用户名: 密码: 验证码:
矿用高压开关微机综合保护若干问题的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿生产机械化、自动化程度的不断提高,井下供电容量不断增大、电网电压不断提高,高压供电距离的不断增加,对煤矿井下供电系统可靠性、安全性和连续性的要求也越来越高。矿用隔爆高压馈电开关作为煤矿井下高压供电系统终端线路的主保护,对于电缆和变压器发生短路、过流、漏电和电缆损坏等故障起保护作用,从而保证其控制的整个高压线路的供电安全。
     但伴随着生产的飞速发展,安全与生产的矛盾日益突出。现有的技术装备已不能满足安全生产的要求,尤其是不能满足数字时代安全的要求。煤矿安全生产迫切要求更加可靠、灵敏、准确和安全的数字化产品装备。本文以此为背景,针对矿用高压开关综合保护研发中涉及到的若干问题进行了深入的研究。综合全文,论文工作取得了一些成果,对于进一步提升保护系统的性能,提高煤矿井下生产作业的安全性和供电自动化具有重要现实意义和经济价值。主要工作如下:
     对微机保护常用的算法进行了研究,重点针对电力系统故障时故障电流和电压所表现出的特征,提出了一种新的傅立叶改进算法,并对新算法的性能进行了多方面的仿真研究,理论分析和仿真结果表明:该算法可以很好的抑制故障信号中的衰减非周期分量,求出的幅值和相位具有较高的计算精度,为在继电保护中进行幅值和相位比较提供了依据。
     煤矿井下环境恶劣,信号容易受到各种干扰,因此需要对现场采集的各种信号进行预处理。本文提出了基于融合策略的改进粒子群算法,并运用于数字低通和带阻FIR滤波器的优化设计,仿真结果表明了算法的有效性,为系统保护信号的处理提供了一种新的方法。
     技术进步以及故障录波信息网的建立使大量故障暂态信息的利用成为可能,也为供电系统故障诊断提供了新的信息源——故障后电流、电压等暂态电气量。针对这些电气量隐含的故障特征,提出基于小波包特征提取的BP-PSO神经网络故障诊断方法,仿真结果验证了方法的有效性,对实现事故情况下科学调度、尽快排除故障、保证系统安全、稳定、经济运行具有重要现实意义。
     充分利用单片机丰富的位操作指令,提出一种按键状态识别算法并编制了程序,使用效果良好,可以有效防止由于按键的抖动而造成的误判。
     完成了保护系统的软硬件开发。首先用所设计的FIR低通和带阻数字滤波器用于对采集的信号进行预处理,得到满足算法要求电信号的谐波分量,之后通过运用改进傅氏算法实现了用于三相短路的“相敏保护”功能和用于选择性漏电的“基于零序电压电流五次谐波比相的漏电保护”功能,有效简化了硬件电路设计,使系统整体性能达到最优。
     最后给出了保护系统在某矿井的实际应用效果。对于提高采区供电系统保护动作的选择性和可靠性,改善采区供电质量,减少设备故障率,进而减少因故障频发而造成的无计划停电现象,具有重要意义。
With the development of coal production mechanization and automation, Power capacity, voltage and the supplying distance increase greatly. It needs the higher requirements of reliability, safety and continuity for mine power system. As the mainain protection of terminal line of high voltage power supply system in Underground mines, the high-voltage mining flame-proof feeder switch has the protect functions when in the faults of cable and transformer short-circuit, over-current, leakage and cable damage, etc.
     With the rapid development of production, the contradiction between production and safety is serious. The existing technology and equipment cannot satisfy the request of production safety, especially cannot meet the safety of digital era. Production safety in coal mine demands more reliable and sensitive, accurate and safe digital products and equipment. Under this background, we spread out research around the problems involved in the development of high-voltage switchgear digital protection system. The paper work have made some achievements which have practical significance and economic value to enhance the performance of the protection system, to improve production safety of coal mines and Power automation. The main jobs are as follows:
     The paper carry out research on the common algorithms in digital protection, especially focusing on the characteristics which the fault current and voltage shown under power system fault situations. And puts forward a new kind of fourier algorithm, theoretical analysis and simulation results shows that the new algorithm can effectively inhibit the decaying amperiodic components in the fault signals. The amplitude and phase computed have high precision which provide the basis for the amplitude and phase comparison in relay protection.
     In coal mine, the signals are interferenced easily, The signal pre-processing is necessary. This paper proposes an improved particle swarm algorithm based on fusion strategy, which used to optimize the lowpass FIR DF and stopband FIR DF. Simulation results show the effectiveness of the new method.
     The paper proposed the fault diagnosis method based on wavelet packet feature extraction and BP-PSO ANN. Simulation results demonstrate the validity of the proposed method.
     Make full use of the rich bit instructions in microcontroller, the paper proposed a new key state identification algorithm, the operation corresponding program shows the goog performance of the algorithm.
     Complete the hardware and software development of the protection system. First, use lowpass and stopband DF to preprocess the sampled data, then, use the proposed fourior algorithm to realize the Phase sensitive protection and the selective leakage protection. The software effective simplified the design of hardware circuit.
     Finally, Give a practical application of the protection system, the results are good. It has vital significance on improving the Selective and reliability of protection system, power supply quality and reducing equipment failure in mining area.
引文
[1]Jianguo Ruan, Jiajun Lin. The Application of FPGA in the Field of Relay Protection[J]. International Journal of Information Technology.2005,11(12):14-23
    [2]G. D. Rockfeller. Fault Protection with a Digital Computer[J]. IEE Trans, on PAS,1969, 88(4):68-71
    [3]B. J. Mann. Real Time Computer Calculation of the Impedance of a Faulted Single Phase Line[J]. Elec. Eng. Trans.1969, VEE4:468-471
    [4]Mustahsan Mir. Adaptive vs. conventional reach setting of digital distance relays[J]. Electric Power System Research.1997,(43):105-111
    [5]M. Kezunovic, X.Luo. Automated Analysis of Protective Relay Data[C].18th International Conference on Electricity Distribution. Turin,6-9 June 2005, Session No.3,1-5
    [6]Damir Novosel, David G.Hart, Eric Udren, Murari Mohan Saha. Fault Location Using Digital Relay Data[J]. IEEE Computer Applications in Power.1995, (6):45-50
    [7]D.V.Coury, D.C.Jorge. Artificial Neural Network Approach to Distance Protection of Transmission Lines[J]. IEEE Trans. Power Deliv.1988,13(1):102-108
    [8]S.Kang, S.Kim, K.Park, Y.Kang, J.Park. A digital distance relaying algorithm based on artificial neural networks[C]. Proceedings of the Symposium on Intelligent System Application to Power System. Seoul,Korea, July 1997,284-288
    [9]T.Dalstein, T.Friedrich, B.Kulicke, D.Sobajic. Multi neural network based fault aera estimation for high speed protective relaying[J]. IEEE Trans. Power Deliv.1996,11(2): 740-747
    [10]F.Zahra, B.Jeyasurya, J.E.Quaicoe. High-speed transmission line relaying using artificial neural networks[J]. Electric Power Systems Research.2000, (53):173-179
    [11]Song Y H, etal. Fuzzy logic Protection for Power systems [J]. Journal of Electricity,1994, 3:693-704
    [12]Wang, W. W. L. Keerthipala. Fuzzy-neuro approach to fault classification for transmission line protection[J]. IEEE Trans.on Power Delivery,1998,13(4):1093-1104
    [13]S. Websper, R. W. Dunn, R. K. Aggarwal, etal. Feature extraction methods for neural network-based transmission linefault discrimination[J]. IEE Proeeedings-C:Generation, Transmission and Distribution,1999,146(3):209-216
    [14]聂一雄,尹项根.人工智能与模糊控制在电力系统继电保护应用的研究现状及前景[J].电力系统及其自动化学报,2000,02:37-41,48
    [15]王静爽.煤矿电网微机监控测量保护系统[J].河北建筑科技学院学报.2002,19(1):49
    [16]崔景岳,刘思沛,聂文龙.煤矿供电[M].北京:煤炭工业出版社,1998.17-18,91-92
    [17]乔华,李绪展,徐明娥.矿用隔爆型低压馈电开关的现状及趋势[J].煤矿自动化.1997,4:23-26
    [18]陈艳丽.基于CAN总线的煤矿井下变电站实时监控系统[D].北京:北京交通大学,2007
    [19]贺家李,宋从矩.电力系统继电保护原理(增订版)[M].北京:中国电力出版社,2004
    [20]DCZB-X系列微电脑程序控制高压开关综合保护器使用说明书.北京:北京顺城电子技术公司,1999.
    [21]李建基.国外高压开关技术的新发展[J].江苏电器,2005,(5):46-48
    [22]Protection systems catalog.德国:SIMENS, Sip3.1,1999.
    [23]金立军,刘卫东,钱家骊.高压开关设备智能化发展综述[J].电网技术.2002,26(1):55-58
    [24]Bertil Lundqvist. Intelligent Switchgear and Information technology[C]. World Energy Conference, Sept.10-14,2000. Neptun Romania.1-7
    [25]刘忠富.高压防爆开关微机综合保护系统的研究[D].太原:太原理工大学,2003
    [26]A. N. Eliasen. High-inertia drive motors and their starting characteristics [J]. IEEE Trans. On Power:Apparatus and system, Vol. PAS-99, No.4 july/august,1980
    [27]黄纯,潘华,江亚群,王联群.一种消除非周期分量的交流采样数据修正法[J].继电器.2001,29(8):10-12
    [28]乐全明,杜俊红,吕飞鹏.一种改进的消除非周期分量交流采样数据修正法[J].继电器.2003,31(2):9-11
    [29]郝忠梅.智能型相敏保护在煤矿中的开发及应用[D].济南:山东农业大学,2003
    [30]孟润泉,梁翼龙,宋建成,李安平.基于谐波检测的井下高压电网选择性漏电保护系统[J].继电器.2001,29(5):37-40
    [31]邹有明.两种常用的漏电保护方式[J].煤矿机电.1995,(1):34-38
    [32]陈皓.微机保护原理及算法仿真[M].北京:中国电力出版社,2007.64-101
    [33]Qing Li, Nengchao Wang, Baochang Shi, Chuguang Zheng. Extendible look-up table of twiddle factors and radix-8 based fast Fourier transform[J]. Signal Prcessing.2002, (82): 643-648
    [34]P. Orlowski. Selected problems of frequency analysis for time varying, discrete-time systems using singular value decomposition and discrete Fourier transform[J]. Journal of sound and vibration.2004, (278):903-921
    [35]D.T. Fullwood, S.R. Kalidindi, S.R. Niezgoda, A. Fast, N. Harmpson. Gradient-based microstructure reconstructions from distributions using fast Fourier transforms[J]. Materials Science and Engineering.2008, A(494):68-72
    [35]Xiao-Long Wang, Peng-Lang Shui. Critically sampled and oversampled complex filter banks via interleaved DFT modulation[J]. Signal Processing.2008, (88):2878-2889
    [36]Satish Nagarajaiah, Nadathur Varadarajan. Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD[J]. Engineering Structures 2005,(27)431-441
    [37]陈皓.微机保护原理及算法仿真[M].北京:中国电力出版社,2007.64-101
    [38]S. Morshed, M. Pardavi-Horvath, S. Srinivasan. Identification of magnetic materials by discrete Fourier transform[J]. Physica B 2004, (343):20-25
    [39]M. Morhac, V. Matousek. Multidimensional nuclear spectra compression using fast adaptive Fourier-based transforms[J]. Computer Physics Communications.2005, (165): 127-138
    [40]Amir Averbuch, Yoel Shkolnisky.3D Fourier based discrete Radon transform[J]. Applied and Computational Harmonic Analysis.2003, (15):33-69
    [41]O.Rojo, H.Rojo. Constructing symmetric Nonnegative matrices via the fsat fourier transform[J]. Computers and Mathematics with Applications.2003, (45):1655-1672
    [42]姚亮,胡再超,杭泱.常见傅立叶变换的滤波性能分析[J].电力自动化设备.2008,28(1):73-76
    [43]Adly A.Girgis, W.Bin Chang, Elhan B.Makram. A digital recursive measurement scheme for on-line tracking of power system harmonics[J]. IEEE Transactions on Power Delivery. 1991,6(3):1153-1160
    [44]J.R. Blough. Development and Analysis of Time Variant Discrete Fourier Transform Order Tracking[J]. Mechanical Systems and Signal Processing.2003,17(6):1185-1199
    [45]Xu Guanlei, Wang Xiaotong, Xu Xiaogang. Fractional quaternion Fourier transform, convolution and correlation[J]. Signal Processing.2008, (88):2511-2517
    [46]Igor Djurovic, LJubisa Stankovic. Adaptive windowed Fourier transform[J]. Signal Processing.2003, (83):91-100
    [47]Stefan Franz, Sanjit K. Mitra, Gerhard Doblinger. Frequency estimation using warped discrete Fourier transform[J]. Signal Processing.2003, (83):1661-1671
    [48]Qian Kemao. A simple phase unwrapping approach based on filtering by windowed Fourier transform:A note on the threshold selection[J]. Optics & Laser Technology.2008, (40):1091-1098
    [49]郭浩.微机保护中的改进递推傅氏算法[J].农村电气化.2006,225(2):59-61
    [50]王建赜,杨梅,纪延超,柳焯.一种递推式单次谐波快速傅立叶算法[J].继电器.2003,31(5):14-15
    [51]万非.电参数测量系统的数字信号处理器[J].四川电力技术.2006,29(5):92-94
    [52]万非.电力系统电参数测量系统的DSP实现[J].电网技术.2002,26(1):55-58
    [53]Cooley J W, Tukey J W. An Algorithm for Machine Computation of Complex Fourier Serie [J]. Math Comput.1965,19(4):297-301
    [54]李长明,季涛.快速傅立叶变换在数字信号处理器中的实现[J].潍坊学院学报.2005,5(2):1-3
    [55]于海生,潘松峰,吴贺容.基于DSP复序列FFT和锁相原理的电参量检测[J].电网技术.2000,24(3):59-61
    [56]侯文清,张波,丘东元,李娟.基于DSP的电能质量检测与无功补偿综合测控装置[J].仪器仪表学报.2007,28(1):120-127
    [57]许德胜,曹阳,叶国雄,余春雨.基于DSP的电子互感器模拟量校验仪[J].高电压技术.2007,33(9):38-40
    [58]Jian Li, Xiaorong Xie, Jinyu Xiao, Jingtao Wu. The Framework and Algorithm of a New Phasor Measurement Unit[C]. IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies,2004, April HongKong,826-831
    [59]李跃华,堪贵辉.电力系统谐波和无功电流检测综述[J].电气应用.2006,25(11):87-89
    [60]郭亮,鹿剑,应昕.虚拟仪器技术在谐波检测系统中的应用研究[J].中国测试技术[J].2008,34(1):134-137
    [61]Wagner V E, Balda J C, et al. Effects of harmonics on equipment, Report of the IEEE Task Force on the Effects of Harmonics on Equipment[R]. IEEE Transactions on Power Delivery.1993,8(2):672-680
    [62]Subjak J S, MeQuilkin J S. Harmonics-causes, effects, measurements, and analysis:an update[J]. IEEE Transactions on Industry Applications.1990,26(6):1034-1042
    [63]Consolatina Liguori, Alfredo Paolillo, Alfonso Pignotti. An Intelligent FFT Analyzer with Harmonic Interference Effect Correction and Uncertainty Evaluation[J]. IEEE Transaction on Instrumentation and Measurement.2004,53(4):1125-1131
    [64]Francisco Jurado, Jose R. Saenz. Comparison between discrete STFT and wavelets for the analysis of power quality events[J]. Electric Power Systems Research.2002, (62):183-190
    [65]M.EI-Habrouk, M.K.Darwish. Design and implementation of a modified Fourier analysis harmonic current computation technique for power active filters using DSPs[C]. IEE Proc.-Electr.2001,148(5):21-28
    [66]Sanae Rechka, EloinNgandui, Jianhong Xu, Pierre Sicard. Performance evaluation of harmonics detection methods applied to harmonics compensation in presence of common power quality problems[J]. Mathematics and Computers in Simulation.2003, (63): 363-375
    [67]Jain V K, Collins W L, Davis D C. High-accuracy analog measurements via interpolated FFT[J]. IEEE Trans on Instrum Meas.,1979,28(6):113-122
    [68]Grandke T. Interpolation algorithms for discrete Fourier transforms of weighted signals[J]. IEEE Trans on Instrum Meas.,1983,32(6):350-355
    [69]Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J].Proc.IEEE,1978,66(1):51-83
    [70]Andria G, Savino M, Trotta A. Windows and interpolation algorithms to improve electric measurement accuracy[J]. IEEE Trans on Instrum.Meas.,1989,38(8):856-863.
    [71]Fusheng Zhang, Zhongxing Geng, Wei Yuan. The Algoriyhm of Interpolating Windowed FFT for Harmonic Analysis of Electric Power System[J]. IEEE Transactions on Power Delivery.2001,16(2):160-164
    [72]Chen Ming Tang. A hybrid digital algorithm for harmonic and flicker measurements[J].Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, vol2,2002,1488-1493
    [73]Surya Santoso, W.Mack Grady, Edward J.Powers, Jeff Lamoree, Siddharth C.Bhatt. Characterization of Distribution Power Quality Events with Fourier and Wavelet Transforms[J]. IEEE Transactions on Power Delivery.2000,15(1):247-254
    [74]向东阳,王公宝,马伟明,张文博.基于FFT和神经网络的非整数次谐波检测方法[J].中国电机工程学报.2005,25(9):35-39
    [75]WANG Gong-bao, XIANG Dong-yang, MA Wei-ming. Improved Algorithm for Non-integer Harmonics Analysis Based on FFT Algorithm and Neural Network[J]. Proceedings of the CSEE.2008,28(4):102-107
    [76]Cichocki A, Lobos T. Artificial neural networks for real-time estimation of basic waveforms of voltages and currents[J]. IEEE Trans, on Power Systems.1994,9(2): 612-618
    [77]Ming Tang Chen, Chen-wen Lu. An effective hybrid algorithm for the simultaneous measurements of harmonic and flicker to frequency variation[J].International Conference on Power System Technology.2004,491-495
    [78]Nguyen T T. Parametric harmonic analysis[of power systems][C].Generation, Transmission and Distribution, IEE Proceedings,1997,144(1):21-25
    [79]Yacamini R. Power system harmonics. IV. interharmonics[J]. Power Engineering Journal, 1996,10(4):185-193
    [80]IEEE Interharmonic Task Force, Cigre 36.05/CIRED 2 CC02 Voltage Quality Working Group. Interharmonics in Power Systems.1997
    [81]Chun Li, Wilsun Xu, Thavatchai Tayjasanant. Interharmonics:basic concepts and techniques for their detection and measurement[J]. Electric Power Systems Research. 2003, (66):39-48
    [82]Chun Li, Wilsun Xu. On the Ambiguity of Definig and Measuring Inter-Harmonics[J]. IEEE Power Engineering Review.2001,56-57
    [83]李斌,李永丽,贺家李.一种提取基波分量的高精度快速滤波算法[J].电力系统自动化.2006,30(10):39-43
    [84]Ying-Hong Lin, Chih-wen Liu. A new DFT-based phasor computation algorithm for transmission line digital protection[J].
    [85]Jyh-Cherng Gu, Sun-Li Yu. Removal of DC offset in current and voltage signals using a novel fourier filter algorithm[J]. IEEE Transactions on Power Delivery.2000,15(1): 73-79
    [86]Sun-Li Yu, Jyh-Cherng Gu. Removal of Decaying DC in current and voltage signals using a modified fourier filter algorithm[J]. IEEE Transactions on Power Delivery.2001,16(3): 372-379
    [87]Yong Guo, Mladen kezunovic, Deshu Chen. Simplified algoriyhms for removal of the effect of exponentially decaying DC-Offset on the Fourier Algorithm[J]. IEEE Transactions on Power Delivery.2003,18(3):711-717
    [88]张毅.微机线路综合测控保护装置的研究与开发[D].天津:天津大学,2005
    [89]梁小民.加窗傅立叶变换谐波检测算法及其插值改进研究[J].电力科学与技术学报.2007,22(3):36-40
    [90]周大敏.一种消除非周期分量对非递推富氏算法影响的精确方法[J].继电器.1998,26(4):7-11
    [91]毕莹,刘小河.基于单片机的谐波检测仪的设计[J].现代电子技术.2007,269(6):161-164
    [92]苏文辉,李钢.一种能滤去衰减直流分量的改进全波傅氏算法[J].电力系统自动化.2002,26(23):42-44
    [93]丁书文,张承学,龚庆武,等.半波傅氏算法的改进——一种新的微机保护交流采样快速算法[J].电力系统自动化.1999,23(5):18-20
    [94]侯有韬,张举.一种滤除衰减直流分量的快速算法[J].继电器.2004,32(6):6-8
    [95]马磊,王增平,徐岩.微机继电保护中滤除衰减直流分量的算法研究[J].继电器.2005,33(17):11-13
    [96]熊岗,陈陈.一种能滤除衰减直流分量的交流采样新算法[J].电力系统自动化.1997,21(2):24-26
    [97]黄恺,孙苓生.继电保护傅氏算法中滤除直流分量的一种简便算法[J].电力系统自动化.2003,27(4):50-52
    [98]苏健,孔凡坊.电力信号中抑制衰减直流分量算法的研究[J].研究与分析.2007,35(12):9-12
    [99]李孟秋,王耀南,王辉.基于全周波富氏算法滤除衰减直流分量新方法[J].湖南大学学报(自然科学版).2001,28(1):59-63
    [100]黄纯,潘华,江亚群,王联群.一种消除非周期分量的交流采样数据修正法[J].继电器.2001,29(8):10-12
    [101]乐全明,杜俊红,吕飞鹏.一种改进的消除非周期分量交流采样数据修正法[J].继电器.2003,31(2):9-11
    [102]陈海滨,王增平,徐岩等.校正交流采样数据滤除非周期分量的实用算法[J].电力
    科学与工程.2007,23(2):5-8
    [103]刘辉乐,陈皓,黄志华.一种消除非周期分量的牛顿递推采样值修正法[J].继电器.2004,32(17):28-30
    [104]唐建辉,吴在军,胡敏强.一种精确滤除衰减非周期分量的新算法[J].继电器.2005,33(11):14-17
    [105]中国煤炭工业劳动保护科学技术学会刊受进修部.矿井供电安全.1987.(4):47-64.
    [106]何志勤,樊江涛.基于MATLAB的全波傅氏算法仿真[J].华东交通大学学报.2006,23(1):113-116
    [107]Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Network, Perth, Australia,1995:1942-1948
    [108]Shi Y, Eberhart RC. A modified swarm optimizer[A].IEEE International Conference of Evolutionary Computation[C].Anchorage, Alaska,1998:69-73.
    [109]Robinson, Y Rahmat-Samii. Particle swarm optimization in Electronmagnetics[J].IEEE Trans Antennas Propag,2004,52(2):397407.
    [110]常桂娟.改进粒子群算法在作业车间调度问题中的应用[J].四川师范大学学报(自然科学版).2009,32(1):139-142
    [111]CarlisleA, DozierG. An off-the-shelf PSO[J]. Proceedings of the Workshop on Particle Swarm Optimization,2001:1.
    [112]王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-197.
    [113]Bergh F V. An analysis of particle swarm optimizers[D]. South Africa:University of Pretoria,2001
    [114]Eberhart R C, Shi Yuhui. Particle Swarm Optimization:Developments, Applications and Resources[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, USA:IEEE Service Center,2001:81-86.
    [115]Shi Yuhui, Eberhart R. Parameter Selection in Particle Swarm Optimization[C]. Proc. of the 7th Annual Conf on Evolutionary Programming. Washington DC,1998:591-600
    [116]杜小凯,任青文等.基于APSO-BP耦合算法的岩体力学参数反馈研究[J].中国矿业大学学报,2008,37(6):756-762
    [117]ASANGA R, SAMAN K H, HARRY C W. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans on Evolutionary Computation,2004,8(3):240-255.
    [118]Zhang Q, Mahfouf M. A new structure for Particle Swarm Optimization(nPSO)applicable to single objective and multiobjective problems[C]//3rd International IEEE Conference on Intelligent Systems, September 2006
    [119]王博,胡成玉,王永骥.基于GAs/PSO组合算法的水轮机调速系统PID参数寻优[J].华东理工大学学报,2006,32(7):893-896
    [120]Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[J]. Institute of Electrical and Electronics Engineers,2001, (5):101-106
    [121]Immanuel Selvakumar, K. Thanushkodi. A New Particle Swarm Optimization Solution to Nonconvex Economic Dispatch Problems[J]. IEEE Transactions on Power Systems, 2007,22(1):42-51
    [122]Eberhart R C, Shi Y. Comparison between genetic algorithms and particle swarm optimization[J]. Lecture Notes in Computer Science,1998, (1447):611-616
    [123]Robinson J, Sinton S, Rahmat-Samii Y. Particle swarm optimization, genetic algorithm, and their hybrids:Optimization of a profiled corrugated horn antenna[J]. IEEE Antennas Propag Soc APS Int Symp,2002, (1):314-317
    [124]Angeline P J. Evolutionary optimization versus particle swarm optimization:Philosophy and performance differences[C]. Evolutionary Programming Ⅶ,1998:601-610.
    [125]Kennedy J, Spears W. Matching Algorithms to Problems:an Experimental Tests of the Particle Swarm and Some Genetic Algorithms on the Multimode Problem Generator[C]. IEEE international Conference on Evolutionary Compution,Anchorage,Alaska,USA,1998.
    [126]Eberhart R C, Kennedy J.Swarm Intelligence[C]. Morgan Kaufmanns,2001.
    [127]Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations[J]. Institute of Electrical and Electronics Engineers,2001, (7):115-118
    [128]王芳,邱玉辉.一种引入轮盘赌选择算子的混合粒子群算法[J].西南师范大学学报,2006,31(3):93-96.
    [129]王芳,丁海利,高成修.改进的粒子群优化算法在随机需求车辆路径问题中的应用[J].武汉大学学报(理学版),2007,53(1):41-44
    [130]Higashi N, Iba H. Particle swarm optimization with Gaussian mutation[J]. Institute of Electrical and Electronics Engineers,2003, (4):72-79
    [131]Angeline P J. Using selection to improve particle swarm optimization[J]. Institute of Electrical and Electronics Engineers,1998, (5):84-89
    [132]SUN Jun, XU Wenbo. A global search strategy of quantum-behaved particle swarm optimization[C]. proceedings of IEEE Conference on Cybernetics and Intelligent Systems, [SI],2004:111-116.
    [133]SUN Jun, FENG Bin, XU Wenbo. Particle swarm optimization with particles having quantum behavior[C].proceedings of 2004 Congress on Evolutionary Computation, [S1], 2004:325-331.
    [134]Jiang Chuanwen, Etorre B. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization[J]. Mathematics and Computers in Simulation,2005,68(1):57-65
    [135]Jiang Chuanwen, Etorre B. A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment J]. Energy Conversion and Management,2005,46 (17):2689-2696
    [136]刘洪武,冯全源.MC-CDMA系统中基于粒子群算法的多用户检测[J].系统工程与电子技术,2008,30(8):1553-1556
    [137]Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Trans, on Evolutionary Computation,1997, 1(1):67-82.
    [138]Peram T, Veeramachaneni K, Mohan C K. Fitness-distance-ratio based particle swarm optimization[C].Proc. of the IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, USA,2003:174-181.
    [139]Baskar S, Suganthan P N. A novel concurrent particle swarm optimization[J].IEEE Congress on Evolutionary Computation, Portland, Oregon, USA,2004,1:792-796.
    [140]程志刚,张立庆等.基于Tent映射的混沌混合粒子群优化算法[J].系统工程与电子技术,2007,29(1):103-106
    [141]王浩.四种智能算法的比较研究[J].火力与指挥控制,2008,33(S):71-75
    [142]J H Mcclellan, T W Parks. A Unified Approach to the design of Optimal FIR Linear-Phase
    Digital Filters[J]. IEEE Trans on Circuit Theory,1973, CT(20):697-701
    [143]焦邵华.电网智能保护新技术的研究[D].北京:华北电力大学,2000
    [144]I. Daubeehies著,李建平,杨万年译.小波十讲[M].国防工业出版社,2004
    [145]陈长升,黄险峰.基于小波变换抗混叠谐波检测的一种新方法[J].电力系统保护与控制,2008,30(1):74-79
    [146]卞学广.基于FFT和小波变换的电力系统谐波检测方法研究[D].济南:山东科技大学,2007
    [147]ANTOINE J P, BARACHE D, CESAR R M Jr, et al. Shape Characterization with the Wavelet Transform [J]. Signal Processing,1997,62(3):265-290
    [148]张艳霞.微机保护自适应算法和暂态特征量算法的研究[D].天津:天津大学,2002
    [149]Patton R J, Chen J, Siew T M. Fault diagnosis in non-linear dynamic systems via neural networks [C]//Proc. IEEE Int. Conf. Control94, Coventry, UK,1994,1:1346-1351.
    [150]Aygen Z E, Seker S, Bagriyanik M, et al. Fault section estimation in electrical power systems using artificial neural network approach[C]//IEEE Transmission and Distribution Conference,1999(1):466-469.
    [151]Martin T. Hagan, Howard B. Demuth, Mark H. Beale.神经网络设计[M].北京:机械工业出版社,2002.206-207
    [152]张长勇,李志刚,刘子胥,李玲玲.基于PROFIBUS-DP总线电动机保护器的开发[J].河北工业大学学报.2005,34(5):23-26
    [153]杨晓玲,王克明,苏玮.单片机系统中标志位的应用[J].控制工程.2007,14(4):419-424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700