1 mg·kg-1 by 60Co-γrays irradiation, while the D50 of the same concentration of carbofuran in aqueous solution was 6.73 kGy. The D50 was 29.74 kGy for coumaphos in beef at the initial concentration of 1 mg·kg-1 by 60Co-y rays irradiation, while the D50 of the same concentration of coumaphos in aqueous solution was 0.73 kGy.
     The degradation rate of pesticide in the foods of animal origin was far less than that in aqueous at the same irradiation dose. In order to gain the same degradation rate for the same pesticide in different media, the irradiation dose for pesticide in the foods of animal origin was significantly higher than that in aqueous solution.There are also differences in the products of radiation degradation for the same pesticide. The degradation products in aqueous were much more than those in the foods of animal origin. This may be due to the significant difference of the surrounding medium between the pesticides to cause the different degradation mode.
     The main products of radiation degradation for carbofuran in aqueous were as follows,3-hydroxy carbofuran (or 2,3-dihydro-2,2-dimethyl-3-hydroxy-7-benzofuranyl N-hydroxymethyl carbamate),2,3-dihydro-2,2-dimethyl-3-oxo-7-benzofuranyl N-hydroxymethyl carbamate,2,3-dihydro-2,2-dimethyl-3-hydroxy-7-benzofuranyl N-al carbamate,3-hydroxy carbofuran (or 2,3-dihydro-2,2-dimethyl-3-hrdroxy-7- benzofuranyl N-methylcarbamate),3-keto-carbofuran (or 2,3-dihydro-2,2-dimethyl-3-oxo-7-benzofuranyl N-methylcarbamate),3-keto-7-phenol (or 2,3-dihydro-2,2-dimethyl-3-oxo-7-benzofuranol), carbofuran-7-phenol (or 2,3-dihydro-2,2-dimethyl-7-benzofuranol) and 2,3-dihydro-benzofuran. Meanwhile, the main products of radiation degradation for carbofuran in fish were as follows,3-hydroxy carbofuran, 2,3-dihydro-2,2-dimethyl-3-oxo-7-benzofuranyl N-hydroxymethyl carbamate, 2,3-dihydro-2,2-dimethyl-3-hydroxy-7-benzofuranyl N-al carbamate and 3-keto-carbofuran. The main products of radiation degradation for carbofuran in fish were also generated in the aqueous solution. However,2,3-dihydro-2,2-Dimethyl-3-hydroxy-7-benzofuranyl N-hydroxymethyl carbamate, and 3-keto-7-phenol, carbofuran-7-phenol and 2,3-dihydro-benzofuran were only produced in the aqueous solution.
     The main products of radiation degradation for coumaphos in aqueous were as follows,O,O-diethyl-O-(3-chloro-4-methyl-7-hydroxy-coumarin) phosphate,O, O-diethyl-O-(4-methyl-7-hydroxy-coumarin) phosphate, O-ethyl-O-hydroxyl-(3-chloro-4-methyl-7-hydroxy-coumarin) phosphorothioate, O, O-diethyl-O-(3-chloro-4-methyl coumarate-7) phosphate and O, O-diethyl-O-(3-chloro-4-methyl coumarate-7) phosphorothioate. Meanwhile, the main products of radiation degradation for coumaphos in beef were as follows, O, O-diethyl-O-(3-chloro-4-methyl coumarate-7) phosphorothioate,0,0-diethyl-O-(3-chloro-4-methyl-7-hydroxy-coumarin) phosphate and O-ethyl-O-hydroxyl-(3-chloro-4-methyl-7-hydroxy-coumarin) phosphorothioate. However,O, O-diethyl-O-(3-chloro-4-methyl coumarate -7) phosphate and O, O-diethyl-O-(4-methyl-7-hydroxy-coumarin) phosphate were only produced in the aqueous solution rather than in beef byγirridiation. All the products of y rays rays radiation-induced degradation of coumaphos in beef were produced in the aqueous solution, too.
     The result shows that theγrays radiation-induced degradations of pesticide residues in foods of animal origin may be much more complex. In order to reduce the harmful to humans from the residues of pesticide and veterinary drug, source control should be strengthened to reduce harmful contamination of food at first. At the same time, in order to promote the application of theγrays radiation-induced degradations in food safety, the radiation degradation process, degradation products and their toxicology should be further studied.
引文
Abdullah F., Comparison of efficiency of an advanced oxidation process for degrading major classes of dyes, M.Sc. Thesis, UAE University,2007
    Adeleke O., Zhou R.M., Zu J.H., et al. Degradation of chlorophenols in aqueous solution by electron beam irradiation. Journal of Radiation Research and Radiation Processing,22 (2004) 339-343
    Ahmed, F. E. Analyses of pesticides and their metabolites in foods and drinks.Trends in Analytical Chemistry,20 (2001) 649-661
    Ali M.S. Determination of N-methylcarbamate pesticides in liver by liquid chromatography.J AOAC Int.,72 (1989) 586-592
    Ali M.S., White J.D., Bakowski R.S. et al. Extension of a liquid chromatographic method for N-methylcarbamate pesticides in cattle, swine, and poultry live. J AOAC Int.,76 (1993) 907-910
    Anastassiades, M., Lehotay, S. J., Stajnbaher, D., & Schenck, F. J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. J. of AOAC Int.,86 (2003) 412-431
    Anders O. O., Samud E. B., Johnny V.N. A liquid chromatography-tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphOrus pesticides, synthetic pyrethoids, selected herbicides, and DEET in human urine. Analytical Chemistry,2004,76:2453-2461
    Anna B.C., Angelika G., Magdalena B., et al. Decomposition of pesticide chlorfenvinphos by gamma irradiation. Radiation Chemistry and Physics,62 (2007) 48-51
    Anna B.C., Przemyslaw D., Czeslaw K., et al. Radiolytic degradation of herbicide 4-chloro-2-methyl phenoxyacetic acid(MCPA) by y-radiation for environmental protection. Ecotoxicology and Environmental Safety,65 (2006) 265-277
    Anna B.C., Przemyslaw D., Zbigniew Z., et al. Radiolytic degradation of pesticide 4-chloro-2-methylphenoxyacetic acid (MCPA)-Experimental data and kinetic modeling. Radiation Physics and Chemistry,76 (2007) 1806-1814
    Anna B.C., Przemyslaw D., Zbigniew Z.. Radiolytic degradation of pesticide 4-chloro-2- methylphenoxyacetic acid (MCPA)-Experimental data and kinetic modeling. Radiation Physics and Chemistry,76 (2007) 1806-1814.
    Antonio F.M.V., Romero M.P.B. C., Luana C.B.B. C., et al. Gamma irradiation as an alternative treatment to abolish allergenicity of lectins in food. Food Chemistry,124 (2011)1289-1295
    Arunachalam K.D., Lakshmanan M.. Decomposition of 14C-labelled carbofuran in a black tropical soil under laboratory conditions. Soil Biology and Biochemistry,22 (1990)407-412
    Bachman S., Gieszczynska J. Effect of gamma irradiation on pesticide residues. Agrochem.:Fate Food Environ., Proc. Int. Symp. IAEA and FAO, Rome, June 7-11,1982
    Bagyo A.N.M., Andayani W., Winarno H., et al. Radiolysis of reactive azo dyes in aqueous solution, Int. J. Env. Consc. Design Manufac,12(2004) 45-51.
    Bao H. Y., Gao J., Liu Y.X., et al.A study of biodegradation/γ-irradiation on the degradation of p-chloronitrobenzene. Radiation Physics and Chemistry,78 (2009) 1137-1139
    Basfar A.A., Mohamed K.A., Al-Abduly A.J., et al. Degradation of diazinon contaminated waters by ionizing radiation. Radiation Physics and Chemistry,76 (2007) 1474-1479
    Basfar A.A., Mohamed K.A., Al-Abduly A.J.,et al. Radiolytic degradation of atrazine aqueous solution containing humic substances. Ecotoxicology and Environmental Safety,72 (2009) 948-953
    Bertrand N. D., Barcelo D. Photodegradation of the carbamate pesticides aldicarb, carbaryl and carbofuran in water.Analytica Chimica Acta,254 (1991) 235-244
    Bhattacharya A., Raha P., Das A. K., Adityachaudhury N. Studies on the photodegradation of carbofuran. Chemosphere,29 (1994) 155-162 Bucholtz D.L., Lavy T.L. Effects of 60Co radiation on herbicides in aqueous solution. Weed Sci.,25 (1977) 200-202
    Buser H.R. Determination of methylthio-substituted polychlorinated aromatic compounds using gas chromatography mass spectrometry. Anal. Chem.,57 (1985) 2801-2806
    Butt S. B., Qureshi R.N. Gamma radiolytic degradation of fluoranthene and monitoring of radiolytic products using GC-MS and HPLC. Radiation Physics and Chemistry,77 (2008)768-774
    Campos S. X., Vieira E. M., Cordeiro P. J.M., et al. Degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid. Radiation Physics and Chemistry, 68 (2003) 781-786
    Cappadona C., Guarino P., Calderaro E., et al. Possible use of high-level radiation for the degradation of some substances present in urban and industrial waters. Radiat. Clean Environ.,Proc. Int. Symp.1975,265-284
    Carp. A.E., Liska B J., Ziemer P.L. Decompositionof aldrin by gamma radiation Ⅰ. In organic solvents. Bull. Environ. Contam. Toxicol.,7 (1972) 321-330
    Carp. A.E., Liska B.J., Ziemer P.L. Decompositionof aldrin by gamma radiation Ⅱ. In organic solvents. Bull. Environ. Contam. Toxicol.,7 (1972) 331-337
    Ceurvels A.R., Der H.J.J., Kaylor J. Ionizing radiation-induced changes in chlorinated hydrocarbons. Mar. Pollut. Bull.,5 (1974) 143-144
    Chitose N., Ueta S., Seino S., Yamamoto T. A. Radiolysis of aqueous phenol solutions with nanoparticles.l. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, γ-ray and electron beams. Chemosphere,50 (2003) 1007-1013
    Choi D. Y., Lee O. M., Yu S. H., et al.Gamma radiolysis of alachlor aqueous solutions in the presence of hydrogen peroxide. Journal of Hazardous Materials,184 (2010) 308-312
    Cichy R.F., Zabick M.E., Weaver C.M. Polychlorinated biphenyl reduction in lake Trout by irradiation and broiling. Bull. Environ. Contam. Toxicol.22 (1979) 807-812
    Conaway J.E. New trends in analytical technology and methods for pesticide residue Analysis. J. ASSOC. OFF ANAL. CHEM.74 (1991) 715-717
    Corta E., Bakkali A., Barranco A., et al. Study of the degradation products of bromopropylate, chlordimeform, coumaphos, cymiazole, flumethrin and tau-fluvalinate in aqueous media. Talanta,52 (2000) 169-180
    Drzwicz P., Trojaniwicz M., Zona R., et al. Decomposition of 2,4-dichlorophenoxyacetic acid by ozonation, ionizing radiation as well as ozonation combined with ionizing radiation. Radiation Physics and Chemistry,69 (2004) 281-287
    Duarte C.L., Mori M.N., Kodama Y., et al. Decontamination of pesticide packing using ionizing radiation.Radiation Physics and Chemistry,76 (2007) 1885-1889
    Duggan A., Charnley G, Chen W., et al. Di-alkyl phosphate biomonitoring data: assessing cumulative exposure to organophosphate pesticides. Regulatory Toxicology and Pharmacology,37 (2003) 382-395
    Elisa C, Rosella M, Giulia M., et al. Comparison between accelerated solvent extraction and traditional extraction methods for the analysis of the herbicide diflufenican in soil. Journalof Chromatography A.765 (1997) 121-125
    Fan A. M., Jackson R.J. Pesticides and food safety. Regulatory Toxicology and Pharmacology,9(1989) 158-174
    Franco C., Duran N. Metabolites of carbofuran:Effect on indole-3-acetic acid degradation.Pesticide Biochemistry and Physiology,16 (1981) 136-140
    Frenich, A. G., Vidal, J. L. M., Sicilia, A. D. C., et al. Multiresidue analysis of organochlorine and organophosphorus pesticides in muscle of chicken, pork and lamb by gas chromatography-triple quadrupole mass spectrometry.Analytica Chimica Acta, 558(2006)42-52
    Friz J. S. Analytical solid-phase extraction.Iowa state University, WileyVch,1999
    GB/T 19650-2006动物肌肉中478种农药及相关化学品残留量的测定气相色谱-质谱法
    GB/T 20772-2006动物肌肉中380种农药及相关化学品残留量的测定液相色谱-串联质谱法
    GB/T 5009.161-2003动物性食品中有机磷农药多组分残留量的测定
    GB/T 5009.162-2003动物性食品中有机氯农药和拟除虫菊酯农药多组分残留量的测定
    GB/T 5009.163-2003动物性食品中氨基甲酸酯类农药多组分残留高效液相色谱测定
    Getoff N. Factors influencing the efficiency of radiation-induced degradation of water pollutants.Radiation Physics and Chemistry,65 (2002) 437-446
    Giri S., Giri A., Sharma G.D., et al. Mutagenic effects of carbosulfan, a carbamate
    pesticide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,519 (2002)75-82
    Goodrow M.H., Harrison R.O.,Hammock B.D. Hapten Synthesis, Antibody Development, and Competitive Inhibition Enzyme Immunoassay for s-Triazine Herbicide. J. Agric. Food Chem.38 (1990) 990-996
    Grant D.L., Sherwood C.R., McCully K.A. Degradation and anticarboxylesterases activity of disulfoton and phorate after 60Co gamma irradiation. J. Assoc. off. Anal. Chem.,52(1969)805-811
    Ha J.Y., Engler C.R., Wild J. R. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresource Technology,100 (2009) 1138-1142
    Hallab A.H. Detoxification of pesticidal residues in fish and shell-fish. Diss. Abstr.,29 (1968)649
    Hamada M., Kawano E., Kawamura S., et al. Radiation and photo-induced degradation of five isomers of 1,2,3,4,5,6-hexachlorocyclohexane. Agric. Biol. Chem.,45 (1981) 659-665
    Hardison D.R., Cooper W.J., Mezyk S.P., et al. The free radical chemistry of tert-butyl formate:rate constants for hydroxyl radical, hydrated electron and hydrogen atom reaction in aqueous solution. Radiation Physics and Chemistry,65 (2002) 309-315
    Hiemstra D.K. Optimization, automation, and validation of the solid-phase extraction clean up and on-line liquid chromatographic determination of N-methylearbamate pesticides in fruits and vegetables. J AOAC Int.,75 (1992)1063-1072
    Hogsette, J. A., Koehler, P. G., Kaufman, P. E. (2006). Pesticide safety around animals.
    Hong L., Horni A., Hesse M., et al. Indentification and evaluation of radiolysis products of irradiated chloramphenicol by HPLC-MS and HPLC-DAD. Chromatographia,55 (2002) 13-18
    Hopper, M. L. Automated one-step supercritical fluid extraction and cleanup system for the analysis of pesticide residues in fatty matrices. Journal of Chromatography A,840 (1999)93-105
    Hopper, M. L. Automated gel permeation system for rapid separation of industrial chemicals and organophosphate and chlorinated pesticides from fats. Journal of Agricultural Food Chemistry,30 (1982) 1038-1041
    http://www.med.net-kochi.gr.jp/eiken/rightpage.html
    Jung F., Gee J.S., Harrison R.O., et al. Use of Immunochemical Techniques for the Analysis of Pesticides. Pesticide Science,26 (1989) 303-317
    Jung F., Meyer H.H.D., Hamm R.T. Development of a Sensitive Enzyme-Linked Immunosorbent Assay for the Fungicide Fenpropimorph. J. Agric. Food Chem.37 (1989) 1183-1187
    Kale S.P., Murthy N.B.K., Raghu K. Degradation of 14C-carbofuran in soil using a continuous flow system.Chemosphere,44(2001)893-895
    Kaneco S. Degradation of DBP in water solution.Chemical Engineering,125 (2006) 59-66
    Katsumata H., Matsuba K., Kaneco S., et al. Degradation of carbofuran in aqueous solution by Fe(Ⅲ) aquacomplexes as effective photocatalysts. Journal of photochemistry and photobiology A:Chemistry,170 (2005) 239-245
    Katsumata K., Matsuba K., Kaneco S., et al. Degradation of carbofuran in aqueous solution by Fe(Ⅲ) aquacomplexes as effective photocatalysts, Journal of Photochemistry and Photobiology A:Chemistry,170 (2005) 239-245
    Khan S.U., Behki R. Research and development on procedures to stabilize acaricides in livestock dips. IAEA, VIENNA,1996
    Kiat W. Acute deliberate organophosphate (Coumaphos) poisoning with intermediate syndrome in a 1 year old child.Toxicology Letters,172 (2007) 1-240
    Kimbrough R.D.J., Gaines T.B. Gamma irradiation of DDT: Radiation products and their toxicity. J. Agric. Food Chem.,19 (1971) 1037-1038
    Kirchner, M., Huskova, R., Matisova, E., & Mocak, J. Fast gas chromatography for pesticide residues analysis using analyte protectants. Journal of Chromatography A, 1186(2008)271-280
    Kojima Y., Fukuta T., Yamada T., et al. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions. Water Research,39 (2005) 29-36
    Kralj M. B., Trebse P., Franko M. Applications of bioanalytical techniques in evaluating advanced oxidation processes in pesticide degradation. Trends in Analytical Chemistry,26 (2007) 1020-1031
    Krapfenbauer K., Getoff N. Comparative studies of photo- and radiation-induced degradation of aqueous EDTA. Synergistic effects of oxygen, ozone and TiO2 (acronym: CoPhoRaDe/EDTA). Radiation Physics and Chemistry,55 (1999) 385-393
    Krause R.T. Liquid chromatographic determination of N-methylcarbamate insecticides and metabolites in crops.J AOAC Int.,68 (1985) 726-733
    Krause R.T.High-performance liquid chromatographic determination of aryl N-methylcarbamate residues using post-column hydrolysis electrechemical detection. J. Chromatogr.,442 (1988) 333-343
    Lane R.H., Grodner R.M., Graves J.L. Irradiation studies of Mallard duck eggs material containing Mirex. J. Agric. Food Chem.,24 (1976) 192-193
    Lawrence J.F., Lewis D.A., McLeod H.A. Detection of carbofuran and metabolites directly or as their heptafluorobutyryl derivatives using gas-liquid or high-pressure liquid chromatography with different detectors.Journal of Chromatography A,138 (1977) 143-150
    Lee T.T., Chapman R.A.Inhibition of enzymic oxidation of indole-3-acetic acid by metabolites of the insecticide carbofuran. Phytochemistry,16 (1977) 35-39
    Lepine F. L. Effects of ionizing radiation on pesticides in a food irradiation perspective: a bibliographic review. Journal of agricultural food chemistry,39(1991)2112-2118
    Lepine F., Masse R. Degradation pathways of PCB upon gamma irradiation. Environ. Health Perspect.,89 (1990) 183-187
    Lepine F., Milot S., Gagne N. Gamma irradiation induced formation of PCBs-solvent adducts in aliphatic solvents. J. Agric. Food Chem.,38 (1990) 1873-1876
    Lepine F., Masse R. Effect of gamma irradiation on a PCB mixture in organic solvent. Bull. Environ. Contain. Toxicol.,44 (1990) 549-554
    Li A.Y., Pruett J.H., Davey R.B., et al. Toxicological and biochemical characterization of coumaphos resistance in the San Roman strain of Boophilus microplus (Acari:
    Ixodidae). Pesticide Biochemistry and Physiology,81 (2005) 145-153 Lippold P.C., Cleere J.S., Massey L.M.J., et al.Degradation of insecticides by Cobalt-60 gamma radiation. J. Econ. Entomol.,62 (1969) 1509-1510
    Liu S.Y., Chen Y.P., Yu H.Q, et al. Kinetics and mechanisms of radiation-induced degradation of acetochlor. Chemosphere,59 (2005) 13-19
    Llasera M.P.G.D., Reyes-Reyes M. L. A validated matrix solid-phase dispersion method for the extraction of organophosphorus pesticides from bovine samples.Food Chemistry, 114(2009)1510-1516
    Ma Y.S., Sung C.F., Lin J.G. Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes:effect of system parameters and kinetic study. Journal of Hazardous Materials,178 (2010) 320-325
    Ma Y.S., Sung C.F., Lin J.G. Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes:Effect of system parameters and kinetic study, Journal of Hazardous Materials,178(2010)320-325
    Magnusson B.M., Walters K.A., Roberts M.S. Veterinary drug delivery:potential for skin penetration enhancement. Advanced Drug Delivery Reviews,50 (2001) 205-227 Mahalakshmi M., Arabindoo B., Palanichamy M., et al. Photocatalytic degradation of carbofuran using semiconductor oxides. Journal of Hazardous Materials,143 (2007) 240-245
    Malik J. K., Lay J. P., Klein W., et al. Does phenobarbital reduce retention of non-accumulating compounds in the rat?:Excretion and tissue distribution of (14C) coumaphos in rats upon phenobarbital treatment. Chemosphere,10 (1981) 1061-1066 Mallet V. N., Volpe Y. Degradation of coumaphos in distilled water as a function of pH. Analytica Chimica Acta,97 (1978) 415-418
    Melimet T., Rencuzogullar E. Chromosomal aberrations in cultured human lymphoeytes treated with Marshal and its effective ingredient Carbosulfan. Mutation Research/Genetic Toxicology,319 (1993) 103-111
    Merrill F.W., Mabry D.R., Schulz R.D., et al. Destruction of trace toxic compounds in water and sludge by ionizing radiation.AIChESymp. Ser.,178 (1978) 245-250
    Mohamed K.A., Basfar A.A., Al-Kahtani H.A. et al. Radiolytic degradation of malathion and lindane in aqueous solutions. Radiation Physics and Chemistry,78 (2009) 994-1000
    Mohamed K.A., Basfar A.A., Al-Shahrani A.A. Gamma-ray induced degradation of diazinon and atrazine in natural groundwaters. Journal of Hazardous Materials,166 (2009) 810-814
    Moye H.A., Scherer S.J., John P.A. Dynamic fluorogenic labeling of pesticides for high performance liquid chromatography:Detection of N-methylearbamates with O-phthalaldehyde. Analytical Letters,10 (1977) 1049-1073
    Nishioka T., Umetsu N., Fukuto T. R. Metabolism of dibutyl-14C-labeled dibutylaminosulfenyl derivative of carbofuran in the cotton plant. Pesticide Biochemistry and Physiology,16 (1981) 141-148
    Pang, G. F., Cao, Y. Z., Zhang, J. J., et al. Validation study on 660 pesticide residues in animal tissues by gel permeation chromatography cleanup/gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A,1125 (2006) 1-30
    Raha P., Das A. K. Photodegradation of carbofuran. Chemosphere,21 (1990) 99-106 Rial-Otero R., Gaspar E.M., Moura I., et al. Chromatographic-based methods for pesticide determination in honey:An overview. Talanta,71 (2007) 503-514
    Richter, B. E., Jones, B. A., Ezzell, J. L., et al. ASE:A technique for sample preparation. Analytical Chemistry,68 (1996) 1033-1039
    Russoa M.V., Campanella L.G., Avino P. Determination of organophosphorus pesticide residues in human tissues by capillary gas chromatography-negative chemical ionization mass spectrometry analysis.Journal of Chromatography B,780 (2002) 431-441
    Sanchez M., Wolfger H., Getoff N. Radiation-induced degradation of 4-chloroaniline in aqueous solution.Radiation Physics and Chemistry,65 (2002) 611-620
    Sawai T., Shinozaki Y. Radiatiolytic dechlorination of polychlorinated biphenyls(PCB) in organic solution. Chem. Lett.,1972,865-868
    Sawai, T., Shimokawa T., Shinozaki Y.The radiolytic-chain dechlorination of polychlorinated biphenyls in alkaline 2-propanol solutions.Bull. Chem. Soc. Jpn.,47 (1974)1889-1893
    Schmid S., Krajnik P., Quint R. M. et al. Degradation of monochlorophenols by y-degradation. Radiat. Phys. Chem.50(1997):493-502.
    Schmid S., Krajnik P., Quont R. M., et al. Degradation of monochlorophenols byy-irradiation. Radiation Physics and Chemistry,50 (1997) 493-502
    Schweitzer J.F., Born G.S., Etzel J.E., et al. Evaluation of gammaradiation for degradation of a polychlorinated biphenyl in solution and on activated carbon. J. Radioanal. Nul. Chem. Lett.,118 (1987) 323-329
    Shastri L.V., Rao K.N. Radiation pollution control-destruction of chlorinated pesticides in water. In Management and Environment, Patel, Ed., Wiley:Bombay,1980
    Shen L., Wu J.Y., Lin G.F. et al. The mutagenic potentials of tap water samples in Shanghai.Chemosphere,52 (2003) 1641-1646
    Sherman, W.V., Evans R., Nesyto E., et al. Dechlorination of DDT in solution by ionizing radiation. Nature,232 (1971) 118-119
    Shimokawa T., Sawai T. Chain dechlorination of organic chlorinated compounds in alcohol solutions by60Co γ-rays (II):Chlorinated benzenes in alkaline 2-propanol solutions. J. Nul. Sci. Technol.,14 (1977) 731-736
    Simpmn N. J. K. Solid phase extraction:principles, techniques, and applications. Harbor city, California, Marcel Dekker, Inc.,2000
    Singh R. P., Kumari K., Singh D. Influence of different factors on the adsorption of carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methyl carbamate) on soils.Ecotoxicology and Environmental Safety,29 (1994) 70-79
    Slegers C., Maquille A., Deridder V., et al. LC-MS analysis in the e-beam and gamma radiolysis of metoprolol tartrate in aqueous solution:Structure elucidation and formation mechanism of radiolytic products. Radiation Physics and Chemistry,75 (2006) 977-989
    Solar J.M., Liuzzo J.A., Novak A.F. Removal of aldrin, heptachlor epoxide and endrin from potatoes during processing.J. Agric. Food Chem.,19 (1971) 1008-1010 Song X. Carbofuran.Encyclopedia of Toxicology,2005,417-418
    Stalling D. L., Tindle, R. C., Johnson, J. L. Cleanup of pesticide and polychlorinated biphenyl residues in fish extracts by gel permeation chromatography. Journal of AOAC International,55 (1972) 32-38
    Stan H. J. Pesticide residue analysis in foodstuffs applying capillary gas chromatography with mass spectrometric detection State-of-the-art use of modified DFG-multimethod S19 and automated data evalution, Journal of Chromatography A. 892 (2000) 347-377
    Summer E. Environmental fate of carbofuran. ,2009
    Trabue S.L., Ogram A.V., Ou L.T. Dynamics of carbofuran-degrading microbial communities in soil during three successive annual applications of carbofuran. Soil biology & biochemistry,33(2001)75-81
    Trebse P., Arcon I.. Degradation of organophosphorus compounds by X-ray Irradiation. Radiation Physics and Chemistry,67 (2003) 527-530
    Troanowicz M., Drzewicz P., Panta P., et al. Radiolytic degradation and toxicity changes in γ-irradiated solutions of 2,4-dichlorophenol. Radiation Physics and Chemistry,2002,65:357-366
    Trojanowicz M., Drzewicz P., Panta P., et al.Radiolytic degradation and toxicity changes in g-irradiated solutions of 2,4-dichlorophenol. Radiation Physics and Chemistry,65 (2002) 357-366
    Tsatsakisa A.M., Barbounisa M.G., Kavalakisa M., et al. Determination of dialkyl phosphates in human hair for the biomonitoring of exposure to organophosphate pesticides. Journal of Chromatography B,878 (2010)1246-1252
    US Environmental Protection Agency (EPA). SW-846 test methods for evaluating solid waste, Method 3545. US EPA, Washington, DC; July 18,2002.
    Vanderlaan M., Stanker L. H., Watking B.E. et. al. Immunoassays for Trace Chemical Analysis:montoring toxic chemicals in humans, food, and the environment. Washington, DC:American Chemical Society,1991
    Vollner L., Korte F. Chemosphere,6 (1974) 275-280
    Volpe Y, Mallet V. N. A mechanism for the heat-induced fluorescence of coumaphos and related compounds and the identification of their metabolites in water. Analytica Chimica Acta,81 (1976) 111-116
    Wang Q.Q., Lemley A.T. Oxidative degradation and detoxification of aqueous carbofuran by membrane anodic Fenton treatment. Journal of Hazardous Materials B, 98(2003)241-255
    Wasiewicz M., Chmielewski A. G., Getoff N. Radiation-induced degradation of aqueous 2,3-dihydroxynaphthalene. Radiation Physics and Chemistry,75 (2006) 201-209
    Wen H.W., Hsieh M.F., Wang Y.T., et al. Application of gamma irradiation in ginseng for both photodegradation of pesticide pentachloronitrobenzene and microbial decontamination. Journal of Hazardous Materials,176 (2010) 280-287
    Williams J.A., Cooper W.J., Mezyk S.P., et al. Absolute rate constants for the reaction of the hydrated electron,hydroxyl radical and hydrogen atom with chloroacetones in water. Radiation Physics and Chemistry,65 (2002) 327-334
    Woods R.J., Akhatar S. Radiation-induced dechlorination of chloral hydrate and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). J. Agric. Food Chem.22 (1974) 1132-1133
    Wu G., Bao X.X., Zhao S.H., et al. Analysis of multi-pesticide residues in the foods of animal origin by GC-MS coupled with accelerated solvent extraction and gel permeation chromatography cleanup. Food Chemistry,126 (2011) 646-654
    Wu G., Huang Y. L., Zhu G. N., et al. Study on Immunochemical Assays for The Organophosphorus Insecticide Chlorpyrifos, Agricultural Sciences in China,3 (2004) 371-375
    Wu J.G., Lan C.Y., Chan G.Y.S., et al. Organophosphorus pesticide ozonation and formation of oxon intermediates. Chemosphere,76 (2009) 1308-1314
    Xue J., Wang J.L. Radiolysis of pentachlorophenol (PCP) in aqueous solution by gamma radiation. Journal of Environmental Sciences,20 (2008) 1153-1157
    Zeegers F., Gibella M., Tilquin B. Analysis of some products from the irradiation of solid chloramphenicol. Radiation Physics and Chemistry,50 (1997)149-153
    Zhang J.b., Zheng Z., Zhao T., et al. Radiation-induced reduction of diuron by gamma-ray irradiation. Journal of Hazardous Materials,151 (2008) 465-472
    Zhang S.J., Yu H.Q., Wu L.X.. Degradation of calcium lignosulfonate using gamma-ray irradiation. Chemosphere,57 (2004) 1181-1187
    Zhang S.J., Yu H.Q.,Wu L.X. Degradation of calcium lignosulfonate using gamma-ray irradiation. Chemosphere,57 (2004) 1181-1187
    Zona R. Detoxification of aqueous chlorophenol solutions by ionizing radiation. Wat. Res.,33(1999)1314-1319
    柏文琴,何凤琴,邱星辉.有机磷农药生物降解研究进展.应用与环境生物学报,10(2004)675-680
    查显才,王兴禄,岳永德主编,农药残留研究进展.北京:中国农业出版社,2003
    陈冬梅,岳田利,袁亚宏,等.60Co-γ辐射对苹果汁中有机磷农药降解及品质影响.农业工程学报,24(2008)270-274
    陈剑刚,朱克先,等.固相萃取-气相色谱-质谱联用测定水体中拟虫菊酯残留.现代预防医学,6(2005)64-650
    陈梅红,张艳,程淑华.电离辐射降解农药残留研究.宁夏农林科技,2(1999)44-45
    崔登来,施惠栋,谢宗传.射线(电子束或60Co-γ射线)辐射降解虾仁中残留氯霉
    索研究.第6辐射研究与辐射工艺学术年会论文集,西安:辐射研究与辐射工艺学会,2004
    戴晖.微波萃取一毛细管气相色谱法快速分析土壤中有机氯农药.分析仪器,31(2004)31-34
    董春洲,王文芳.顶空固相微萃取气相色谱法测定马铃薯中有机氯农药.中华预防医学杂志,40(2006)364-368
    葛志荣.日本肯定列表制度--食品中农业化学品残留限量·药品卷.北京:中国标准出版社),2006
    耿星,郭寅龙.固相微萃取-气相色谱/质谱联用技术在农药残留物分析中的应用.分析测试技术与仪器,7(2001)230-235
    哈益明.辐照食品及其安全性.北京:化学工业出版社,2006
    胡媛,刘文民,周艳明,等.固相微萃取-气相色谱法测定红葡萄酒中残留的有机磷农药.色谱,24(2006)290-293
    黄琼辉.样品现代前处理技术在农药残留分析中的应用.农药科学与管理,27(2006)12-15
    江桂斌,等.环境样品前处理技术.北京:化学工业出版社,2004
    蒋新明,蔡道基,华晓梅.高效液相色谱柱后衍生法用于氨基甲酸酯类农药的测定.色谱,12(1994)32-34
    孔志明,孔琛.阿散酸及其降解产物对鱼和蚯蚓的遗传毒性.环境科学与技术,30(2007)11-13
    李焱.溴氰菊酯在茶叶中的辐射降解研究.合肥:安徽农业大学博士论文,2007
    李樱,储晓刚,仲维科,等.凝胶渗透色谱和固相萃取净化-气相色谱分离组合法测 定糙米中的残留农药.分析化学,32(2004)1325-1328
    梁鹏,于艳,孟辉.微波萃取气相色谱法测定白菜中有机磷农药的研究.安徽农业科学,35(2007)961-962
    林维宣.各国食品中农药兽药残留限量规定.大连:大连海带大学出版社,2002
    刘春泉,赵永富,朱佳廷,等.辐照保鲜处理引发河虾中氯霉素降解效应研究.江苏农业科学,6(2003)108-110
    刘艽岩,马育松.固相萃取技术在农药残留分析中的应用.河北大学学报(自然科学版),25(2005)110-115
    刘宁,徐刚,吴明红,等.邻苯二甲酸二丁酯的电子束辐射降解.核技术,31(2008)209-213
    刘茜,刘晓宇,邱朝坤,等.农产品加工·学刊.8(2007)17-20
    刘咏梅,王志花,储晓刚.凝胶渗透色谱净化-气相色谱测定糙米中7种常见有机磷农药残留.农药,43(2004)460-462
    刘志涛.动物源性食品中兽药残留的电子束辐射降解效应研究.北京:清华大学博士论文,2007
    罗建波,黄伟雄.微波萃取气相色谱法测定果蔬中农药残留的研究.中国公共卫生,18(2002)336-337
    罗建波.微波能提取法及其在有机污染物分析中的应用.中华预防医学杂志,31(1997)55-56
    马娜,陈玲,熊飞.固相萃取技术及其研究进展.上海环境科学,21(2002)181-188
    美国DIONEX公司中国服务中心.使用加速溶剂萃取仪萃取氯化除草剂.环境化学,17(1998)102-103
    美国国家环保局,METHOD 3640A
    宁永成.有机化合物结构鉴定与有机波谱学.北京:科学出版社,2002
    帕拉马尼克.电喷雾质谱应用技术.北京:化学工业出版社,2005
    彭双清,刘密风.毒理学替代方法及其在新药安伞性评价中的应用.毒理学杂志,21(2007)308-309
    齐红莉,张树林,戴伟.农药对水产动物毒理的研究现状.水利渔业,25(2005)73-75
    乔雄梧,国外食品中农药残留监测概况,农药科学与管理.21(2000)11-15
    任一平,张晶,铁晓威,等.叶菜中有机磷类农药多组分残留的快速分析.中国食品 卫生杂志,18(2006)127-134
    阮长青,叶非.超临界流体萃取技术在农药残留分析中的进展.农药科学与管理,22(2001)20-22
    施惠栋,戚增国.电子束处理降解虾仁中氯霉素的研究.核农学报,17(2003)301-303
    宋欢,薛平,李凌云.微波萃取气相色谱法测定兔肉中的有机氯农药残留.山西农业大学学报,22(2002)25-327
    宋莉晖,杨成对,张新荣,等.电子束辐射下克伦特罗的降解研究.分析化学研究简报,33(2005)1007-1009
    孙红杰,张志群.超声降解甲胺磷农药废水.中国环境科学,3(2002)457-459
    王培龙,高生,范理,等.液液提取-固相萃取-气相色谱法测定牛肉中蝇毒磷残留量的研究.分析试验室,26(2007)5-8
    王莹.有机氯农药-五氯硝基苯农药废水的辐射降解研究,长春:东北师范大学博士论文,2000
    王振荣,李布青.农药商品大全,北京:中国商业出版社,1996
    魏立青,郭杰等.固相微萃取(SPME)GC/MS、GC/MS/MS法检测环境水中的有机磷杀虫剂.刑事技术,5(2004)31-35
    吴刚,鲍晓霞,王华雄,等.加速溶剂萃取-凝胶渗透色谱净化-气相色谱快速分析
    动物源性食品中残留的多种有机磷农药.色谱,26(2008)577-582
    吴刚,王华雄,俞春燕,等.加速溶剂萃取-GPC液相色谱柱后衍生化测定动物源
    性食品中多种氨基甲酸酯类农药残留量.中国食品卫生杂志,20(2008)409-413
    吴刚,赵珊红,俞春燕,等.加速溶剂萃取-GPC气相色谱(μ-ECD)快速分析动
    物源性食品中多种电负性农药残留量.中国食品学报,9(2009)162-170
    吴明红,包伯荣.辐射技术在环境保护中的应用.北京:化学工业出版社,2002
    伍玲,陈春,唐剑,等.辐射降解蜂蜜、蜂王浆中的残留氯霉素的研究.中国科协2005年学术年会论文集.乌鲁木齐:核科技、核应用、核经济论坛,2005
    伍玲,陈春.60Co-γ谢线辐照降解蜂产品中残留氯霉素的研究.中国蜂业,57(2006)5-6
    武俊,洪青,陈一楠,等GC/MS和GC/FTIR分析细菌降解吠喃丹的产物.光谱学与光谱分析,26(2006)1716-1719
    谢芳,哈益明,王峰,等.Y射线辐射水溶液中氯霉素的降解研究.辐射研究与辐射

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700