用户名: 密码: 验证码:
聚合物驱抽油机井抽油杆柱的力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱油成为一种日趋成熟的提高原油采收率的方法,但抽油杆柱偏磨严重,造成检泵周期缩短,综合经济效益降低。有效的解决抽油杆柱的偏磨,是保证原油生产和提高油田开发经济效益的当务之急。因此,研究抽油杆在抽汲井液过程中的力学行为,以分析造成杆管偏磨的成因及影响因素是十分必要的。目前国内外学者研究杆柱的力学行为是建立在波动方程和静力学理论基础上的,与抽油杆的实际工况相差甚远,采油工程界迫切需要新的研究方法和技术,准确描述抽油杆柱在有限空间内含聚井液中运动的力学行为和影响因素,提出防治杆管偏磨措施,以保证有杆抽油系统的安全、正常生产,对完善有杆抽油系统故障诊断技术,丰富有杆抽油系统故障诊断的理论,促进相关学科发展具有一定的理论意义。
     研究抽油机井抽油杆柱的力学行为的核心问题之一是确定井筒中抽油杆柱在各种载荷作用下的复杂变形状态,它涉及到对采油工程、固体力学、流体力学、计算力学和聚合物流变学等学科的深刻理解和应用,本文通过力学分析,建立了抽油杆柱的力学模型。运用动量定理和动力学原理建立了抽油杆柱在有限变形范围内的Kirchhoff平衡方程和瞬态动力学平衡方程。根据抽油杆柱的结构参数和运动条件推导了接触界面不可侵彻度量方程,并根据变分原理和更新的Lagrange格式推导了平衡方程的弱形式。采用增广Lagrange乘子法建立抽油杆柱与油管界面动量方程。采用有限元方法,运用Newton-Raphson法、载荷增量法、增广Lagrange乘子法,Newmark法联合求解,计算有杆抽油系统井下设备在多重耦合情况下的受力和变形状态。
     抽油机井见聚后,采出液属于粘弹性非牛顿流体,井液粘度的增大,影响了杆液摩擦阻力以及柱塞与泵筒的摩擦阻力。井液的弹性,使其在杆管环空流动过程中,在抽油杆法向方向产生一个作用力,加剧了抽油杆柱的失稳。本文运用非牛顿流体力学理论建立了聚合物采出液流体控制方程,根据有限元理论,采用控制体积法对控制方程进行离散,获得其有限元格式;采用SIMPLE算法对方程进行求解,确定了杆管环空内聚合物采出液流动时速度分布;并根据流体力学理论,运用Rouse-Zimn模型本构方程确定了聚合物采出液的松弛时间。在室内研究聚合物溶液零剪切速率实验为基础上,结合聚合物溶液注入前后流体特性的变化规律,对零剪切速率公式进行修正,得到了聚合物驱采出液零剪切速率计算公式;依此结合上随体MAXWELL模型推导的法向力计算公式,获得法向力随抽油杆速度、聚合物浓度的变化规律,为准确计算聚合物驱抽油杆柱的变形状态奠定了基础。
     为了检验抽油杆柱分析方法的准确性和实用性,进行了现场测试。在生产井的抽油杆柱上安装拉压传感器,测量出抽油杆柱的轴向力随时间的变化曲线。将试验结果与计算结果相对比,轴向力平均误差为5.07%。同时计算了由于断脱而作业的生产井,计算结果与生产井抽油杆柱的断脱和磨损位置基本一致。充分证明了诊断方法的正确性。
     通过计算,分析了抽油杆柱纵向振动的主要影响因素。并且发现抽油杆柱纵向振动可引起抽油杆柱动力失稳,进而引发横向振动,因此,采用在抽油杆体上安装减震器,减小抽油杆柱的纵向振动幅值,减弱其横向的动力失稳,可达到减缓抽油杆柱偏磨的目的。
     聚合物驱井法向力影响抽油杆柱的变形状态,当聚合物浓度大于300mg/L时,其产生的法向力可改变抽油杆柱的变形状态,加剧抽油杆柱的偏磨,当浓度小于300mg/L时,其法向力对抽油杆柱的侧向屈曲影响较小,对偏磨的影响可忽略。针对目前常用扶正器方式防止抽油杆柱的偏磨问题,提出了扶正器合理安装方式。
     本文所提出的抽油杆柱的分析方法对杆柱的偏磨问题具有较强的针对性,其分析结果和所提出的改进措施将为防止抽油杆柱的偏磨,以保证有杆抽油系统正常生产、延长生产周期、提高原油产量和降低生产成本有所启迪,对提高油田开发的技术水平和经济效益具有一定的现实意义和实用价值。
Polymer flooding is a mature technology to improve oil recovery. However, the fact that serious eccentric wear on sucker rod string reduces the pumping inspection period and overall economic efficiency. It is urgent to solve the problems of eccentric wear on sucker rod so that to guarantee the crude oil production and to improve the oilfield exploitation’s benefit. So, it is necessary to research the mechanical behaviors of sucker rod in the pumping fluid process in order to analyze the reasons and influential factors resulting in sucker rod’s eccentric wear. The current research studied by domestic and overseas scholars on mechanical behavior of sucker rod is based on the wave equation and static theory, which is far away from the sucker rod’s real working situation. New methods and technologies are urgently studied to accurately describe sucker rod’s mechanical movement behavior and influential factors in the limited space full of polymer fluid. Effective measures need to be put forward to prevent eccentric wear, and finally accomplish the goals of pumping system’s safe and proper production, which will play significant roles in perfecting pumping system’s error diagnose technologies and enriching its theories, and accordingly promoting relevant discipline’s development.
     The key problem of sucker rod’s mechanical behavior is to confirm its deformation condition under different loads in the wellbores. Therefore, studies are related to other relevant disciplines, such as production engineering, solid mechanics, fluid mechanics, computing mechanics and polymer rheology. This paper sets up sucker rod’s mechanical model through mechanical analysis; and also establishes the sucker rod’s Kirchhoff equation and transient dynamic equation in the limited deformation range through using momentum theorem and dynamics principle. Impenetrable equation on contact interface is deduced according to sucker rod’s structure parameters and movement conditions. Meanwhile, the weak form of balanced equation is derived from variational principle and updated Lagrangian function. Using augmented Lagrange multiplier sets up the momentum equation between sucker rod and tubing interface. Sucker rod’s force and deformation state under multiple coupling are calculated through combing FEM (finite element method) with other several methods, such as Newton-Raphson method, load increment method, augmented Lagrange multiplier method and Newmark method.
     Produced fluid in the polymer flooding pumping wells is viscoelastic non-Newton fluid. Increasing viscosity of produced fluid has great influence on the frictional resistance between sucker rod and polymer fluid, as well as that between plunger and pump wall. Polymer fluid’s elasticity creates an acting force upon sucker rod along the normal direction flowing through annular, which leads to sucker rod’s instability. This paper presents polymer-produced fluid’s flow controlling equation through using non-Newton fluid theory. Basing on finite element theory, controlling equation is dispersed through controlling volume method, and acquiring polymer fluid’s finite element form. Using SIMPLE algorithm solves the equation, polymer fluid’s flowing velocity distribution through annular can be determined. Meanwhile, basing on fluid mechanics, polymer produced fluid’s relaxing time can be confirmed by using Rouse-Zimn model. On the ground of past laboratory tests on polymer fluid’s zero shear rate and combining with produced fluid’s mutative law before and after injecting polymer fluid, the zero shear rate formula has been modified and then polymer produced fluid’s zero shear rate calculating equation has been successfully acquired. Combined with the normal force formula deduced from the MAXWELL model, normal force’s mutative law can be obtained along with sucker rod’s movement velocity and polymer’s density, which will build up a stable foundation for accurately calculating sucker rod’s deformation state in the polymer wells.
     In order to verify the veracity and practicability of analysis approach on sucker rod, a tension and pressure sensor was fixed on the sucker rod to measure the variation curve of sucker rod’s longitudinal force with time. By comparing testing results with calculating results, the longitudinal force’s average error is 5.07%. Meanwhile, the producing wells whose sucker rods were broken were also calculated. The comparison results show that the calculating result is consistent with real sucker rod broken and wear location, which fully proves the validity of the diagnostic method.
     The main influential factors on the longitudinal vibration of sucker rod were analyzed. This longitudinal vibration makes for sucker rod’s dynamic instability, which further cause sucker rod vibrating along transverse direction. As a result, fixing absorber on the sucker rod can greatly reduce sucker rod’s longitudinal vibrating amplitude; lower transverse dynamic instability; and hence realize the goal of preventing sucker rod’s eccentric wear.
     The axial force can influence the sucker rod’s deformation state in the polymer wells. When polymer’s concentration is more than 300mg/L, axial force can change sucker rod’s deformation state and worsen its eccentric wear. On the contrary, when polymer’s concentration is less than 300mg/L, axial force has little influence on sucker rod so that the result can be ignored. Aiming at adopting centralizers to prevent sucker rod’s eccentric wear problem, centralizers’reasonable fixing measure need to be put forward.
     The analysis approach put forward in this paper has strong pertinence to sucker rod’s eccentric wear problem. The analysis results and improved measures will play important roles in preventing sucker rod’s eccentric wear, so that to guarantee pumping system’s safe production; prolong its working cycle; enhance crude oil production and reduce operating costs. All of these works will certainly improve the oilfield exploitation level and increase overall economic benefit.
引文
[1]崔振华,余国安,安锦高等.有杆抽油系统[M].北京:石油工业出版社,1994:1-8.
    [2]胡博仲.聚合物驱采油工程[M].北京:石油工业出版社,1997:88-92.
    [3] A.L.Barnes. The Use of a Viscous Slug to Improve Waterflood Efficiency in a Reservoir Patrtially Invaded by Botton Water[J]. JPT,1962,1147-1153.
    [4] R.J.Marshall,A.B.Metzner. Flow of Viscoelastic Fluids through Porous Media[J].I&EC Fundamentals Aug.1967,393-400.
    [5] R.Hass,F.Drust. Viscoelastic Flow of Dilute Polymer Solutions in Regularly Packed Beds[J]. Rheol Axta,1981,Vol.21:6566-571.
    [6] Lehrstuhl for stromungsmechanik. Porous medium flow of the fluideffects of shear and elongation of non-newtopian [J] .Fliid mechanics,1994,119-131.
    [7]许元泽,朱坚亭.聚合物流体渗流机理研究[J].力学进展,1992.Vol.22(1):20-32.
    [8] Elisse Allen. An Improved Viscosity Epuation to Characterize Shear-Thinning Fluids[J].SPE 28973.1995.
    [9]岳国译.聚丙烯酰胺水溶液在多孔性截止内流动阻力的定量评价[J].国外油田工程,1993.Vol.9(6):50-55.
    [10]王立军.聚合物溶液粘弹性对提高驱油效率的作用博士学位论文[D].大庆石油学院,2003.
    [11] Lubinski. A. . Helical Buckling of Tubing Sealed in Packers[J]. JPT,1962,20(6):38-43.
    [12] Paslay P. R.,Bogy D.B. . The Stability of a Circular Rod Laterally Constrained to Be in Contact with an Inclined Circular Cylinder[J]. J.of Applied Mechanics,1964,12.
    [13]. Dawson R.,Paslay P.R.. Drill-pipe Buckling in Inclined Holes[J]. JPT,1984,10.
    [14]. Chen Y.C.,Lin Y.H. . Cheatham J.B. .Tubing and Casing Buckling in Horizontal Wells[J]. JPT,1990,21(2):33-36.
    [15]. Chen Y.C.,Cheatham J.B..New Design Considerations for Tubing and Casing Buckling in Inclined Wells[J].OTC 5826.
    [16].白家祉.应用纵横弯曲连续梁理论求解钻具组合的受力与变形[J].国际石油工程会议论文集,1982,5.
    [17].白家祉,苏义脑.井斜控制理论与实践[M].北京:石油工业出版社,1990: 105-150.
    [18].苏义脑.求解井底钻具组合大变形的纵横弯曲法及其在导向钻具组合分析中的应用[J].钻采工艺,1994,29(6):32-35.
    [19].苏义脑,张国红.纵横弯曲法对变截面钻具组合的受力变形分析[J].钻采工艺,1996,33(2):15-18.
    [20].苏义脑,唐雪平,陈祖锡.初弯曲纵横弯曲梁的等效载荷法及其应用.力学与实践[J],2004,24(1):42-44.
    [21]朱小平.抽油杆柱下部的受力与变形计算[J].石油机械,1992,10(2):5-8.
    [22]唐俊才,窦益华.加权残数法分析钻柱的受力与变形[J].西南石油学院学报,1986,6(3): 44-49.
    [23]唐俊才,李辉荣,熊树林.用加权残值法计算蝶形封头压力容器的极限载荷[J].四川工业学院,2000,02:111-114.
    [24] Dareing D.W. Ahlers C.A. .Tubular Bending and Pull-out Forecs in High-Curvature Well Bores[J]. J. of Energy Res. Tech,1991,20(6): 55-60.
    [25]徐俊,侯大方.斜井抽油杆柱的力学分析与设计[J].江汉石油学院学报,1993,16(6): 22-26.
    [26] Bradley W.B. Factors Affecting the Control of Borehole Angle In Straight and Directional Wells[J]. JPT, Jun.1975: 679~688.
    [27] Fischer F. J. Analysis of Drill String in Curved Boreholes[J]. SPE :5071.
    [28]杨姝,高德利,徐秉业.定向井钻柱摩阻问题的有限差分解[J].石油钻探技术,1992,18(9): 33-36.
    [29] Millheim K.K..Eight-Part Series on Directional Drilling[J]. OGJ,1979,6.
    [30] Millheim K.K..The Effect of Hole Curvature on the Trajectory of a Borehole[J]. SPE 6779.
    [31] Millheim K.K..Bottom-Hole Assembly Analysis Using the Finite Element Method[J]. JPT.1978,23(2): 45-49.
    [32]张学鸿等.整体钻柱力学接触有限元分析[J].石油学报,1992,22(3):61-66.
    [33]刘巨保,罗敏,张薇.井筒内旋转抽油杆柱动力学仿真[J].系统仿真学报,2005.17(6):1356-1359.
    [34]王钺,冯勇,秦明哲.抽油杆弹性振动规律在油井诊断技术上的应用[J].石油钻采工艺,2005.27(4):57-60.
    [35]王凤山,朱君,王素玲.抽油机井杆柱振动载荷有限元分析[J].大庆石油地质与开发,2006.25(1):85-87.
    [36]屈展,刘德铸.钻柱振动问题及其理论研究进展[J].石油机械,1996.24(1):542571.
    [37]余国安,邬亦炯,王国源.有杆泵抽油井的三维振动[J].石油学报,1989.10(2):742821.
    [38]祝效华,刘清友,李飞等.抽油杆扭转振动形成因素浅析[J].西南石油学院学报,2003.25(5):78-80.
    [39]范志毅,岳松涛,陈荣杰.抽油井管杆振动偏磨机理及预防措施[J].内蒙古石油化工,2005.5:161-162.
    [40] S.G.Gibbs, A.B.Neely. Computer diagnosis of down-hole conditions in sucker rod pumping wells[J]. SPE 1165.1966.
    [41] S.G.Gibbs and K.B.Nolen. Well-site diagnosis of pumping problems using minicomputers[J]. J.Pet.Tech. (Nov.1973),1319-1323.
    [42]蔡冬生等.有杆抽油系统预测模型的隐式差分法[J].石油机械,2002,30(2):40-43.
    [43] D.R.Doty &Z.Schmidt. An improved model for sucker rod pumping[J]. U.of Tulsa, SPE 10249.
    [44] W.F.Herbert. Sucker rod pump now analyzed with digital computer[J]. Oil and Gas J. (Feb.21, 1966) :81-85.
    [45]李子丰,蒋恕,阳鑫军.油气井杆管柱力学研究现状和发展方向[J].石油机械,2002.30(12):30-33.
    [46]李桂喜,马汝建.准匀速悬点运动下抽油杆柱的振动分析[J].石油矿场机械,2000.29(6):33-36.
    [47]韩修廷,王秀玲,侯宇.抽油机井振动载荷对杆管偏磨的影响研究[J].大庆石油地质与开发,2004.23(1):38-41.
    [48]杨海滨,狄勤丰,卜向前.三维弯曲井眼抽油杆柱动力学模型建立与仿真[J].大庆石油学院学报,2004.28(5):39-42.
    [49]杨海滨,狄勤丰,王文昌.抽油杆柱与油管偏磨机理及偏磨点位置预测[J].石油学报,2005.26(2):100-103.
    [50]刘占广.辽河滩海油田深层油藏大斜度定向井抽油杆受力有限元分析[J].特种油气藏,2002.9(3):36-40.
    [51]刘永辉,李颖川,周兴付.斜井有杆抽油系统动态参数预测模型隐式差分解[J].石油矿场机械,2004.33(6):38-41.
    [52]李子丰,李敬媛,张少南.定向水平井有杆泵抽油系统动态参数诊断和预测的数学模型[J].大庆石油学院学报,1994.18(1):28-31
    [53]阎铁,韩春杰,毕雪亮.斜井眼内钻柱轴向振动的有限元分析[J].石油钻探技术,2006.34(4):5-8.
    [54]徐俊,侯大方.斜井抽油杆柱的力学分析与设计[J].江汉石油学院学报,1993,16(6): 22-26.
    [55]孙学增编译.斜-弯井中管柱临界弯曲力计算法(综述)[J].国外钻井技术,1993:55-62.
    [56] Chen Y.C.,Lin Y.H.. Cheatham J.B. .Tubing and Casing Buckling in Horizontal Wells[J]. JPT,1990,21(2):33-36.
    [57] Fischer F. J..Analysis of Drill String in Curved Boreholes[J]. SPE :5071.
    [58]韩春杰,阎铁,毕雪亮,钻柱横向振动规律及应用[J].大庆石油学院学报,2004,28(1):14-16.
    [59]高奎宝,高德利.深井钻柱的横向振动浅论[J].石油钻采工艺,1996,18(4):8-14.
    [60]李庆光,聂荣国,吴晓明.深井、超深井钻柱失效的力学机理分析及预防对策[J].西部探矿工程,2004.27:64-66.
    [61]祝效华,刘清友,李飞.抽油杆扭转振动形成因素浅析[J].西南石油学院学报,2003,25(5):78-80.
    [62]张志远,童华.无明显扭转动因细长往复拉压杆扭转特性分析[J].油气田地面工程,2003,22(9):8-9.
    [63]吕和祥,蒋和洋等.非线性有限元[M].北京:化学工业出版社,1992: 169-175.
    [64]杨桂通,张善元.弹性动力学[M].北京:铁道出版社,1986:65-302.
    [65]朱君.有杆抽油系统井下工况诊断方法研究[D].博士研究生论文,2004.
    [66]王勖成,邵敏.有限单元法基本理论和数值方法[M].北京:清华大学出版社, 2002:443-452.
    [67]庄茁译. Ted Belytschko,Wing Kan Liu. Nonlinear Finite Elements for Continua and Structures[M].北京:清华大学出版社, 2002:496-505.
    [68] Belytschko T and Neal MO. Contact-impact by the pinball algorithm with penalty and Lagrangian methods[J]. International Journal for Numerical Methods in Engineering,1991,31:547-572.
    [69] Wriggers P. Finite element algorithms for contact problems[J].Arch. Comp. Meth.Engrg,1995,2(4):1-49.
    [70] Wriggers P.and Miehe C.. Contact constraints within coupled thermo-mechanical analysis:a finite element model[J].Computer methods in applied mechanics and engineering, 1994, 113, 301-319.
    [71] C.D.Han. Rheology in polymer processing[M]. Academic Press, 1976,徐喜等译.聚合物加工流变学.北京:科学出版社,1985:38~80。
    [72]方道斌,郭睿威,周少刚,等.水解聚丙烯酰胺盐水溶液表观粘度的数学模型(Ⅰ)[J].化工学报,1996,47(6):645-650.
    [73]方道斌,郭睿威,周少刚,等.水解聚丙烯酰胺盐水溶液表观粘度的数学模型(Ⅱ)[J].化工学报,1996,47(6):652-655.
    [74]方道斌,郭睿威,周少刚,等.水解聚丙烯酰胺盐水溶液表观粘度的数学模型(Ⅲ)[J].化工学报,1997,47(6):68-84.
    [75]王业飞,赵福麟.用切向流超滤系统测定聚合物驱产出液中聚合物质量浓度[J].西安石油大学学报,2006,21(3):74-76.
    [76]王业飞,由庆,冯刚.聚合物驱产出液中聚丙烯酰胺相对分子质量和水解度的测定方法[J].中国石油大学学报,2006,30(1):90-92.
    [77]张义江,程富利,王亚军.聚合物驱过程中系统降解因素分析[J].油气田地面工程,1998,17(6):15217.
    [78]张瑞泉,梁成浩,刘刚,等.三元复合驱采出液视粘度和乳状液类型测试[J].油气田地面工程,2007.26(1):57-58.
    [79]卢东风,张夏泽,姜海峰.聚合物驱油井采出液流变性及管输水力的计算[J].油气田地面工程,1999,18(2):14-15.
    [80]孙国明.聚合物驱采出液研究[M].中国科技信息,2006,6:275-276.
    [81]陈文芳.非牛顿流体力学[M].北京:科学出版社,1984:66-125.
    [82]吴晓东,吴靖.聚合物溶液法向力计算模型研究[J].石油钻探技术,2003,31(6)5-6.
    [83]李兆敏,蔡国琰.非牛顿流体力学[M].山东:石油大学出版社,1998.
    [84]韩洪升,王德民,国丽萍.粘弹性流体法向应力对抽油杆偏磨的影响机理[J].石油学报,2004,25(4):92-95.
    [85]韩式方.非牛顿流体本构方程和计算解析理论[M].北京:科学出版社,2000:98-122.
    [86]夏惠芬,王德民,关庆杰.聚合物溶液的粘弹性实验[J].大庆石油学院学报,2002,26(2):105-108.
    [87]章扬烈.钻柱运动学与动力学[M].北京:石油工业出版社,2001.
    [88] Hammerlindl D.J . Packer to Tubing Forces for Intermediate Packers[J]. JPT.,1980,20(3):33-38.
    [89] Mitchell R.F.Buckling Behavior of Well Tubing: The Packer Effect[J],SPEF,1982,10.
    [90] Maidla E.E., Wojtanwicz A.K.. Field Comparison of 2-D and 3-D Methods for the Borehole Friction Evaluation in Directional Wells[J]. SPE 16663.
    [91] Maidla E..E,Wojtanwicz A..K.. Field Methods of Assessing Borehole Friction for Directional Well Casing[J]. SPE 15696.
    [92] Cheatham J.B.,Pattillo P.D. . Helical Post-buckling Configuration of a Weightless Column Under the Action of an Axial Load[J]. SPE,1984,8.
    [93] Goins W.C. .Better Understanding Prevents Tubular Buckling Problems[J]. World Oil.:1980,2.
    [94] Hammerlindl D.J. .Movement Forces and Stresses Associated With Combination Tubing Strings Stealed in Packers[J]. JPT,1977,10(2):22-28.
    [95] J.J.Aklonis, W.J..Macknight, Introduction to polymer visco-elasticity (2ND ED.), John Wiley and Sons, 1983.吴立衡译,聚合物粘弹性引论[M].北京:科学出版社,1986:181-201.
    [96]古大治箸.高分子流体动力学[M].成都:四川教育出版社,1990:156-220.
    [97] H.A.Barnes, J.F.Hutton, K.Walters. .An introduction Rheology[M].吴大城译.北京:中国石化出版社,1992: 77-108.
    [98]吴大城.高分子的标度和蛇行理论[M].成都:四川教育出版社,1990:120-185.
    [99]徐臻肪,范西俊.刚性聚合物稀溶液流变性质的计算[J].高分子学报,1990, 11(6):703-710.
    [100]陈文芳.非牛顿流体的一些本构方程[J].力学学报,1983, 23(1):16-26.
    [101] R.B. Bird, R.C.Armstrong, O. Hassager. Dynamics of polymeric liquids[J], Vol. (1), Fluid Mechanics. John Wiley & Sons, 1977:55-59.
    [102] W.Kozicki, P.O.Kuang. Linearized capillary hybrid model of viscoelastic flow in porous media[J]. Int.J.Eng.Fluid Mech., 1992, 5(2):161-195.
    [103] Wang Deming,etc, Study of the Mchanism of Polymer Solution With Visco-Elastic Behavior Increasing Microscopic Oil Displacement Efficiency and the Forming of Steady“Oil Thread”Flow Channels[J]. SPE 68723.2001.
    [104] Crisfield M. A. Non-linear Finite Element Analysis of Solids and Structures[J]. Vol.2 Advanced Topics. Chichoster: Viley & Sons Ltd,1997.
    [105]王寿梅.结构分析中的非线性有限元素法[M].北京:北京航空学院出版社,1986: 120-156.
    [106]梁政.石油工程中的若干力学问题[M].北京:石油工业出版社,1999:5-25.
    [107]王冲平,赵会云,徐芳.抽油机井偏磨机理及防治措施[J].内江科技,2007.(07):102-157.
    [108]黄传军.聚驱井作业施工的特点分析[J].油气田地面工程,2007.26(3):58.
    [109]杨晶,杨树人,王春生.聚驱井抽油杆偏磨原因及预防[J].大庆石油学院学报,2005.29(1):114-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700