用户名: 密码: 验证码:
氨、亚硝酸盐及其与藻毒素对两种水蚤生活史特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝藻水华集聚后腐烂分解会释放细胞内微囊藻毒素并产生衍生污染物亚硝酸盐、氨等,导致局部水域水质的严重恶化。为了确定微囊藻毒素、亚硝酸盐、氨对浮游动物的危害,本实验选取太湖常见种D. similoides, D. obtusa为受试生物,通过微囊藻毒素、亚硝酸盐、氨三种毒物对两种蚤的急性和慢性暴露实验,得出以下结果:
     1.氨和亚硝酸盐对D. similoides不同龄期(0.5、1、3、5、7 d)的急性实验
     亚硝酸盐对D. similoides各个龄期的24 h和48 h LC50都随着龄期的增加而增大,除了5日龄和7日龄之间不存在显著差异(P>0.05)外,其它各龄期之间彼此都存在显著性差异(P<0.05);用修正的高斯模型拟合D. similoides不同龄期LC50,可知亚硝酸盐对D. similoides的24 h和48 h LC50的最大值分别为156.99和63.09mg/L,而达到最大值所对应的日龄分别为6.25和5.74天。
     NH3-N对不同龄期D. similoides的24 h和48 h LC50中,当到达3日龄后,LC50不再随日龄的增大而增大,5日龄的24 h和48 h LC50与3日龄的不存在显著性差异。用修正的高斯模型拟合NH3-N对D. similoides不同龄期的LC50,可知NH3-N对D. similoides 24 h和48 h LC50的最大值分别为1.74和1.33 mg/L,而达到最大值所对应的日龄分别为3.98和4.03天。
     用修正的高斯模型可以很好的拟合D. similoides不同龄期的LC50的变化趋势,获得达到最大LC50时所对应的日龄,这个模型可能也适用于其它种类Daphnia在急性实验中不同龄期LC50的变化趋势。
     2.氨和亚硝酸盐对D. similoides和D. obtusa的慢性毒理效应
     在氨和亚硝酸盐对D. similoides和D. obtusa的21天慢性实验中,考察了指标首次怀卵/繁殖时间、首次怀卵/繁殖体长、蜕皮次数、繁殖次数、平均每窝繁殖量、平均母体繁殖量、平均存活天数,运用四参数逻辑斯蒂方程对各指标进行模拟,可获得相应指标的EC50,对比各指标参数的最低可见效应浓度(LOEC)、最低可见无效应浓度(NOEC)及EC50,可知各参数的敏感性次序:
     氨对D. similoides各参数的敏感性:首次怀卵时间=首次繁殖时间=平均每窝繁殖量>平均母体繁殖量>平均繁殖窝数>平均存活天数>平均蜕皮次数。
     氨对D. obtusa各参数的敏感性:平均母体繁殖量>平均每窝繁殖量>首次繁殖时间=首次怀卵体长=首次生殖体长>平均繁殖窝数>平均存活天数>平均蜕皮次数。
     在氨对D. similoides和D. obtusa各指标的作用中,氨对D. similoides的首次怀卵/繁殖时间、D. obtusa的首次繁殖时间随着浓度的增大具有显著延长的效果,对D. similoides的首次怀卵/繁殖体长没有显著作用,但对D. obtusa的首次怀卵/繁殖体长在低浓度(0.01076,0.0538 mg/L)时具有刺激作用,体长明显长于其它各浓度组的体长。氨对D. similoides和D. obtusa的平均每窝繁殖量和平均母体繁殖量在低浓度时也表现出刺激作用。通过NH3-N对D. similoides和D. obtusa各参数的敏感性次序,知平均每窝繁殖量和平均母体繁殖量较其它指标要敏感,两指标的NOEC和LOEC分别为0.0538 mg/L和0.1076 mg/L,可知两种蚤对低浓度NH3-N的敏感性相同,比较两种蚤的EC50,D. similoides平均每窝繁殖量对NH3-N的EC50为0.58mg/L, D. obtusa平均母体繁殖量对NH3-N的EC50为0.27 mg/L,可知D. obtusa较D. siniloides对NH3-N要敏感。
     亚硝酸盐对D. similoides各参数的敏感性:平均母体繁殖量>平均每窝繁殖量>平均繁殖窝数>平均蜕皮次数>平均存活天数。
     亚硝酸盐对D. obtusa各参数的敏感性:首次生殖体长=平均母体繁殖量>平均每窝繁殖量>首次怀卵时间=首次繁殖时间>平均蜕皮次数>平均繁殖窝数>平均存活天数。
     在亚硝酸盐对D. similoides和D. obtusa各指标的作用中,亚硝酸盐对D.similoides的首次怀卵/繁殖时间、首次怀卵/繁殖体长以及对D. obtusa的首次怀卵/繁殖时间、首次怀卵体长都没有影响。通过各指标的敏感性次序知平均每窝繁殖量和平均母体繁殖量较其它指标要敏感。比较两种蚤平均母体繁殖量的LOEC和EC50, D. similoides分别为1 mg/L和1.56 mg/L, D. obtusa分别为0.1 mg/L和1.59mg/L,可知D. obtusa较D. similoides对低浓度的N02-N要敏感,但达到半数效应时两者的浓度几乎一样。
     3亚硝酸盐联合藻毒素对D. obtusa的复合实验
     亚硝酸盐联合藻毒素对D. obtusa的15天复合实验中,在参数首次怀卵时间(P=0.020)和首次繁殖时间(P=0.021)上都存在显著的交互作用,首次怀卵/繁殖时间不仅依赖于亚硝酸盐浓度,还依赖于藻毒素浓度,在亚硝酸盐和藻毒素的交互作用中,藻毒素表现出能一定程度上缓解亚硝酸盐对D. obtusa怀卵和繁殖的推迟作用。在其它参数首次怀卵/繁殖体长、平均每窝繁殖量、平均母体繁殖量、平均蜕皮次数及平均繁殖次数上,亚硝酸盐和藻毒素在联合毒性上表现为独立作用,因藻毒素对各参数没有显著性影响,可完全看成是亚硝酸盐对以上各参数的损害。
     4氨联合藻毒素对D. similoides的复合及修复实验
     在氨联合藻毒素对D. similoides的复合实验中,检测了首次怀卵/繁殖体长、首次怀卵/繁殖时间、平均每窝繁殖量、平均母体繁殖量、平均繁殖次数、平均蜕皮次数,在参数首次怀卵时间上氨和藻毒素存在交互作用(P=0.026),在作用过程中藻毒素表现出能一定程度上缓解氨对D. similoides怀卵的推迟作用。在参数首次繁殖时间上氨和藻毒素没有表现出显著的交互作用,但氨对D. similoides首次繁殖时间的影响受藻毒素的影响,而藻毒素对D. similoides首次繁殖时间的影响要依赖于氨浓度。对平均每窝繁殖量,氨和藻毒素没有表现出显著的交互作用,氨对D.similoides平均每窝繁殖量的影响不依赖于藻毒素浓度,但藻毒素对此指标的影响要依赖于氨浓度。氨和藻毒素对参数平均母体繁殖量表现为独立作用,二者对此参数都有一定的影响。对指标平均繁殖次数,氨和藻毒素表现为独立作用,因藻毒素没有显著性影响,可完全看成是氨对此参数的损害。对参数首次怀卵/繁殖体长、平均蜕皮次数,氨和藻毒素没有表现出毒害作用。
     在修复实验中,检测了参数平均蜕皮次数、平均繁殖窝数、平均每窝繁殖量、平均母体繁殖量。平均蜕皮次数和平均繁殖窝数在修复实验中各组间没有显著性差异,说明氨和藻毒素确实对两参数不存在影响。对平均每窝繁殖量和平均母体繁殖量,高浓度处理组在修复实验中繁殖量大于低浓度处理组,表现出在慢性实验中抑制因子越大,在修复实验中繁殖指标恢复的更迅猛,称为“繁殖补偿”理论,或者理解为两指标很敏感,一旦外界环境中没有了抑制因子,其恢复的也比较快。
Blue-green algae will release intracellular microcystin and produce secondary pollutants such as nitrite and ammonia during the degradation after cyanobacterial blooms accumulated in local region, and thus cause serious water quality problems. In order to evaluate which materials are harmful to zooplankton among nitrite、ammonia and microcystin, D. similoides and D.obtusa, the common species of zooplankton in Lake Taihu, were used in the experiments. From the acute and chronic exposure experiments of nitrite、ammonia and microcystin to D. similoides and D. obtusa,we can get the following conclusions:
     1 The acute toxicity of ammonia and nitrite to D. similoides at different developmental stages (0.5、1、3、5、7 d)
     The 24-h and 48-h LC50 of nitrite to D. similoides at different developmental stages increase as the instar grows, the other instar all have significant difference (P< 0.05) except 5 and 7 days;a modified Gaussian model was used to describe the trends of changes in LC50s at different stages in D. similoides, we can get the maximum LC50 of nitrite at 24h and 48h which were 156.99 and 63.09 mg.L-1 respectively;the age that LC50s of nitrite at 24h and 48h reached the maximum values were 6.25 and 5.74 days,respectively.
     The 24-h and 48-h LC50 of ammonia to D. similoides at different developmental stages will not vary with instar increasing when it was over 3 days old, and there were no significant difference between 5days and 3days on the 24-h and 48-h LC50. a modified Gaussian model was used to describe the trends of changes in LC50s at different stages in D. similoides, we can get the maximum LC50 of ammonia at 24 h and 48 h which were 1.74 and 1.33 mg L-1,respectively; the age that LC50s of ammonia at 24 and 48 h reached the maximum values were 3.98 and 4.03 days,respectively.
     Using the modified Gaussian model, we can describe the trends of changes in LC50s of nitrite and ammonia to D. similoides at different developmental stages.we can gain an insight into the maximum LC50 and the age that has the maximum LC50 and predict LC50s at any specific ages. We suggest that such a model might be used to describe the trend in acute toxicity of some other zooplankton species at different stages.
     2 The chronic toxicity effect of ammonia and nitrite to D. similoides and D. obtusa
     During the 21 days chronic experiment of ammonia and nitrite to D. similoides and D. obtusa, we evaluate the following parameters:time to first eggs/clutches、body length at first eggs/clutches、number of moults、number of clutches、mean number of offspring per clutch、mean number of offspring per female、mean survival days. And four-parameter logistic model was chosen to fit the indexes'data, we can get the indexes'EC50,respectively, contrast the LOEC、NOEC and EC50 among the indexes, The order of sensitivity of all indexes was as following:
     Ammonia to D. similoides:time to first eggs/clutches=mean number of total offspring per clutch> mean number of total offspring per female> mean number clutches> mean survival days> mean number moults.
     Ammonia to D. obtusa:mean number of total offspring per female>mean number of total offspring per clutch>time to first clutches=body length at first eggs/clutches>mean number clutches> mean survival days> mean number moults.
     Of the all indexes of ammonia to D. similoides and D. obtusa, the time to first eggs/clutches of D. similoides and time to first clutches of D. obtusa was significantly delayed with ammonia increasing, ammonia to D. similoides body length at first eggs/clutch have no significantly effect, but to D. obtusa' body length at first eggs/clutch have a stimulation at low concentration (0.01076,0.0538 mg/L), the body length is longer than other concentrations'. To mean number of offspring per clutch and mean number of total offspring per female stimulation effect also appear at low concentration. From the order of sensitivityof all indexes,we know mean number of offspring per clutch and mean number of total offspring per female was the most sensitive indexes in both D. similoides and D. obtusa,the two index's NOEC and LOEC is 0.0538 mg/L and 0.1076mg/L respectively,it suggests both Daphnia has the same sensitivity to low ammonia concentration,then assessing the EC50,mean number of offspring per brood of D. similoides was 0.58 mg/L,mean number of total offspring per female of D. obtusa was 0.27 mg/L, it suggests D. obtusa was more sensitive than D. similoides.
     Nitrite to D. similoides:mean number of total offspring per female> mean number of total offspring per clutch>mean number clutches>mean number moults>mean survival days.
     Nitrite to D. obtusa:body length at first clutches= mean number of total offspring per female> mean number of total offspring per clutch>time to first eggs/clutches>mean number moults>mean number clutches>mean survival days.
     During the nitrite to D. similoides and D. obtusa' experiment,the time to first eggs/clutches、body length at first eggs/clutches of D. similoides and time to first eggs/clutches、body length at first eggs of D. obtusa was not effected.through the order of sensitivity of all indexes, mean number of total offspring per female and mean number of total offspring per clutch was the most sensitive.Contrast the LOEC and EC50 of mean number of total offspring per female among the two species, D. similoides was 1 mg/L and 1.56 mg/L respectively, D. obtusa was 0.1 mg/L and 1.59 mg/L respectively,it suggests D. obtusa was more sensitive than D. similoides to low nitrite concentration, but the value at which they reach the EC50 concentration was almost the same
     3 Combined effects of nitrite and microcystin to D. obtusa
     During the 15days combined experiment,the parameters time to first eggs(P=0.020)and time to first clutches (P=0.021) all have significant interaction, the influence of time to first eggs/clutches not only depends on nitrite concentration,but also depends on microcystin concentration,during the combined effects of nitrite and microcystin, microcystin can reduce the harmful effects caused by nitrite on delaying time to first eggs/clutches. On the remaining parameters:body length at eggs/clutches、mean number of offspring per clutch, mean number of total offspring per female, mean number moultes,mean number clutches, nitrite and microcystin represent single effect, because microcystin didn't exert significant influence on the parameters, we think the harmful effects was caused by nitrite.
     4 Combined effects of ammonia and microcystin to D. similoides and recovery experiment
     During the combined effects of ammonia and microcystin to D. similoides,we evaluate the parameters as following:time to first eggs/clutches, body length at first eggs/clutches, mean number of offspring per brood, mean number of total offspring per female, mean number clutches, mean number moultes. On the time to first eggs ammonia and microcystin represent interaction (P=0.026) and microcystin can reduce ammonia to delay time to first eggs. On the time to first clutches ammonia and microcystin don't represent significant interaction effect but both influence the parameters depending on each other. On the mean number of offspring per clutch, ammonia and microcystin don't represent significant interaction effect, ammonia can influence the parameter itself, but microcystin influence it depending on ammonia. On the mean number of offspring per female, ammonia and microcystin represent independently, both influence it respectively. On the mean number clutches, ammonia and microcystin represent independently,but microcystin don't represent significant influence, we think the all harm was affected by nitrite. On the remaining parameters, ammonia and microcystin didn't represent any harmful effects.
     In the recovery experiment, we evaluate mean number moultes,mean number clutches, mean number of offspring per clutch, mean number of offspring per female.there was no significant difference between different concentrations on mean number moultes and mean number clutches in recovery,from this,we could conclude that ammonia and microcystin didnt have influence on the two parameters.as for the remaining two parameters, the offspring of high concentration treatments is higher than that of low concentration treatments in recovery experiment, it showed that individuals exposed to higher concentrations in chronic experiment had more fast recovery speed on reproduction index in recovery experiment,which is called'catch-up reproduction'theory. Maybe these two parameters are very sensitive, they will recovery rapidly when the suppression disappeared.
引文
[1]王扬才,陆开宏.蓝藻水华的危害及治理动态.水产学杂志.2004,17(001):90-94.
    [2]周云龙,于明.水华的发生,危害和防治.生物学通报,2004,39(006):11-14.
    [3]金相灿,刘树坤,章宗涉等.中国湖泊环境.1995:海洋出版社.
    [4]Rohrlack, T., et al. Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Applied and environmental microbiology,1999,65(2):737.
    [5]Mohamed, Z.A., Carmichael, W.W.,Hussein, A.A. Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environmental toxicology,2003,18(2):137-141.
    [6]Francis, G. Poisonous australian lake. Nature,1878,18(444):11-12.
    [7]Falconer, I.R. Toxic cyanobacterial bloom problems in Australian waters:risks and impacts on human health. Phycologia,2001,40(3):228-233.
    [8]Harada, K.I. Recent advances of toxic cyanobacteria researches. Journal of Health Science,1999,45(3):150-165.
    [9]Pouria, S., et al. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet,1998,352(9121):21-26.
    [10]Zimba, P.V., et al. Confirmation of catfish, Ictalurus punctatus (Rafinesque), mortality from Microcystis toxins. Journal of Fish Diseases,2001,24(1):41-47.
    [11]Penaloza, R., et al. Toxicity of a soluble peptide from Microcystis sp. to zooplankton and fish. Freshwater Biology,1990,24(2):233-240.
    [12]Chorus, I., Toxic cyanobacteria in water.1999:Spon.
    [13]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报,2005,25(3):589-595.
    [14]马祖友.蓝藻的生长生理特征及其竞争优势研究.2005,西北农林科技大学.
    [15]Bittencourt-Oliveira, M.C. Detection of potential microcystin-producing cyanobacteria in Brazilian reservoirs with a mcyB molecular marker. Harmful Algae,2003,2(1):51-60.
    [16]Saker, M.L.. et al. Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon,2005,46(5):555-562.
    [17]李原,张梅,王若南.滇池的水华蓝藻的时空变化.云南大学学报:自然科学版,2005.27(003):272-276.
    [18]Duy, T.N., et al. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. Reviews of environmental contamination and toxicology,2000,163:113-186.
    [19]Xie, L., et al. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environmental toxicology,2005,20(3):293-300.
    [20]Jones, G.J.,Orr, P.T. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water research,1994, 28(4):871-876.
    [21]Best, J.H., et al. Effects of enteric bacterial and cyanobacterial lipopolysaccharides. and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquatic toxicology,2002,60(3-4):223-231.
    [22]Yu, S.Z. Primary prevention of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology,1995,10(6):674-682.
    [23]Zambrano, F.,Canelo, E. Effects of microcystin-lr on the partial reactions of the Na+---K+ pump of the gill of carp (Cyprinus carpio linneo). Toxicon,1996, 34(4):451-458.
    [24]Falconer, I.R. Algal toxins and human health.1998.
    [25]狄留妹.微囊藻毒素对人体健康影响的研究.江苏预防医学,2002,13(003):5-6.
    [26]闫海,潘纲,张明明.微囊藻毒素研究进展.生态学报,2002,22(11):1968-1975.
    [27]Azevedo, S.M.F.O., et al. Human intoxication by microcystins during renal dialysis treatment in Caruaru--Brazil. Toxicology,2002,181:441-446.
    [28]陈刚,俞顺章.肝癌高发区不同饮用水类型中微囊藻毒素含量调查.中华预防医学杂志,1996,30(001):6-9.
    [29]俞顺章,赵宁.饮水中微囊藻毒素与我国原发性肝癌关系的研究.中华肿瘤杂志12001,23(002):96-99.
    [30]周伦,沈高飞.饮用水源中的微囊藻毒素与大肠癌发病的关系.中华预防医学杂志,2000,34(004):224-226.
    [31]Lin, Y.C.,Chen, J.C. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of experimental marine biology and ecology,2001,259(1):109-119.
    [32]Cheng, S.Y., Chen, J.C. Effects of nitrite exposure on the hemolymph electrolyte, respiratory protein and free amino acid levels and water content of Penaeus japonicus. Aquatic toxicology,1998,44(1-2):129-139.
    [33]Jensen, F.B. Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2003,135(1):9-24.
    [34]Kroupova, H., Machova, J.,Svobodova, Z. Nitrite influence on fish:a review. Veterinarni Medicina-Praha-,2005,50(11):461.
    [35]Bucher, F.,Hofer, R. The effects of treated domestic sewage on three organs (gills, kidney, liver) of brown trout (Salmo trutta). Water research,1993,27(2):255-261.
    [36]Chetty, C.S., et al. Tolerance limits and detoxification mechanisms in the fish Tilapia mossambica subjected to ammonia toxicity. Indian J. Fish,1980, 27:177-188.
    [37]Wajsbrot, N., et al. Chronic toxicity of ammonia to juvenile gilthead seabream Sparus aurata and related histopathological effects. Journal of fish biology,1993, 42(3):321-328.
    [38]Herzig, A. The analysis of planktonic rotifer populations:A plea for long-term investigations. Hydrobiologia,1987,147(1):163-180.
    [39]章宗涉,黄祥飞.淡水浮游生物研究方法.1995:科学出版社.
    [40]Chen, F.Z., Xie, P.. The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese lake. Journal of Freshwater Ecology. 2003,18(1):97-104.
    [41]DeMott, W.R., Zhang. Q.X., Carmichael, W.W.. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia Limnology and Oceanography,1991,36(7):1346-1357.
    [42]Ferr o-Filho, A.S., Azevedo, S.M.F.O.,DeMott. W.R. Effects of toxic and non-toxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshwater Biology,2000,45(1):1-19.
    [43]Gilbert, J.J. Susceptibility of planktonic rotifers to a toxic strain of Anabaena flos-aquae. Limnology and Oceanography,1994,39(6):1286-1297.
    [44]Rohrlack, T., Henning, M.,Kohl, J.G. Mechanisms of the inhibitory effect of the cyanobacterium Microcystis aeruginosa on Daphnia galeata's ingestion rate. Journal of plankton research,1999,21(8):1489-1500.
    [45]Specifications, S., Drain, T. American Society for Testing and Materials. Philadelphia:a." Standard Specifications for Concrete Aggregates,"(ASTM C 33-67),1970:15-21.
    [46]Rand, M.C., Greenberg, A.E., Taras, M.J.. Standard methods for the examination of water and wastewater.1976:Prepared and published jointly by American Public Health Association, American Water Works Association, and Water Pollution Control Federation.
    [47]Dave, G. Effects of waterborne iron on growth, reproduction, survival and haemoglobin in Daphnia magna. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1984,78(2):433-438.
    [48]Dave, G. Effects of copper on growth, reproduction, survival and haemoglobin in Daphnia magna. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1984,78(2):439-443.
    [49]Sweet, L.I.,Meier, P.G. Lethal and sublethal effects of azulene and longifolene to Microtox(R), Ceriodaphnia dubia. Daphnia magna, and Pimephales promelas. Bulletin of environmental contamination and toxicology,1997,58(2):268-274.
    [50]Fargasova, A. Determination of toxicity of plant growth regulators in selected aquatic organisms Daphnia magna and Tubifex tubifex. Biologia (Slovak Republic),1997,52(3):405-408.
    [51]Olmstead. A.W., LeBlanc, G.L. Low exposure concentration effects of methoprene on endocrine-regulated processes in the crustacean Daphnia magna. Toxicological Sciences,2001,62(2):268-273.
    [52]Gerritsen, A., van der Hoeven, N.,Pielaat, A. The Acute Toxicity of Selected Alkylphenols to Young and Adult Daphnia magna. Ecotoxicology and environmental safety,1998,39(3):227-232.
    [53]Behechti, A., et al. Acute aquatic toxicities of four musk xylene derivatives on Daphnia magna. Water research,1998,32(5):1704-1707.
    [54]Ramos, E.U., et al. Acute toxicity of polar narcotics to three aquatic species (Daphnia magna, Poecilia reticulata and Lymnaea stagnalis) and its relation to hydrophobicity. Chemosphere,1998,37(4):633-650.
    [55]Duvivier, L.,Girboux, P. Toxicity of ozone to fish larvae and Daphnia magna. Ecotoxicology and environmental safety,1998,41 (2):176-179.
    [56]Villarroel, M.J., et al. Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna. Chemosphere,2003,53(8):857-864.
    [57]Sanchez, M., et al. Evaluation of a Daphnia magna renewal life-cycle test method with diazinon. Journal of Environmental Science and Health, Part B,1998, 33(6):785-797.
    [58]Trapido, M.,Veressinina, Y. Use of the Daphnia magna test to estimate the toxicity of the ozonation by-products of phenols and chlorophenols. ATLA. Alternatives to laboratory animals,1999,27(3):425-431.
    [59]Gillespie Jr, W.B., et al. Chronic toxicity of a homologous series of linear alcohol ethoxylate surfactants to Daphnia magna in 21 day flow-through laboratory exposures. Environmental toxicology,1999,14(3):293-300.
    [60]Villegas-Navarro, A., et al. Determination of LC50 from Daphnia magna in treated industrial waste waters and non-treated hospital effluents. Environment international 1997,23(4):535-540.
    [61]Sturm, A.,Hansen, P.D. Altered cholinesterase and monooxygenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants. Ecotoxicology and environmental safety,1999,42(1):9-15.
    [62]Atienzar, F.A., et al. Qualitative assessment of genotoxicity using random amplified polymorphic DNA:comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo [a] pyrene. Environmental toxicology and chemistry,1999,18(10):2275-2282.
    [63]De Meester, L., Cousyn, C. The change in phototactic behaviour of a Daphnia magna clone in the presence of fish kairomones:the effect of exposure time. Hydrobiologia,1997,360(1):169-175.
    [64]Storz, U.C., Paul, R.J. Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,1998, 183(6):709-717.
    [65]Michels, E., De Meester, L. The influence of food quality on the phototactic behaviour of Daphnia magna Straus. Hydrobiologia,1998,379(1):199-206.
    [66]Borgeraas, J.,Hessen, D.O. UV-B induced mortality and antioxidant enzyme activities in Daphnia magna at different oxygen concentrations and temperatures. Journal of plankton research,2000,22(6):1167.
    [67]De Coen, W.M., Janssen, C.R., Segner, H. The use of biomarkers in Daphnia magna toxicity testing V. In vivo alterations in the carbohydrate metabolism of Daphnia magna exposed to sublethal concentrations of mercury and lindane. Ecotoxicology and environmental safety,2001,48(3):223-234.
    [68]Villarroel, M.J., et al. Effects of tetradifon on Daphnia magna during chronic exposure and alterations in the toxicity to generations pre-exposed to the pesticide. Aquatic toxicology,2000,49(1-2):39-47.
    [69]Gliwicz, Z.M.,Siedlar, E. Food size limitation and algae interfering with food collection in Daphnia. Arch. Hydrobiol,1980,88(2):155-177.
    [70]Liirling, M., Beekman, W. Growth of Daphnia magna males and females fed with the cyanobacterium Microcystis aeruginosa and the green alga Scenedesmus obliquus in different proportions. Acta hydrochimica et hydrobiologica,2006, 34(4):375-382.
    [71]Nizan, S., Dimentman, C., Shilo, M. Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna. Limnology and oceanography,1986, 31(3):497-502.
    [72]Thostrup, L.,Christoffersen, K. Accumulation of microcystin in Daphnia magna feeding on toxic Microcystis. Archiv fur Hydrobiologie,1999,145(4):447-467.
    [73]Gustafsson, S.,Hansson, L.A. Development of tolerance against toxic cyanobacteria in Daphnia. Aquatic Ecology,2004,38(1):37-44.
    [74]Cerbin, S., et al. Combined and single effects of pesticide carbaryl and toxic Microcystis aeruginosa on the life history of Daphnia pulicaria. Hydrobiologia, 643(1):129-138.
    [75]修瑞琴,高世荣,许永香.大型溞生物测试法对农药溴氰菊酯的毒性评价.卫生毒理学杂志,1990.
    [76]高世荣,修瑞琴.大型溞对氰法,锑冶炼碱渣的毒性评价.环境科学,1991,6.
    [77]钟赛贤,赵振新.钛对大型蚤(Daphnia magna)的毒性研究.环境与健康杂志,1993,10(005):219-220.
    [78]周永欣,成水平.五氯酚对大型水蚤的急性亚慢性和慢性毒性.动物学研究,1994,15(004):79-84.
    [79]谭渝云,孙美娟.大型蚤HB对五氯苯酚的富集与释放动力学研究.环境科学学报,1994,14(001):123-128.
    [80]傅迎春,修瑞琴.用大型水蚤来研究氟和砷离子对水环境的联合毒性作用.中国公共卫生学报,1994,13(004):206-208.
    [81]傅迎春,修瑞琴.氟与硒对大型蚤的联合毒性研究.中国环境科学,1995,15(004):280-283.
    [82]Bao, M.L., Dai, S.G., Pantani, F. Effect of dissolved humic material on the toxicity of tributyltin chloride and triphenyltin chloride to Daphnia magna. Bulletin of environmental contamination and toxicology,1997.59(4):671-676.
    [83]方东.楼霄.应用大型蚤监测有毒工业废水和毒物毒性.江苏环境科技,1995,8(003):18-21.
    [84]袁振华,查捷.杀螨脒对大型水蚤的毒性研究.农药,1994,33(006):27-28.
    [85]张欣,赵文,徐峰.三种除草剂对大型溞Daphnia magna存活,生长和繁殖的影响.农药学学报,2009,11(001):121-125.
    [86]汤保华,祝凌燕,周启星.五溴联苯醚(Penta-BDE)与重金属对水生无脊椎动物大型蚤Daphnia magna存活及其繁殖的联合毒性影响.中山大学学报:自然科学版,49(006):93-99.
    [87]杨赓,et al多效唑对大型蚤的慢性毒性研究.现代农药,2003,2(003):22-25.
    [88]何家菀,何振荣,郭琼林.有毒铜绿微囊藻对鱼和溞的毒性.湖泊科学,1997,9(1):49-56.
    [89]李效宇,张进忠.有毒铜绿微囊藻对大型溞生长和繁殖的影响研究.水产科学,2006,25(012):632-634.
    [90]张世羊,et al两种不同株铜绿微囊藻培养液对大型溞的毒性效应研究.水生生物学报,2008,32(005):637-642.
    [91]Chen, W., et al. Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LR. Environmental toxicology,2005,20(3):323-330.
    [92]吴永贵,et al不同氮形态对重金属Cu Zn Cd生物毒性效应的影响.农业环境科学学报,2006,25(006):1560-1565.
    [93]丁中海,et al丙烯酰胺对大型溞(Daphnia magna)的急性和慢性毒性.农村生态环境,2004,20(2).
    [94]王慧珠,et al.四环素和金霉索对水生生物的生态毒性效应.农业环境科学学报,2008,27(004):1536-1539.
    [95]周永欣,et al五氯酚对大型溞的急性亚慢性和慢性毒性.动物学研究,1994,14(1):123-128.
    [96]曲克明,王会平.化纤废水中主要污染物对大型蚤的急性毒性及联合毒性作 用.中国水产科学,2000,7(001):78-81.
    [97]徐立红,陈加平.用水毒理学方法评价家用洗涤剂的潜在危害.中国环境科学,2000,20(005):396-399.
    [98]于红霞,程静.漂白废水中关键有毒物质鉴别的实例研究.应用生态学报,2001,12(003):458-460.
    [99]程静,于红霞.生活与工业污水混合处理系统中关键毒物追踪.上海环境科学,2001,20(002):82-84.
    [100]杨光俊,et al利用多生物学指标评价宝应湖沉积物的环境质量.农村生态环境,2002,18(2):39-43.
    [101]高世荣,et al影响蚤类毒性试验因素的研究.解放军预防医学杂志,1989,7(1):9-13.
    [102]Noaksson, E., Environmental monitoring of refuse dump leachate toxicity in fish. 2003:Institutionen f r till mpad kommunikationsvetenskap-GI och IHR.
    [103]Emerson, K., et al. Aqueous ammonia equilibrium calculations:effects of pH and temperature. Journal of the Fisheries Research Board of Canada,1975,32: 2379-2383.
    [104]Rippka, R., et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology,1979,111(1):1.
    [105]郑微云,翁恩琪,环境毒理学概论.厦门:厦门大学出版社.1993,57-60.
    [106]Albert, A. Selective toxicity. Selective toxicity.,1965.
    [107]魏杰,赵文,李多慧.温度,盐度,非离子氨对不同驯化时间蒙古裸腹溞存活,生殖和种群增长的影响.大连海洋大学学报,2010,25(6):495-501.
    [108]Gersich, F.M., Hopkins, D.L. Site-specific acute and chronic toxicity of ammonia to Daphnia magna straus. Environmental Toxicology and Chemistry, 1986,5(5):443-447.
    [109]安育新,何志辉.氨对蒙古裸腹溞的毒性.大连水产学院学报,1996,4:19-26.
    [110]Thurston, R.V., Russo, R.C., Vinogradov, G.A. Ammonia toxicity to fishes. Effect of pH on the toxicity of the unionized ammonia species. Environmental science & technology,1981,15(7):837-840.
    [111]奚旦立.孙裕生.环境监测.1995:(第三版)[M].北京:高等教育出版社.
    [112]杨玉珍,王婷,马文鹏.水环境中氨氮危害和分析方法及常用处理工艺.山西建筑.(020):356-357.
    [113]Chen, J.C.,Chen, S.F. Accumulation of nitrite in the haemolymph of Penaeus monodon exposed to ambient nitrite. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1992,103(3):477-481.
    [114]Dave, G., Nilsson. E. Increased reproductive toxicity of landfill leachate after degradation was caused by nitrite. Aquatic toxicology,2005,73(1):11-30.
    [115]Train, R.E., Quality criteria for water.1979:Castrle House Pub.
    [116]Chambers, P.A., et al., Nutrients and their impact on the Canadian environment. 2001:Environment Canada.
    [117]Chevre, N., et al. Effects of dinoseb on the life cycle of Daphnia magna: Modeling survival time and a proposal for an alternative to the no-observed-effect concentration. Environmental Toxicology and Chemistry, 2002,21(4):828-833.
    [118]Sanchez, M., Andreu-Moliner, E., Ferrando, M.D. Laboratory investigation into the development of resistance of Daphnia magna to the herbicide molinate. Ecotoxicology and environmental safety,2004,59(3):316-323.
    [119]Hanazato, T. Growth analysis of Daphnia early juvenile stages as an alternative method to test the chronic effect of chemicals. Chemosphere,1998, 36(8):1903-1909.
    [120]Bodar, C.W.M., et al. Cadmium resistance in Daphnia magna. Aquatic toxicology,1990,16(1):33-39.
    [121]Forbes, V.E. Is hormesis an evolutionary expectation? Functional Ecology,2000, 14(1):12-24.
    [122]黄宁昌.镉对蚤状溲的毒性试验.水产养养,1994,(004):20-22.
    [123]Baird, D.J., et al. The Daphnia bioassay:a critique. Hydrobiologia,1989, 188(1):403-406.
    [124]Julli, M.,Krassoi, F.R. Acute and chronic toxicity of the thiocarbamate herbicide, molinate, to the cladoceran Moina australiensis Sars. Bulletin of environmental contamination and toxicology,1995,54(5):690-694.
    [125]Cochran, R.C., et al. Characterization of risks associated with the use of molinate. Regulatory toxicology and pharmacology,1997,25(2):146-157.
    [126]罗岳平,邱振华,李建国.用水溞监测水质.环境监测管理与技术,2002,14(1):12-16.
    [127]曹宏,黄玉瑶.单甲脒农药对蚤的毒性研究.环境科学学报,1998,18(001):96-99.
    [128]Qin, B., et al. Environmental issues of Lake Taihu, China. Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China,2007:3-14.
    [129]Buhl, K.J., Hamilton, S.J.,Schmulbach, J.C. Chronic toxicity of the bromoxynil formulation Buctril(R) to Daphnia magna exposed continuously and intermittently. Archives of Environmental Contamination and Toxicology,1993, 25(2):152-159.
    [130]Zalizniak, L.,Nugegoda, D. Effect of sublethal concentrations of chlorpyrifos on three successive generations of Daphnia carinata. Ecotoxicology and environmental safety,2006,64(2):207-214.
    [131]Camargo, J.A.,Alonso, a. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:A global assessment. Environment International,2006,32(6):831-849.
    [132]Feitz, A.J., et al. Photocatalytic degradation of the blue green algal toxin microcystin-LR in a natural organic-aqueous matrix. Environmental science & technology,1999,33(2):243-249.
    [133]Mohamed, Z.A. Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canals. Ecotoxicology and environmental safety,2001, 50(1):4-8.
    [134]Villarroel, M.J., et al. Effect of an acaricide on the reproduction and survival of Daphnia magna. Bulletin of environmental contamination and toxicology,1999, 63(2):167-173.
    [135]Dao. T.S., Do-Hong. L.C.,Wiegand, C. Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring. Toxicon,55(7):1244-1254.
    [136]Panesar, N.S.,Chan, K.W. Decreased steroid hormone synthesis from inorganic nitrite and nitrate:studies in vitro and in vivo. Toxicology and applied pharmacology,2000,169(3):222-230.
    [137]Cheng, S.Y., Chen, J.C. Effects of nitrite on the hemolymph electrolyte. respiratory protein and amino acid levels and water content of Penaeus japonicus. Aquatic Toxicology,1998,44:129-139.
    [138]Fernandez-Casalderrey, A., Ferrando, M.D.,Andreu-Moliner, E. Chronic toxicity of methylparathion to Daphnia magna:Effects on survival, reproduction, and growth. Bulletin of environmental contamination and toxicology,1995. 54(1):43-49.
    [139]Kotak, B.G., et al. Hepatic and renal pathology of intraperitoneally administered microcystin-LR in rainbow trout (Oncorhynchus mykiss). Toxicon,1996, 34(5):517-525.
    [140]Pinho, G.L.L., et al. Toxic effects of microcystins in the hepatopancreas of the estuarine crab Chasmagnathus granulatus (Decapoda, Grapsidae). Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2003, 135(4):459-468.
    [141]Sarnelle, O.,Wilson, A.E. Local adaptation of Daphnia pulicaria to toxic cyanobacteria Limnology and oceanography,2005,50(5):1565-1570.
    [142]Nandini, S.,Rao, T.R. Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacterium it Microcystis aeruginosa as food. Aquatic Ecology,1997,31(3):283-298.
    [143]Fernandez-Casalderrey, A., Ferrando, M.D.,Andreu-Moliner, E. Effects of endosulfan on survival, growth and reproduction of Daphnia magna. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,1993,106(2):437-441.
    [144]张舒,牛翠娟,殷旭旺.pH与氨的交互作用对壶状臂尾轮虫(Brachionus urceolaris)种群增长,繁殖及存活的影响. 生态学报,2008,28(010):4815-4822.
    [145]Sivonen, K. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Applied and environmental microbiology,1990,56(9):2658-2666.
    [146]Kungolos, A., et al. Interactive toxic effects of agrochemicals on aquatic organisms. Water science and technology,1999,40(1):357-364.
    [147]Gotvajn, A.Z., Zagorc-Koncan, J.,Tisier, T., Estimation of environmental impact of some of the most often occurring pesticides in Slovenian surface and underground water.2001:IWA Publishing.
    [148]Jarvis, A.C. Zooplankton community grazing in a hypertrophic lake (Hartbeespoort Dam, South Africa). Journal of plankton research,1986, 8(6):1065.
    [149]Hayashi, Y., et al. Reproduction recovery of the crustacean Daphnia magna after chronic exposure to ibuprofen. Ecotoxicology,2008,17(4):246-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700