用户名: 密码: 验证码:
气井井下气液分离回注技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气井生产应用井下气水分离技术可将气井的产出水直接在同井中回注,该项技术具有良好的经济效益和环保效果。本文首次提出采用螺旋旋流分离器进行井下气水分离,独创性地设计了一套采用螺旋旋流分离器将气水分离后注入同井水层的工艺系统。
     首先,结合常规气井排液工艺方法提出了采用螺旋旋流分离器进行井下气水分离的合理性。首次以螺旋分离器的螺距、螺旋圈数,以及液流和气流的流量等因素作为影响分离器的工作性能与分离效率的基本参数。
     其次,推导出实际的气液分离流场中分散相液滴的聚并计算公式;提出了天然气井积液诊断方法并编制了井筒积液预测软件;确定不同直径颗粒在不同加速度下所需螺距及螺旋圈数,为螺旋分离器设计提供了理论依据。
     再次,分析确定了Reynolds应力模型(RSM)为最适合螺旋旋流分离器分离性能数值模拟研究的湍流模型;针对设计的十一个模型应用FLUENT软件分别模拟了单相气体流场与气液两相流场,详细研究了结构参数变化对螺旋结构内气相湍流流动的影响关系以及影响分离器分离效率的影响因素。由结果分析得出了分离器螺距、螺旋圈数与分离器压降、截面压降、速度分布及分离效率之间的关系。重点讨论了结构参数与压降之间的关系:即在固定相同的入口速度与分离器螺旋圈数的情况下,螺距的大小与气体经过分离器产生的压降成反比;当螺距不变时,入口速度越大,气体经过分离器产生的压力降也越大;在相同的螺距长度下,分离器螺旋圈数越多,压力降越大。也可以看出入口流速对流场内过流断面气相速度分布影响较大。对分离器内气液两相流动模拟研究发现,在螺距、颗粒直径相同条件下,螺旋圈数越多,颗粒在分离器中分离效率越高。在螺旋结构相同条件下,颗粒直径越大越容易分离。根据数值模拟结果分析,得出最佳螺旋结构为Case1,即螺距为D1,螺旋圈数为N1。本文还自行设计了螺旋旋流分离器室内实验架,结合生产实际参数与数值模拟分析结果,证实了螺距为D1、螺旋圈数为N1的螺旋旋流器具有较好的气—水分离效果,分离效率在90%以上。
     最后,本文成功设计出螺旋旋流分离器分别结合螺杆泵与电潜泵两套井下气水分离回注装置,设计编制了井下气水分离回注生产系统设计软件。同时选取胜利油田水淹气井,采用螺旋旋流气液分离与螺杆泵增压进行同井回注现场试验,取得显著效果。
This paper presents application of downhole gas-water separation technology can be output of water directly into the same well water recharge in gas well production. In this paper, put forward the use of spiral hydrocyclone for underground gas and water separation by the first time. Original design of a set of spiral hydrocyclone used to inject water and gas separation process with the well water system layer. The result shows that:
     First of all, the paper bring forward that using spiral cyclone separator for downhole gas-water separation is reasonable combination of conventional gas-well processes. The paper make the pitch of spiral separator, the number of spiral,as well as liquid flow and gas flow as the basic structure parameters impacting the performance and efficiency of separation in the first time.
     Second, the formula of droplet coalescence is derived by gas-liquid separation of flow field from the actual flow field. At the same time, the paper attempt to put forward the diagnosis of effusion of natural gas wells and the preparation of the wellbore fluid prediction software. Combination of underground conditions at the actual situation, it determines the pitch of spiral separator and the number of spiral under different acceleration of diameter of particle and founds the theoretical basis of spiral separator.
     Third, the paper analyzes the Reynolds Stress Model (RSM) as the most suitable model for the numerical simulation of turbulence. For 11 models parameters, respectively, it uses FLUENT software to simulate the single-phase of gas flow field and gas-liquid of two-phase flow field, and detailed study the relationship: the changes of structural parameters of spiral separator and the turbulent gas flows as well as the impact of separation efficiency factors. Results are obtained that the pitch, the number of spiral has relationship with separator pressure drop, cross-section pressure drop, velocity’s distribution and separation efficiency. As pressure drop is the important parameter of hydrocyclone energy consumption, so the structural parameters and the the pressure drop’s relationship is focused on the paper. The result shows that: when the speed of entrance and the number of spiral are fixed,the smaller the pitch, the greater the pressure drop with gas go through the separation; the greater the pitch, the smaller the pressure drop. When the pitch is fixed, the speed of entrance is greater, the pressure drop that gas pass the separator is greater. On the other hand when the pitch is not changed, the number of spiral is greater, the pressure drop is greater. At the same time, the law of pressure drop in cross-section is same with the whole separator by the simulation results. Also by the simulation results it can be seen that the velocity of entrances has greater impact on the velocity distribution in cross-section. The simulation study of gas-liquid separator and structure parameters and operating parameters of the relationship found that the number of spiral is more ,particles in the separator to isolate the time longer, higher separation efficiency when the pitch, particle diameter are under the same conditions. Under the structure in the same conditions, diameter of particles is larger, gas-liquid separated is more easily. According to single-phase of gas and gas-liquid two-phase analysis of simulation results, while overall energy consumption efficiency and separation factors, the paper obtains the best structure of Case1, that is, pitch for D1, the number of spiral for N1.
     This article also design spiral hydrocyclone laboratory frame, combined with the actual parameters of the production and results of numerical simulation, through experiments, confirmed the pitch for D1, the number of spiral for N1 has a good gas - water separation efficiency that the separation efficiency is more than 90%.
     Finally, the paper give the success of the design of the first: spiral hydrocyclone combination of helical screw pump, respectively, spiral hydrocyclone combination of electric submersible pump.With the combination of the two sets of downhole gas-water separation devices, it design software of underground gas-water separation and injection. At the same time, the paper select a wells in Shengli Oilfield, the use of gas-liquid separator with spiral frame and helical screw pump injection in field test, it achieved remarkable results.
引文
[1]林宗虎.气液两相流和沸腾传热.第1版.西安:西安交通大学出版社,2003: 448-457.
    [2] C.U.伊克库.天然气开采工程.第1版.北京:石油工业出版社,1990: 250-269.
    [3]张琪.采油工程原理与设计.第1版.东营:石油大学出版社,2002: 33-41.
    [4]钱凯.中国天然气资源.第1版.北京:石油工业出版社,1999: 151-152.
    [5]何鲜.国外深层气藏开采技术.第1版.北京:石油工业出版社,2001: 1-8.
    [6]杨继盛.采气工艺基础.第1版.北京:石油工业出版社,1992: 329-375
    [7] Bradley D. The Hydrocyclone. Pergamon Press. Oxford, U. K. 1965:34-78.
    [8] Kutepov A.M.,Lagutkin M.G.,et al. Mathods for improving hydrocyclone design[J]. Chemical and Petroleum Engineering, 1992, 27(7):419-422.
    [9] Rietema K. Performance and design of hydrocyclones. Chem. Eng. Sci.1961:298-325.
    [10] Svarovsky L. Hydrocyclones. London:Holt,Rinehart and Winston, 1984.
    [11] Upadrashat K.R.,Ketcham V.J., et al. Tangential velocity profile for pseudo-plastic power-low fluids in the hydrocyclone. A theoretical derivation[J]. Int J of Miner Process,1987,20(6):309-318.
    [12] Davidson M.R. Numerical model of liquid-solid flow in a hydrocyclone with high solid fraction. Numerical Methods in Multiphase Flow ASME, Fluids Engineering Division. 1994,29-38.
    [13] Rajamani K. and Hsieh K.T. Hydrocyclone model: a fluid mechanic approach. Society of Mining Engineers of ASME. 1988.
    [14] Hsieh K.T. and Rajamani K. Phenomenological model of the hydrocyclone: Model development and verification for single-phase flow[J]. Int. J Miner Process, 1988, 22(8): 223-237.
    [15] Monredon T.C., Hsieh K.T. and Rajamani K. Fluid flow model of the hydrocyclone: an investigation of device dimensions[J]. Int. J Miner Process, 1992, 35(4):65-83.
    [16]. Zhou L.X. and Soo S.L. Gas-solid flow and collection of solids in a cyclone separator[J]. Power Technology, 1990, 63(2): 45-53.
    [17]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991:238-418
    [18] Duggins R.K. and Frith P. Turbulence anisotropy in cyclones[J]. Filtration and Separation, 1987, 24(6): 394-397.
    [19] Dyakowski T. and Willianms R.A. Modelling turbulent flow within a small-diameter hyrocyclone[J]. Chem Eng Sci, 1993,48(6): 1143-1152.
    [20] Boysan F. Ayer W.H., et al. A fundamental mathematical modeling approach to cyclone design[J]. Trans ICHEME, 1982,60: 222-230.
    [21] Hargreaves J.H. and Silvester R.S. Computation fluid dynamics applied to the analysis of deoiling hydrocyclone performance[J]. Trans ICHEME, 1990,68: 365-383.
    [22]张军,陈听宽等.环空管内气液两相流流型研究进展[J].油气井测试,1999;8(4): 63~68
    [23]陈义良.更通用k ?ε湍流模型[J].工程热物理学报,1990,11(3): 328-334.
    [24] Patankar S.V. and Spalding D.B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int. Heat Transfer, 1972, 22(5): 24-30.
    [25]王少平.用RNG k ?ε模型数值模拟弯道内的湍流分离流动[J].力学学报,1996,28(3):257-263. 1800
    [26] Speaiale C.G. and Thangam S. Analysis of an RNG based turbulence model for separated flows[J]. International Tournal Engineering Science, 1992, 30(2): 1379-1388.
    [27] Smith L.M. and Retnolds W.C. On the yakhot-Orszag renormalization group method for deriving turbulence statics and models[J]. Physis of Fluid A, 1992, 4(4): 364-390.
    [28]杨启明.国外井下气液分离采气新技术研究现状分析[J].天然气工业,2001, 21(2): 85-88.
    [29]邓志安等.重力式油气水分离场中液滴沉降速度模型分析[J].石油学报, 1999, 20(1): 82-87.
    [30]马卫国等.油水分离水力旋流器的研究与应用综述[J].国外石油机械, 1995, 6(2): 71-76.
    [31]李海金等.最新设备解决生产难题[J].国外石油机械, 1998, 9(3): 36-43.
    [32]周永等.油水分离技术研究之一:直管和螺旋管的数值模拟[J].水动力学研究与进展, 2004, 19(4): 540-546.
    [33] Hoxar, David. Separator plates put sludge in a spin[J]. Filtration and Separation, 2000, 37(8): 32-33.
    [34] Markov V.A., Volk A.M., et al. Liquid flow through holes in the wall of a direct-flow centrifugal component[J]. Journal of Engineering Physics, 1992, 61(1): 837-877.
    [35]周帼彦.螺旋片导流式分离器气液两相流的数值模拟与试验研究:[D],南京工业大学,南京:2003.
    [36]邓志安,袁敏,徐建宁.重力式油气水分离场中液滴沉降速度模型分析[J].石油学报, 1999, 20(1): 83-87.
    [37]李晓平,赵必荣.气水两相流井产能分析方法研究[J].油气井测试, 2001, 10(4):8-10.
    [38]章梓雄,董曾南.粘性流体力学.北京:清华大学出版社, 1998: 13-30.
    [39] Marzio Piller, Enrico Nobile, and J. Thomas. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J]. Journal of Fluid Mechanics, 2002, 31(5): 289-315.
    [40] P. Rollet-Miet, D. Laurence, and J. Ferziger. LES and RANS of turbulent flow in tube bundles[J]. International Journal of Heat and Fluid Flow, 1999, 20(3): 241-254.
    [41]苏铭德,黄素逸.计算流体力学基础.北京:清华大学出版社, 1997:77-230.
    [42] Huamo W. New accurate high resolution TVD schemes analysis and application. International Symposium on CFD, Nagoya, 1989.
    [43] Yee H.C., Warning R F. and Harten A. Implicit total variation diminishing (TVD) schemes for steady-state calculations. NASA TM-84342, 1983.
    [44] Papantonis D.E. and Athamassiadis N.A. A numerical body-fitted coordinate systems with direct determination of grid points on the boundary[J]. Int. J. Numerical Methods in Fluids, 1985, 5(2): 245-255.
    [45] Oden J T. Progress in adaptive methods in computational fluid dynamics. Philadelphia: SIAM Publication, 1989: 206-252
    [46] Karki K.C. and Patankar S.V. Calculation procedure for viscous incompressible flows in complex geometries[J]. Numerical Heat Transfer, 1988,14(5): 295-307.
    [47]张涵信.无波动、无自由参数的耗散差分格式.空气动力学学报, 1988, 6(2): 143-165.
    [48]李松波.耗散守恒格式理论.北京:高等教育出版社, 1997:68-90.
    [49]蔡晋生,罗时钧. Navier-Stokes方程模拟湍流非对称脱体涡流动[J].数值计算与计算机应用, 1996, 2(2): 140-145.
    [50] Murthy J Y. and Mathur S. Periodic flow and heat transfer using unstructured meshes[J]. Int. J. Numerical Methods in Fluids,1997, 25(6): 659-677.
    [51]蔡树棠,刘宇陆.湍流理论.上海:上海交通大学出版社, 1999:210-332.
    [52] Launder B.E. and Spalding D.B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 13(3): 269-289.
    [53] Chirin F. J. Computational Fluid Mechanics, California: Academic Press, Inc.,1989.
    [54] Kardestuncer H. and Horrie D H. Finite Element Handbook. New York: McGraw-Hill, Inc., 1987.
    [55] S.V. Codinar. Numerical Heat Transfer and Fliud Flow. Washington: Hemisphere,1980
    [56] P. Pelletier and K. Pericleous. A natural extension of the conventional finite volumemethod into polygonal unstructured meshes for CFD application[J]. App. Math. Modelling, 1996, 20(5): 170~183.
    [57]吴江航,韩庆书.计算流体力学的理论、方法及应用.北京:科学出版社, 1988.
    [58]陈景仁.湍流模型及有限分析法.上海:上海交通大学出版社, 1988:468-501.
    [59]帕坦卡.传热与流体流动的数值计算.北京:科学出版社, 1984:24-68.
    [60] Leonard B P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comp. Meths. Appl. Mech. Eng.,1979.
    [61] Zuber N. and Findlay J A. Average volumet ric concent ration in two-phase flow systems [J]. Trans of the ASME, 1965 , 87: 453-468.
    [62] Ishii M. The two2fluid dynamic theory of two-phase flow[M]. Paris: Eyrolles ,1975.
    [63] Gomez L E. Dispersed two-phase swirling flow characterization for predicting gas carry-under (Dissertation of the degree of Doctor) [D] . The University of Tulsa ,2001.
    [64] Griffiths W D. and Boysan F. Computational fluid dynamics(CFD) and empirical modelling of the performance of a number of cyclone samples[J]. J . Aerosol Sci, 1996, 27 ( 2 ): 281-304.
    [65]赵炜等.螺旋式油气分离器的研究与试验[J].国外石油机械, 1998,9(2): 35-40.
    [66]薄启炜等.螺旋式井下油气分离器设计与分析[J].石油机械, 2003, 31(1): 8-10.
    [67]曲占庆,张琪,李恒等.井下油水分离系统设计及地面监测模型研究[J].西安石油大学学报, 2006, 21(3): 34~37.
    [68]李自力.除油水力旋流器流动规律及分离性能数值模拟研究:[D],石油大学,山东东营: 2002.
    [69]周帼彦等.螺旋片导流式分离器压力简化计算[J].化学工程, 2004, 32(2): 24-28.
    [70]高鹏.离心分离在油气工业的应用日渐广泛[J].中国海上油气(工程), 1999, 11(4):29-33.
    [71]赵炜等.井下油(气)水分离系统的研究和应用[J].断块油气田, 1998, 5(3): 64-67.
    [72]徐文庆.有杆泵井下油水分离装置的研制与试验[J].石油矿场机械, 2004, 33(6):75-77.
    [73]张劲松.气—液旋流分离技术综述[J].过滤与分离, 2002, 12(1): 42-45.
    [74]徐云霞等.高效井下分离器的研制与应用[J].石油矿场机械, 2003, 32(2): 61-62.
    [75]贺杰.多锥水力旋流器同时进行三相分离体系的数学模型[J].国外石油机械, 1997,8(1): 51-56.
    [76]万邦烈.电潜泵用气体分离器的试验研究[J].国外石油机械, 1995,6(2): 28-37.
    [77]周晓君.井下油水分离系统及往复式双液流泵设计[J].石油机械, 2000, 28(9): 1-4.
    [78] L.E. Gomez, R.S. Mohan, Ovadia Shoham et al. Enhanced Mechanistic Model and Field-Application Design of Gas/Liquid Cylindrical Cyclone Separators[J]. SPE Journal, 2000, 65(2): 190-198.
    [79] F.M. Eradal and S.A. Shirazi. Computational Fluid Dynamics(CFD) study of Bubble Carry-Under in Gas-Liquid Cylindrical Cyclone Separators[J]. SPE Prod. & Facilities 2000, 15(4): 217-222.
    [80] W.M.G.T. Van den Broek, M.J. van der Zande, P.H. Janssen. Downhole Dehydration vs. Reduction of Oil Droplet Break-Up. SPE66542, 2001.
    [81] S. Bernadro, A.P. Peres, M. Mori. Computational Study of Cyclone Flow Fluid Dynamics Using A Different Inlet Section Angle[J]. Thermal Engineering, 2005, 4(1): 18-23.
    [82] J.S. Weingarten, M.M. Kolpak, S.A. Mattison. Development and Testing of a Compact Liquid-Gas Auger Partial Separator for Downhole or Surface Applications[J]. SPE Production & Facilities, 1997.
    [83] Peachey B R. Downhole separator extends high-water cut well life[J]. World Oil, 1995, 216(8): 150-151.
    [84] Ram S. Mohan, Ovadia Shoham. Design and Development of Gas-Liquid Cylindrical Vyclone Compact Separators for Three-Phase Flow. Oil and Gas Conference-Technology Options for Producers’Survival: 1999.
    [85] Frank Th., Schneider J., Yu Q. et al. Experimental and numerical investigation fo particle separation in a symmetrical double cyclone separator. Proceedings of ASME/JSME Joint Fluids Engineering Conference. 1999.
    [86]吴文渊,李静海,杨励丹等.颗粒—流体两相流中颗粒团聚物存在的临界条件.工程热物理学报, 1992, 13(3): 324-328
    [87] Visser J. Van der waals and other cobesive forces affecting powder fluidization[J]. Powder Technology, 1989, 58(6): 1-10
    [88]傅德薰.流体力学数值模拟.北京:国防工业出版社, 1993:33-67.
    [89]李敏.井下气液分离及回注系统研究.石油矿场机械, 2006, 35(2): 27-30.
    [90]金向红,金有海,等.气液旋流分离技术的研究[J].新技术新工艺, 2007, 32(8): 85-88.
    [91]秦积舜,李爱芬.油层物理学.第二版.东营:石油大学出版社, 2003: 37~61.
    [92] D·威廉等.石油流体性质.罗悌夫,罗景琪译.北京:石油工业出版社, 1984: 67~113.
    [93]李自力,冯叔初.除油旋流器压降比的数学模型[J].化工学报, 2001, 52(6): 485-489.
    [94]胡正瑗.离心分离液-固两相流[J].水动力学研究与进展, 1993, 8(2): 233-242.
    [95]徐继润,罗茜.水力旋流器流场理论.北京:科学出版社, 1998:12-135.
    [96]童秉纲,尹协远,朱克勤.涡运动理论.合肥:中国科学技术大学出版社, 1994:22-45.
    [97]李自力,颜廷俊.旋流器轴向压降变化规律及影响因素实验研究[J].石油机械, 2000, 28(8): 23-25.
    [98]黄艳.国外排水采气工艺现状及发展趋势[J].钻采工艺, 2005, 20(4): 27-30.
    [99]丁良成.胜利油气区浅层气藏地质特征及开发对策[J].中国海上油气(地质), 2001, 17 (2) :7-8.
    [100]丁良成.胜利油气区浅层气藏配套采气工艺技术及存在问题[J].钻采工艺, 2004, 25 (3) :21-22.
    [101]李闽,郭平,谭光天.气井携液新观点[J].石油勘探与开发, 2001, 28(5): 105-106.
    [102] Turner R.G., et al. Analysis and Prediction of Minimum Flow Rate for the Continous Removeal of Liquid from Gas Wells[J]. JPT, 1969: 75-82.
    [103]魏纳,刘安琪,等.排水采气工艺技术新进展[J].新疆石油天然气, 2006, 2(2): 78-81.
    [104]胡勇,钟兵,等.气水两相井筒/地层组合数值试井模型现场应用[J].天然气工业, 2001, 23(3): 50-52.
    [105]李闽,孙雷,李士伦.一个新的气井连续排液模型[J].天然气工业, 2001, 21(5): 61-63.
    [106]王俊旭,李武平,等.气井井筒排液影响因素分析[J].油气井测试, 2003, 12(6): 37-39.
    [107]李闽,郭平,等.气井连续携液模型比较研究[J].断块油气田, 2002, 9(6): 39-41.
    [108] J.G. Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J].International Journal of Heat and Fluid Flow, 2003, 4(4): 626~635.
    [109]王福军.计算流体动力学分析.北京:清华大学出版社, 2004: 126~132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700