用户名: 密码: 验证码:
饲料中莠去津及其主要代谢物的残留对生鲜乳安全性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莠去津是选择内吸型除草剂,广泛应用于玉米的种植中。本研究通过对饮水、精料补充料、青贮玉米和生鲜乳中莠去津(ATZ)及其主要代谢物(T-ATZ)浓度的监测分析,对ATZ经降解和代谢后在奶牛饮食中的实际污染现状及T-ATZ在生鲜乳中的残留规律进行研究,从而为饲料中残留的T-ATZ对生鲜乳安全性的影响提供评价依据。
     1、研究建立了饮水、青贮玉米、精料补充料及生鲜乳四种不同样品中ATZ及其六种主要代谢产物(DEA, DIA, DACT, HA, DEHA和DIHA)的同时检测方法,并对方法的性能进行了检验与确证。结果显示,四种方法的LOD, LOQ、加标回收率和精密度均达到了欧盟SANCO12495-2010的质量要求。
     2、通过对采自A、B、C三个地区的生鲜乳实际生产中的奶牛饮水、青贮玉米及精料补充料中T-ATZ含量的分析,对其中T-ATZ的残留情况进行了初步研究。
     所采集的奶牛饮水中T-ATZ残留浓度很低,其中残留有ATZ和DEA;青贮玉米中DEHA的残留量最高,其次为HA,只在少量样品中检出DEA和DIA;精料补充料中均有ATZ及DEHA HA、DEA的残留,HA的残留量最高,ATZ、DEHA及DEA残留量相当。C地区样品中T-ATZ的残留水平明显高于其他两地区。
     3、研究了青贮过程中和青贮后存放期间T-ATZ的转化和降解规律
     外源添加的ATZ和秸秆中自然残留的T-ATZ在青贮过程中的转化和降解研究显示,外源添加的ATZ和自然残留的T-ATZ在青贮过程中均发生了较快的降解,青贮特别是青贮时添加青贮剂可有效地降低青贮饲料中ATZ及其毒性较高的脱烷基代谢物的浓度。开窖后存放期间,T-ATZ仍呈显著下降趋势,但90天后下降趋缓,所以青贮后的存放过程有利于T-ATZ继续向低毒降解。
     4、通过对河北省廊坊地区的9个奶牛养殖户两个时间段生产的监测,确定了监测期内T-ATZ在奶牛饮食及生鲜乳中的污染情况,并对T-ATZ在生鲜乳中的残留规律进行了研究。
     在两个监测期,饮水中的T-ATZ的残留很低,可以忽略不计,青贮饲料是T-ATZ的主要残留污染来源。在第一期饲料(青贮饲料+精料补充料)样品中,主要残留有ATZ和HA;第二期样品中主要残留有DEHA;DEA在两个监测期中残留比例均较高。在第一期生鲜乳样品中,HA、DEA和ATZ比例相当,DACT有较低残留;第二期样品中DEA的残留比例明显高于其他残留物。
     ATZ及其脱烷基代谢物残留规律研究显示:饲料中T-ATZ含量较高时,其在生鲜乳中的残留率为1.02%,含量较低时,残留率为5.21%。生鲜乳中ATZ及其脱烷基代谢物的浓度有超过某些国家MRL值的风险。因此,饲料中ATZ及其脱烷基代谢物的残留可能给生鲜乳的安全性带来影响。
     HA残留规律研究显示:HA在生鲜乳中的最高残留量为2.35μg/kg,在饲料中HA含量较高时,最大残留率仅为1.21%。HA的残留对生鲜乳的安全影响不大。
Atrazine is an inner absorption type herbicide widely used in corn production. The purpose of this study was to provide the base for evaluating the effects of atrazine and its major metabolites(T-ATZ) in dairy cattle feed on the safety of raw milk. Focusing on the critical points of the food chain, the studies were conducted on the T-ATZ pollution level in dairy cattle feed and raw milk, their degradation and left over pattern of T-ATZ between them by monitoring of T-ATZ in drinking water, corn silage, supplementary feed and raw milk from practical production.
     1. The development and validation of the LC-MS/MS methods for simultaneous determining atrazine and its six metabolites (DEA, DIA, DACT, HA, DEHA and DIHA) in drinking water, corn silage, supplementary feed and raw milk. All of the basic performance parameters of the methods, LOD, LOQ, recovery and precision could meet the requirements of EU SANCO12495-2011.
     2. Preliminary study on the existing forms and residue levels of T-ATZ in drinking water, corn silage, supplementary feed used in practical production was conducted by analyzing different kinds of samples collected from A, B and C regions.
     The results of T-ATZ showed that ATZ and DEA accounted for the major residues of the cow drinking water, but their concentrations were much lower than all existing MRL standards. In corn silage, DEHA accounted for a greater proportion of the metabolites than HA; DEA and DIA can only be found in a few of samples. In supplementary feed, ATZ and DEHA、HA、DEA residues could be found in all collected samples; HA made the major proportion of the residues, ATZ, DEHA and DEA could also be found and the their concentrations were almost the same. In contrast to the residual results of A and B region, the residual level of C region was significant higher.
     3. Study on the degradation and transition of T-ATZ during corn ensilage and the silage storage.
     Two experiments were conducted for the ensiling fermentation. One was adding ATZ compound directly to blank corn straw before ensilage. Another was using corn straw with natural T-ATZ residues for the ensilage. The results indicated ensilage and using ensilage agent in the process could efficiently decrease ATZ and its dealkylated metabolites with high toxicity in corn silage and improve the security of the crude feed. The study of degradation and transition during silage storage illustrated the total concentration of T-ATZ still decreased, but after90days from the silo opening, the changes were slowdown. T-ATZ more liked to degrade into the low toxicity form.
     4. To confirm the major existing forms and residue levels of T-ATZ in dairy cattle diet and in the raw milk, the practical production of nine dairy farmers in the Lang Fang district were monitored at two periods. And the residual regular patterns of T-ATZ in raw milk were studied based on the results.
     The monitor Data demonstrated either in the initial period or in4months of the silage silo opening, silage feed in the diet was the major source of T-ATZ of the milk. As time went on, the effects from the supplementary feed would grow up. In the initial period major residues in feeds (including silage and supplementary feed) were ATZ and HA, while in the second period DEHA accounted for a large proportion of the residues, DEA kept a higher residual proportion in the two periods. For the raw milk, HA, DEA and ATZ were the major residual forms. But with passing of time, DEA level increased gradually and became the most pollutant in the second period.
     The study illustrated:when the residue level of ATZ and its dealkylated metabolites in feed was high, their transfer rate to the raw milk was1.02%, but when the level was low, their transfer rate was5.21%. It seems that the concentrations of ATZ and its dealkylated metabolites in raw milk might be able to exceed10μg/kg which is the MRL value of Australian. Obviously, ATZ and its dealkylated metabolites in feed were a critical potential safety hazards to the raw milk.
     As to the HA, the maximum transfer rate from feed to raw milk was1.02%and the highest level in milk monitored in this study was2.35μg/kg. Obviously, HA in feed did not pose a threat to milk since the toxicity of HA is much lower than ATZ.
引文
1.《环境科学大辞典》编辑委员会.环境科学大辞典[M].北京:中国环境科学出版社,1991,473.
    2.蔡宝立,磺今勇,石建党,等.阿特拉津降解菌株的分离和鉴定.微生物学通报,2001,28(2):22-26.
    3.蔡宝立,黄今勇.除草剂阿特拉津生物降解研究进展.生物工程进展,1999,19(3):7-10.
    4.陈腊梅.超声波对蛋白质盐析的作用研究[博士学位论文].南京:南京工业大学,2004.
    5.陈武瑛,廖晓兰,徐军,等.分散固相萃取-超高效液相色谱-串联质谱联用快速检测玉米及土壤中莠去津残留.农业环境科学学报,2010,29(3):604-608.
    6.陈砚朦,钟淑婷,甘凤娟,等.超高效液相色谱/串联质谱分析生活饮用水中莠去津和灭草松.中国卫生检验杂志,2008,18(4):590-592.
    7.丁辉,伊雄海,陆贻通.两种内分泌干扰物对鲫鱼淋巴细胞活性与功能的影响.环境污染与防治,2007,29(12):881-884.
    8.董静,潘玉香,朱莉萍,等.果蔬中54种农药残留的QuEChERS/GC-MS快速分析.分析测试学报,2008,27(1):66-69.
    9.董卫民,张少敏,李凤兰,等.秸秆饲料开发利用现状及前景展望.草业科学,2002,3:55-56.
    10.范润珍HPLC法测定土壤中莠去津残留量方法的改进.农药科学与管理,2003,24(11):14-16.
    11.高珊,薛丹,欧阳一非,等.食品法典标准语我国乳制品标准的比较分析.食品科学,2008,29(11)701-704
    12.耿岳,薛利琴,于素娟,等UPLC-MSMS法研究地下水中莠去津及其代谢物的残留.质谱学报,2008,12:113-114.
    13.胡达家,李振华,胡国良.玉米地喷施除草剂阿特拉津和杜尔灭草效果及残效的研究.黑龙江省农业科学,1986,4:21-24
    14.霍佳平,司士辉,王颜红,等.莠去津分子印迹聚合物的合成及其吸附性能.分析化学研究简报,2010,18(2):678-682.
    15.焦劼,分子印迹在固相萃取中的应用.天津药学,2009,21(6):55-58.
    16.金焕荣,段志文,张越,等.阿特拉津的遗传毒性研究.工业卫生与职业病,1999,25(6):341-343.
    17.李二虎,胡敏,吴兵兵,等.气相色谱法测定玉米中莠去津和丁草胺农药残留.农药科学与管理,2007,28(7):12-14.
    18.李晶,董丰收,刘新刚,等.基质固相分散萃取-气相色谱法同时检测人参中五氯硝基苯及其代谢物残留.农业环境科学学报,2009,28(1):216-220.
    19.李克斌,郭宏升,陈经涛,等.高效液相色谱同柱分析土壤中灭草松和莠去津残留.农业环境科学学报,2005,24(S1):280-283.
    20.李克斌,郭宏升,陈经涛,等.高效液相色谱同柱分析土壤中灭草松和莠去津残留.农业环 境科学学报,2005,24(z1):280-283.
    21.李永刚,赵扬,李晓芳,等.气质联用快速检测饲料中29种农药残留.饲料研究,2009,7:49-52.
    22.李竺,陈玲,郜洪文,等.固相萃取-高效液相色谱法测定环境水样中的三嗪类化合物.色谱,2006,24(3):267-270.
    23.刘爱菊,朱鲁生,王军,等.除草剂阿特拉津的环境毒理研究进展.土壤与环境,2002,11(4):405-408.
    24.刘凤玲.42%扑·莠·乙草胺悬乳剂的液相色谱分析.农药,2008,47(10):737-738.
    25.刘琳.奶业发展亟待粗饲料-谈推广青贮玉米.中国牧业通讯,2005,1:70-71.
    26.栾新红,丁鉴峰,孙长勉,等.除草剂阿特拉津影响大鼠脏器功能的毒理学研究.沈阳农业大学学报,2003,34(6):441-445.
    27.毛应明,王学松,朱平华,等.玉米中阿特拉津残留量的测定方法研究.食品科学,2008,29(7):336-339.
    28.孟顺龙,陈家长,胡庚东,等.低浓度阿特拉津对鲫鱼超氧化物歧化酶(SOD)活性的影响.农业环境科学学报,2007,26(1):170-174.
    29.孟顺龙,胡庚东,瞿建宏,等.阿特拉津在水环境中的残留及其毒理效应研究进展.环境防治与污染,2009,31(6):64-83.
    30.聂果,吴春先,高立明,等.莠去津的生态毒理学及其环境行为学研究进展.现代农药,2007,6(4):32-54.
    31.祁彦,占春瑞,张新忠,等.高效液相色谱法测定大豆中13种三嗪类除草剂多残留量.分析化学,2006,34(6):787-790.
    32.任晋,黄翠玲,赵国栋,等.固相萃取高效液相色谱质谱联机在线分析水中痕量除草剂.分析化学,2001,29(8):876-880
    33.任晋,蒋可,徐晓白.阿特拉津及其降解产物的磺酸化聚合物柱固相萃取及高效液相色谱-质谱法测定.分析化学,2004,32(10):1273-1277.
    34.任晋,蒋可,周怀东.官厅水库中阿特拉津残留的分析及污染来源.环境科学,2002,23(1):126-128.
    35.任晋,蒋可.阿特拉津及其降解产物对张家口地区饮用水资源的影响.科学通报,2002,47(10):758-762.
    36.任丽萍,江树人,饶震红,等.阿特拉津与DNA作用共振光散射光谱的研究及其应用.分析测试学报,2004,23(6):57-60.
    37.任丽萍,江树人,饶震红,等.阿特拉津与RNA作用的共振光散射光谱及其应用.光谱学与光谱分析,2004,24(10):12-13.
    38.邵华,金芬,杨锚,等QuEChERS方法在我国农药残留分析中的应用与前景.农业质量标准,2007(S1):120-122.
    39.邵华,刘肃,杨锚,等.石墨化碳黑分散固相萃取-气相色谱-质谱法测定蔬菜中农药多残留.农业质量标准,2008,3:43-45.
    40.石登荣,张涛,任丽萍,等.阿特拉津与蛋白质结合反应及其在测定蛋白质中的应用.光谱 学与光谱分析,2006,26(3):509-512.
    41.石丽丽,李军国,李俊,等.分散固相萃取-气相色谱-质谱方法快速检测奶牛饲料中的3种除草剂残留.中国畜牧兽医,2011,38(8):48-52.
    42.时伟杰,艾仕云,朱鲁生,等.基于光谱学和电化学方法的莠去津毒理作用评价.生态毒理学报,2008,3(2):178-182.
    43.宋飞,预计2012年中国百头以上奶牛养殖规模比重将达32%,神农网(http//www sn110.com/news/yuce/dairy/show_20120229_140006 html),20122.29
    44.塔娜,冯建芳,孙成,等.太湖梅粱湾水体中阿特拉津的毛细管气相色谱法测定.环境污染与防治,2005,27(8):634-636.
    45.唐除痴,李煜昶,陈彬,杨华铮,金桂玉.农药化学[M].天津:南开大学出版社,1998.
    46.汪力,高乃云,魏宏斌,等.饮用水中内分泌干扰物阿特拉津UV光氧化研究.环境科学,2006,27(6):1144-1149.
    47.王刚,毛华明,刘树民,等.牛奶中农药残留研究进展及其HACCP控制体系的确立.中国乳业,2005,12:28-31
    48.王国强,朱昱,齐宝坤,等.固相萃取-硅烷化-气质联用分析尿中莠去津及其去烃基代谢物.分析化学,2009,37(3):441-444.
    49.王惠,吴文君.农药分析与残留分析[M].北京:化学[业出版社,2007.
    50.王健,崔艳梅,刘伟,等.浊点萃取-高效液相色谱法检测牛奶中的六种农药.色谱,2007,25(6):853.
    51.王连生.有机污染物化学(上册)[M].北京:科学出版社,1990.
    52.王铁岗,中国奶牛饲料利用现状及发展前景[硕士学位论文].北京:中国农业大学,2005
    53.吴志华,邹雅竹,龚道新,等.饲料中拟除虫菊酯类农药的多残留分析技术.湖南农业大学学报(白然科学版),2006,32(1):77-80.
    54.谢碧俊,方亚群,向仕学.气相色谱法测定玉米和甘蔗中阿特拉津残留量.预防医学情报杂志,2004,20(1):84-85.
    55.许人骥,吴国平,胡伟,等.环境样品阿特拉津及降解产物分析方法进展.中国环境监测,2007,23(3):32-36.
    56.阎波.Cu(Ⅱ)、Zn(Ⅱ)水溶液的微观结构及其对牛血清白蛋白构象的影响[博士学位论文].天津:天津大学,2009.
    57.严登华,何岩,王浩.东辽河流域地表水体中Atrazine的环境特征.环境科学,2005,26(3):203-208.
    58.杨梅,林忠胜,姚子伟,等.三嗪类除草剂莠去津的研究进展.药科学与管理,2006,25(11):31-37
    59.杨敏娜,周芳,孙成,等.长江江苏段有毒有机污染物的残留特征及来源分析.环境化学,2006,25(3):375-376.
    60.叶常明,雷志芳,王杏军,等.除草剂阿特拉津的多介质环境行为.环境科学,2001,22(2):69-73.
    61.叶常明,王杏军,弓爱军,等.阿特拉津在土壤中的生物降解研究.环境化学,2000,19(4): 300-305.
    62.俞华根.玉米田苗后除草剂在中国的开发与推广应用.Z1TC一技术研究报,2008,1
    63.苑宇哲,徐十霞,姚春生,等.阿特拉津溶液中仙姑弹琴蛙(Rana daunchina)蝌蚪抗氧化酶系活性的变化.四川动物,2004,23(3):307-312.
    64.张大伟,陈林海,朱海霞,等.青贮饲料中主要微生物对青贮品质的影响.饲料研究,2007,3:65-68
    65.张德玉,李忠秋,刘春龙.影响青贮饲料品质因素的研究进展.家畜生态学报,2007,1:113-116.
    66.张敬波,姜文凤,董振霖,等.气相色谱法同时测定玉米中12种三嗪类除草剂的残留量.色谱,2006A,24(6):648-651.
    67.张敬波,董振霖,赵守成,等.气相色谱-质谱联用法检测玉米中21种三嗪除草剂残留量.质谱学报,2006B,247(3):148-154.
    68.郑军红,庞国芳,范春林,王明林.液相色谱-串联四极杆质谱法测定牛奶中128种农药残留.色谱,2009,27(3):254-263.
    69.郑巍.新农药吡虫啉的环境物理化学与生物化学行为研究[博十学位论文].杭州:浙江大学,2000.
    70.郑伟,瞿景坤.玉米青贮技术的研究.饲料博览,1994,3:14-16
    71.中华人民共和国国家标准《地表水环境质量标准》(GB3838-2002),国家环境保护总局/国家质量监督检验检疫总局,2002年4月28日.
    72.中华人民共和国国家标准《食品中农药最大残留限量》(GB2763-2005),中华人民共和国卫生部/中国国家标准化管理委员会,2005年1月25日.
    73.周博,舒小琼,栾新红,等.阿特拉津对雄性大鼠生殖机能的影响.中国畜牧杂志,2008,44(11):15-17.
    74.朱莉萍,董静,孙军,等.分散型固相萃取-气相色谱法测定蔬菜及其制品中灭线磷、嘧酶胺、莠去津、氟硅唑、噻嗪酮、异丙威残留量.分析试验室,2008,28(7):79-82.
    75. Adams C., Jiang H., Graziano N., Roberson A.,and Mcguire M. Characterization of interferences for enzyme-linked immunosorbent assay tests for atrazine. J.Am. Water Works Assoc.,2004, 96(12):126-139.
    76. Anastassiades M., Lehotay S. J., Stajnbaher D., et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J AOAC Int.2003,86 (2):412-431
    77. Anders O. O., Samuel E. B., Johnny V., et al. A liquid chromatography-tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and DEET in Human Urine. Nanl. Chem.,2004, 76: 2453-2461.
    78. Anderson N., Mosz N., Smearman S., Villanueva P., Werling V. "Quantitative Usage Analysis for Atrazine" document available in the public docket and on the internet.2001,1
    79. Antonio D. C, Carlo C, Ettore G., Roberto S. Ultratrace Determination of Atrazine and Its Six Major Degradation Products in Water by Solid-Phase Extraction and Liquid Chromatography-Electrospray/Mass Spectrometry.Environ. Sci. Technol,1997,31:1658-1663.
    80. Atrazine and Its Metabolites in Drinking-water, Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization 2011.
    81. Bade T. Residues of Atrazine and its Chlorometabolites in Dairy Tissues and Milk Following Administration of Atrazine (Magnitude Of Residues):Study No. ABR-87060. Unpublished compilation prepared by Ciba-Geigy Corp.1987,169.
    82. Bade, T. R., Toth J. Determination of atrazine, G-28279, G-30033 and G-28273 residues in milk, Ciba-Geigy Corp., USA, Method No.1985, AG-463.
    83. Balduini L., Matoga M., Cavalli E., et al. Triazinic herbicide determination by gas chromatography-mass spectrometry in breast milk. J of Chromatography B.2003,794:389-395.
    84. Barr D. B., Panuwet P., Nguyen J. V., Udunka S., Needham L. L. Assessing exposure to atrazine and its metabolites using biomonitoring. Environ Health Perspectives,2007,115:1474-1478.
    85. Behki R. M., Khan S. U. Degradation of Atrazine by Pseudomonas:N-dealkylation and dehalogenation of atrazine and its metabolites. Food Chemistry,1994,42:1237-1241.
    86. Besplug J., Filkowski J., Burke P., et al. Atrazine induces homologous recombination but not point mutation in the transgenic plantbased biomonitoring assay. Arch Environ Contam Toxicol,2004, 46:296-300.
    87. Bester K. H., Huhnerfuss H. Atmospheric deposition of atrazine herbicides in North Germany and the Germany Bight (North Sea). Chemosphere,1995,30:1639-1653.
    88. Brodkin M. A., Madhoun H., Rameswaran M., et al.,Atrazine is an immune disruptor in adult northern leopard frogs (Rana pipiens). Environ. Toxicol. Chem.,2007.26(1):p.80-84.
    89. Brusick D. J. An assessment of the genetic toxicity of atrazine:relevance to human health and environmental effects. Mutat. Res.1994,317:133-144.
    90. Buchholtz B.A., Fultz E., Haack K.W., Vogel J.S., et al. HPLC-accelerator MS measurement of atrazine metabolites in human urine after dermal exposure. Anal. Chem.,1999,71:3519-3525.
    91. Burkhand N., Guth J. A., Chemical hydrolysis of 2-chlor-4,6-bis (alkylanino)-1,3,5-triazine herbicides and their breakdown in soil under the influence of adsorption. Journal of Pesticide Science,1981,12:45-52.
    92. Buser H. R. Atrazine and other s-triazine herbicides in lakes and in rain in Switzerland. Environ. Sci. Technol.1990,24(7):1049-1058.
    93. Cacho C, Turiel E., Martin-Esteban A., et al. Clean-up of triazines in vegetable extracts by molecularly-imprinted polymer. Anal Bioanal Chem,2003,376:491-496
    94. Capriel P., Haisch A., Khan S. U. Distrbution and Nnature of (Nonextractable)Residues of Atrazine in a Mineral Soil Nine Years afler the Herbicide Application. J. Agric.Food Chem.,1985,33: 567-569.
    95. Chana Y. C, Chang S. K, Hsuanb S. L., et al. Cardiovascular effects of herbicides and formulated adjuvants on isolated rat aorta and heart. Toxicology in Vitro,2007,21(4):595-603.
    96. Comber S. D. W.. Abiotic persistence of atrazine and simazine in water. Journal of Pesticide Science 1999,55:696-702.
    97. Dalliige J., Hankemeier T., Vreuls R. J., et al. On-line coupling of immunoafinity-based solid-phase extraction and gas chromatography for the determ ination of s-triazines in aqueous samples. Journal of chromatography, 1999,830(2):377-386.
    98. De Souza M. L., Seffernick J., Martinez B., et al., The atrazine catabolism genes atrzABC are widespread and highly conserved. J Bateriol,1998, 180:1951-1954.
    99. Di Muccio A., Pelosi P., Camoni I., et al. Selective, solid-matrixdispersion extraction of organophosphat epesticide residues from milk. J Chromatogr A,1996,754:497-506.
    100. Dos Santos L. B. O., Abate G., Masini J. C. Determination of atrazine using square wave vohammetry with the Hanging Mercury Drop Electrode (HMDE), Talanta, 2004, 62(4): 667-674.
    101.Erickson L. E., Lee K. H. Degradation of atrazine and related s-triazines. Critical Reviews in Environmental Control.,1989,19(1):1-14.
    102. Fagin D., Marianne L., Toxic Deception. New York: Citadel Press, 1999.
    103. FAO. Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed, 2002:26.
    104. Filipov N. M., Pinchuk L. M., Boyd B. L., et al. Immunotoxic Effects of Short-term Atrazine Exposure in Young Male C57BL/6 Mice. ToxicologicalL Sciences, 2005, 86(2):324-332.
    105. Filipov N. M., Stewart M. A., Carr R. L., et al. Dopaminergic toxicity of the herbicide atrazine in rat striatal slices. Toxicology, 2007, 232(1-2):68-78.
    106. Fisher, G.D.(Study director), Biological report for the metabolism of [14C]-hydroxysimazine in lactating goats, Ciba-Geigy Corp., USA, Rep. Nr. BIOL-93003,1993a, 16/07/93
    107. Fisher, G.D. (Study director), Analytical (Mass balance) phase report for the distribution of [14C]-hydroxysimazine in lactating goats, Ciba-Geigy Corp., USA, Rep. Nr. ANPHI-93004, 1993b,16/11/93
    108. Friedmann A. S. Atrazine inhibition of testosterone production in rat males following peripubertal exposure. Reproductive Toxicology, 2002, 16(3):275-279.
    109. Furlani R. P. Z., Marcilio K. M., Leme F. M., Tfouni S. A. V. Analysis of pesticide residues in sugarcane juice using QuEChERS sample preparation and gas chromatography with electron capture detection. Food Chemistry, 2011, 12 (6):1283-1287.
    110. Garcia-Reyes J. F., Ferrer C., Thurman E. M., Fernandez-Alba A.R., Ferrer 1. Analysis of herbicides in olive oil by liquid chromatography time-of-flight mass spectrometry.J Agric Food Chem.,2006,54(18):6493-6500.
    111. Hassan S., Roger J., Bernard R. Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including t riazines and degradation products, in ground and surface waters. Journal of Chromtography A,2000, 885: 217-236.
    112. Hemilton P. B., Jacson G. S., Kaushik N. K., Solomon K. R. The impact of atrazine on lack periphyton com munities, including carbon uptake dynamics using track autoradiography. Environ. Pollut.,1987,46(2):83-103.
    113. Hodgson E., Joo H., Choi K. Human metabolism in vitro of atrazine and chlorothalonil.47th Annual Meeting of Society of Toxicology, Seattle, USA, The Toxicologist,2008, 102(1):156.
    114. Hoffman R. S., Capel P. D., Larson S. J. Comparison of pesticide in eight US urban streams. Environ Toxicol Chem,2000,19(9):2249-2258.
    115. Hyun J., Kyoungju C., Ernest H. Human metabolism of atrazine. Pesticide Biochemistry and Physiology, 2010, 98: 73-79.
    116. Ikonen R., Kangas J., et al. Urinary atrazine metabolites as indicators for rat and human exposure to atrazine. Toxicol. Lett.,1988,44: 109-112.
    117. Jaeger L.L., Jones A.D., Hammock B.D. Development of an enzyme-linked immunosorbent assay for atrazine mercapturic acid in human urine. Chem.,1998(11):342-352.
    118. Jiang H., Adams C., Graziano N., et al. Enzyme-Linked Immunosorbent Analysis (ELISA) of Atrazine in Raw and Finished Drinking Water. Environmental Engineering Science, 2006, 23(2): 357-366.
    119.Jozef Tekel', Pavol Farkas, Katarina Schultzova, Jana Kovacicova -et al. Analysis of triazine herbicides residues in butter and pasteurized milk. Zeitschrift fur Lebensmitteluntersuchung und-Forschung 1987 A,1988,4:319-322
    120. Kettles M. A., Browning S. R., Prince T. S., Horstman S. W. Triazine exposure and breast cancer incidence:An ecologic study of Kentucky counties. Environ. Health Perspective, 1997, 105(11): 1222-1227.
    121.Kovacic N., Prosen H., Lucija Zupancic-Kralj L. Determination of triazines and atrazine metabolites in soil by microwave-assisted solvent extraction and high-pressure liquid chromatography with photo-diode-array detection. Acta Chim Slov, 2004,51:395-407.
    122. Kumazawa T., Lee X.P., Kondo K., et al. Determination of triazine herbicides in human body fluids by solid-phase microextraction and capillary gas chromatography. Chromatographia, 2000, 52:195-199.
    123. Lang D. H., Criegee D., Grothusen A., Saalfrank R.W., Bocker R.H., In vitro metabolism of atrazine, terbuthylazine, ametryne, and terbutryne in rats, pigs and humans. Drug Metab Dispos., 1996,24:859-865.
    124. Lang D. H., Rettie A. E., Bocker R. H. Identification of enzymes involved in the metabolism of atrazine, terbuthylazine, ametryne, and terbutryne in human liver microsomes. Chem. Res. Toxicol., 1997,10:1037-1044.
    125. Larsen B. R. Ion-trap multiple mass spectrometry in pesticide analysis.Analusis, 2000, 28:941-946
    126. Larson, J. D., Ash S. G. 14C-atrazine:Nature of the residue in corn and sorghum, (MRID 42547116) Amendment No.2 to the final report, Hazleton Wisconsin, Inc., USA, Rep. Nr. Certificate of authenticity signed,1995,10(6):117-178.
    127. Lawrence J. F., Menard C., Hennion M. C., et al. Use of immunoaffinity chromatography as a simplified cleanup technique for the liquid chromatographic determination of phenylurea herbicides in plant material. J. Chromaogr A,1996,752:147-154
    128. Le Faouder J., Bichon E., Brunschwig P., et al. Transfer assessment of fipronil residues from feed to cow milk. Talanta,2007,73(4):710-717
    129. Leeman W. R., Van Den Berg K. J., Houben G. F. Transfer of chemicals from feed to animal products: The use of transfer factors in risk assessment. Food Additives and Contaminants,2007, 24(1):1-13
    130. Lehotay S. J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate:c ollaborative study. J AOAC Int.,2007,90(2):485-520.
    131.Lehotaya S. J., Sonb K. A.., Kwonb H., et al. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A,2010,1217(6):2548-2560.
    132. Lerch R. N., Li Y. X. Analysis of hydroxylated atrazine degradation products in soils. Int. J.Environ. Anal. Chem,2001,79(3):167-183
    133. Li R. H., Jiang Z. E., Yang H. W., et al. Effects of ions in natuml water on the 17O NMR chemical shift of water and their relationship to water cluster. Journal of MoleeularLiqnids,2006,126(1-3): 14-18.
    134. Liedtke A., Muncke J., Rufenacht K.., et al. Molecular multi-effect screening of environmental pollutants using the MolDarT. Environ Toxicol,2008,23: 59-67.
    135. Lin C.H., Lerch R.N., Garrett H.E., George M.F. Bioremediation of Atrazine-Contaminated Soil by Forage Grasses:Transformation, Uptake, and Detoxification. J Environ Qual.,2008,37(1): 196-206.
    136. Little M. K., Crawley C. D. On-line pre-concentration of atrazine by antibody immobilization capillary electrophoresis. Analytica Chimica Acta,2002,464:25-35.
    137. Lucas A., Jones A.D., Goodrow M.H., et al., Determination of atrazine metabolites in human urine: development of a biomarker of exposure. Chem.,1993,6:107-116.
    138. Ma W. T. et al. Determination of atrazine, deethylatrazine and simazine in water at parts-per-triflion levels using solid-phase extraction and gas chromatography/ion trap mas spectrometry. Rapid communications in mas spectrometry,2003,17(24):2707-2712.
    139. Maguire R. J., Tkacz R. J. Occurrence of pesticides in Yamaska river, Quebec. Archives of Environmental Contamination and Toxicology,1993,25:220-226.
    140. Majors E. R. Sample Prep Perspectives:Particle-Size Reduction in Solid Sample Preparation. Magazine of Separation Sci. (LC-GC),1998,8(Suppl)(5):8-15.
    141. Mandelbaum R. T., Allan D. L., Wackett L. P. Isolation and Characterization of a Pesudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl. Environ. Microbiol.,1995,61(4): 1451-1457.
    142. Manske M. K., Beltz L. A., Dhanwad K. R. Low-level atrazine exposure decreases cell proliferation in human fibroblasts. Arch Environ Contam Toxicol,2004,46:438-444
    143. Margaret M. M., Loganathanb B. G., Yamashitac N., Saitod T. Immunomodulation of human natural killer cell cytotoxic function by triazine and carbamate pesticides, Chemico-Biological Interactions,2003,145(3):311-319.
    144. Maroni M., Colosio C., Ferioli A., et al. Biological Monitoring of Pesticide Exposure:a review. Introduction. Toxicology, 2000,143:97-102
    145. Martin M., Hagege A., Brunette J-P., Leroy M. Use of synergistic extraction for the study of atrazine/metal interactions. Analytica Chimica Acta, 1998,373(2):161-165.
    146. Melo L. F. C. Collinsb C. H. Jardim I. C. S. F. New materials for solid-phase extraction and multiclass high-performance liquid chromatographic analysis of pesticides in grapes. Journal of chromatography, 2004, 1032(4):51-58.
    147. Mendas G., Drevenkar V., Zupancic K. L. Solid-phase extraction with styrene divinylbenzene sorbent for high-pe rformance liquid or gas chromatographic determination of urinary chloro-and methylthiotriazines, Journal of Chromatography A,2001,918:351-359.
    148. Mendas G., Tkalcevic B., Drevenka V. Determination of chloro and methylthiotriazine compounds in human urine:extraction with diethyl ether and C18 solid-phase extraction for gas chromatographic analysis with nitrogen-selective and electron capture detection. Analytica Chimica Acta,2000,424:7-18.
    149. Mendas G., Tkalcevic V., Drevenkar V., Determination of chloro and methylthiot riazine compounds in human urine .Analytica Chimica Acta.,2000424:7-18.
    150. Mills M. S., Thurman E. M. Preferential Dealkylation Reactions of S-triazine Herbicides in the Unsaturated Zone. J. Environ Sci Technol.,1994,28:600-650.
    151. Nagy I, Compernolle F, Ghys K, Vanderleyden J, De Mot R. A single cytochrome P-450 system is involved in degradation of the herbicide EPTC (s-ethyl dipropyl thiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21. Appl Environ Microbiol, 1995,61(5):2056-2060.
    152. Nalina S, Elizabeth D. A review of epidemiologic studies of triazine herbicides and cancer. Critical Review in Toxicology, 1997,27(6):599-613.
    153. National Registration Authority for Agricultural and Veterinary Chemicals, FINAL REPORT REVIEW OF ATRAZINE, NRA Chemical Review Program, April 2002
    154. National Registration Authority for Agricultural and Veterinary Chemicals. Veterinary drug residue analytical methods, Residue Guideline, No. 26
    155. Newman A., Atrazine found to cause chromosomal breaks.Environ.Sci.Tech.,1995,29(10):450.
    156.Nouri B., Toussaint G., Chambon P. Application of a new polymeric adsorbent to isolate chlorotriazines and t heir dealkylated degradation products from water samples. Analyst, 1995, 120(12):2683-2687.
    157. Ochoa-Acuna H., Frankenberger J., Hahn L., et al. Drinking water herbicide exposure in indiana and prevalence of small-for-gestational-age and preterm Delivery. Environmental Health Perspectives, 2009,117 (10):16-19.
    158. Olsson A.O., Baker S.E., Nguyen J.V., et al. A liquid chromatography-tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and DEET in human urine. Anal Chem.,2004,76: 2453-2461.
    159. Panuwet P., Nguyen J. V., Kuklenyik P., et al. Quantification of atrazine and its metabolites in urine by on-line solid-phase extraction-high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem,2008, 391: 1931-1939
    160. Patterson B. M., Franzmann P. D., Davis G. B. Using polymermats to biodegrade atrazine in groundwater laboratory column experiments. Journal of Contaminant Hydrology, 2002, 54(3/4): 195-213.
    161. Paulo M. J., van der Voet H., Jansen M. J., et al. Risk assessment of dietary exposure to pesticides using a Bayesian method. PestManag Sci.,2005,61:759-766.
    162. Pesticide residues in food 2007, Joint FAO/WHO Meeting on Pesticide Residues[R],18-27 September 2007, P44.
    163. Pesticide residues in food 2007, Joint FAO/WHO Meeting on Pesticide Residues[R],18-27 September 2007, P294.
    164. Pesticide residues in food 2007, Joint FAO/WHO Meeting on Pesticide Residues, 18-27-September 2007, P44.
    165. Pimentel D., Effects of Pesticides on Non-target Species. Washington, US Gov. Print, 1971.
    166. Prosen H., Gucek M., Zupancic-Kralj L. Optimization of Liquid Chromatography and Micellar Electrokinetic Chromatography for the Determination of Atrazine and its First Degradation Products in Humic Waters Without Sample Preparation. Chromatographia,2004,60:S107-S112.
    167. Qiao X. W., Ma L. P., Hans E. H. Persistence of Atrazine and Occurrence of Its Primary Metabolites. Journal of Agricultural and Food Chemistry, 1996, 44:2846-2848.
    168. Ramsteiner K., Hormann W. D., Eberle D. O., et al. Multiresidue method for the determination of triazine herbicides in field grown agricultural crops, water and soil. J Assoc Off Anal Chem, 1974, 57:192-201
    169.Raveton M., Ravanel P., Serre A. M., et al. Kinetics of Uptake and Metabolism of Atrazine in Model Plant Systems. J Pesticide Science, 1997,49 (2): 157-163
    170. Robert N. L., William W. D., Li Y., et al. Hydroxylated atrazine degradation products in a small missouri stream. Environ Sci Technol,1995,29(11):2759-2768.
    171. Rooney A. A., Matulka R. A., Luebke R.W. Developmental atrazine exposure suppresses immune function in male, but not female Sprague-Dawley rats. Toxicological Sciences, 2003; 76:366-375.
    172.Saglio P., Trijasse S. Behavioral responses to atrazine and diuron in goldfish. Arch. Environ. Contam. Toxicol,1998,35:484-91.
    173. SANCO/12495/2010. Method validation and quality control procedures for pesticide residues analysis in food and feed.
    174. Sanderson J. T., Seinen W., Giesy J. P, et al.,2-Chloro-s-triazene herbicides induce Aromatase(CYP19) activity in H295R human adrenocortical carcinoma cells:a novel mechanism for estrogenicity. Toxicological Scienses, 2000, 54:121-127.
    175. Sean D., Comber W. Abiotic persistence of atrazine and simazine in water. Pesticide Science,1999, 55:696-702.
    176. Senesi N. Binding mechanisms of pesticides to soil humic substances. Science of the Total Environment,1992,123-124:63-76.
    177. Siebers J., Gottschild D. H. G. Pesticides in precipitation in northern Germany. Chemosphere, 1994,28(8):1559-1570.
    178. Singh P., Suri C.R., Cameotra S.S., Isolation of a number of Acinetobacter species involved in atrazine degradation.Biochem Biophys Res Commun,2004, 317:697-702.
    179. Solomon K. R., Baker D. B., Richards R. P., et al. Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry,1996,15(1):31-76
    180. Soren B. A.., Koskinen W. C, Buhler D. D. Formation and Movement of 14C-atrazine Degradation Products in a Clay Loam Soil in the Field Conditions. Weeds Sci,1993,41:239-245.
    181. Steinberg C. E., Lorenz W. R., Spieser O. H. Effect of atrazine on swimming behavior of zebrafish, Brachdanio rerio. Water Res,. 1995,29(3):984-985.
    182. Sung-Ben Huang, Jeffrey S. Stanton, Yi Lin, et al. Analytical method for the determination of atrazine and its dealkylated chlorotriazine metabolites in water using SPE sample preparation and GC-MSD analysis. Journal of agricultural and food chemistry,2003,51(12):7252-7258.
    183. Thalacker F. W., .Determination of transfer rate and nature of the residue(s) in milk from 14C-atrazine treated cows. Corning Hazleton Inc, Madison, Wisconsin, USA, Rep. Nr. CHW, 1996(6):117-325.
    184. Toxicological profile for atrazine, U.S. Department of health and human services,2003,9
    185. Tuinstra L. G. M. T., Roos A. H., Matster A. M., et al. Development of a multi-residue multimatrix method for pesticide analysis in agricultural products. Fresenius J Anal Chem,1991,339:384-386
    186. U.S. EPA. (2005). The Office of Ground Water & Drinking Water, Washington DC (http://www.epa.gov/safewater/methods/indchem.html).
    187. Van Leeuwen J. A., Waltner-Toews D., Abernathy T., et al. Associations between stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems,1987-1991. International Journal of Epidemiology,1999,28:836-840.
    188. Vela N., Navarro N., Gimenez J., et al. Gradual fall of s-triazine herbicides in drinking and wastewater samples as influenced by light and temperature. Water Air and Soil Pollution,2004, 158:3-19.
    189. Viden 1, Rathouski Z, Davidek Z,Hajslova Z. Use of gas liquid chromatography/mass spectrometry for triazine herbicide residues analysis in forage and milk .Z Lebensm Unter Forsch., 1987,185(2):98-105.
    190. Yokley R. A., Cheung M. W. Analytical method for the determination of atrazine and its dealkylated chlorotriazine metabo lites in water using gas chromatography/mass selective detection. Journal of agricultural and food chemistry,2000,48(10):4500-4507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700