用户名: 密码: 验证码:
矿山充填膏体配比优化与流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:传统金属矿产资源开发利用模式引发的地质灾害、环境破坏和废料排放,已经成为制约我国矿产资源可持续开发利用与矿业健康发展的重要因素。要彻底缓解资源、能源、环境的瓶颈制约,实现从资源、能源耗费型向节约型转变,必改变先污染后治理的发展模式,大力发展以清洁生产、资源高效开采和废物循环利用为特征的绿色可持续资源开发模式。膏体充填是突破传统充填技术屏障、实现矿床安全清洁高效开采的重要技术载体。膏体充填主要特点表现为:充填料浆不离析、不沉淀,且采场脱水量少、甚至不脱水,充填体强度增长迅速,充填质量好、效率高、成本低,改善井下作业环境等,是未来清洁采矿发展的必然趋势。
     (1)结合膏体充填在地下矿山的设计和应用现状,从充填材料、工艺和技术等方面展开分析。针对膏体充填特点,系统地论述了以高浓度全尾砂膏体作为充填料浆的充填体作用机理及材料配比设计原理,充填膏体流动特点及流变参数测定方法,充填膏体制备工艺及装备、输送工艺及装备等。膏体充填技术能够有效解决常规充填技术的缺陷,在充填采矿矿山中得到了广泛的应用。
     (2)从理论分析的角度出发,建立基于锥形坍落度和柱形坍落度的充填膏体流变参数模型,并通过试验检验两种模型的坍落度与流变参数的相关性。结果表明:柱形坍落度试验和模型更能准确测定高浓度充填膏体的流变参数;柱形坍落度模型在数学公式表现形式上,比锥形坍落度模型更为简单;锥形坍落筒几何结构较柱形坍落筒更为复杂,试验过程中难于填料,并且会在填料过程中形成许多气泡,这将势必影响坍落度实验结果;应用锥形坍落筒做实验时,坍落的膏体坍落后的形状不连续,尤其是做高屈服应力的膏体坍落度实验时明显;柱形坍落筒的设计与制备比锥形坍落筒更为简单,取材更为方便。
     (3)建立基于主成分分析法与BP网络相结合的充填膏体流变参数预测模型,首先采用主成分分析法对输入数据预处理,减少网络输入因子数,同时使输入因子彼此不相关,并且数据包括的主要信息还保留在主成分中。简化了网络结构,提高了网络学习速度,得到了较高的精度,大大提高了建模质量;并将SPSS统计软件引入到膏体充填设计与统计中,应用SPSS统计软件包增强统计学理论和方法分析,有利于解决矿山管理与科研实际问题。结果表明:经过主成分提取后的BP预测值与期望输出值之间的误差都控制在5%以内;同时,通过与未经主成分提取的BP预测值和期望输出值之间误差对比,其预测精度有了明显的提高。
     (4)确定充填膏体配比选择原则,以充填膏体质量浓度、砂灰比、水泥耗量和棒磨砂全尾砂质量比为主要配比参数,以充填膏体流动性、充填体强度和成本为优化目标。建立基于正交试验设计、均匀试验设计和配方试验设计的充填膏体配比优选模型,结合试验和现场测试,优选结果与矿山充填实践一致。研究表明:随着充填膏体质量浓度、水泥耗量和棒磨砂尾砂比增加,坍落度范围在250mm-300mm,满足充填膏体坍落度大于180mm的要求;增加棒磨砂有助于膏体流动,当棒磨砂尾砂质量比为0.75时,充填膏体具有良好的流动性;随着水泥耗量的增加,有利于降低水力坡度,从而减小输送阻力损失;水泥不仅可以作为胶凝剂,也可以在输送过程中起到润滑作用;既有利于膏体固结,增加充填膏体的强度,又有利于膏体输送等。
     (5)根据润滑理论与沉积理论,构建充填膏体流动沉降几何结构预测模型,并通过试验检验,预测结果与实测结果基本一致,这说明该模型可以用于预测充填膏体在采空区中流动沉降几何形状,进而指导充填施工;建立基于相似理论的充填膏体流动沉降物理实验平台,研究了充填膏体在流动沉降过程中所表现出来的粒径分布和充填体强度分布不均匀性等特点,为充填实践提供一定的理论指导。
Abstract:Development and utilization mode of traditional metal mineral resources triggered geological disasters, environmental destruction and waste emissions, had become an important factor restricting sustainable development and utilization of China's mineral resources and the healthy development of the mining industry. To completely relieve the bottleneck restriction of resources, energy, environment, realising the transformation of resources, energy consuming model to saving model, and change of the treatment after pollution pattern, it needs to develop the green, sustainable resource development mode which has the characteristics of vigorously developing clean production, resource efficient mining and waste recycling. Paste backfill breaks through the barrier of traditional backfill technology, and will be the important technology carrier which can realize safe, clean and efficient mining. The main characteristics of the paste backfill:filling slurry not segregation, not precipitation, and stope dehydration less, or even no dehydration, filling body strength is growing rapidly, high quality fillbody, high efficiency, low cost, and improve underground working environment. Paste backfill will be the inevitable future development of clean mining. The main research results were as follows:
     (1) Combining with the design and application status of paste backfill in underground mines, the backfill materials, processes and technology and other aspects were analyzed. According to the paste backfill characteristics, the following points of high concentration full tailing paste had been systematic expounded:slurry filling mechanism and material mix design principles, filling paste flow characteristics and rheological parameters determination methods, filling paste preparation technology and equipment, transportation technology and equipment.The paste backfill is widely used for its advantage compare to other backfill methods.
     (2) From the theoretical point of view, the rheology models of backfill paste based on the cylindrical and cone slump and the relationship of the rheological parameters and slump was inspected by slump tests. The results showed that:cylindrical slump test and the model are more accurate for describing the rheological parameters of the high concentrations backfill paste; compare to the form of the mathematical formulas, cylindrical slump model is simpler than cone slump model; because the geometry of the cone container is more complex than cylindrical container, it is more difficult to fill the paste, and during the cone slump test, a lot of bubbles formed during the filling, it will definitely affect experimental results; during the cone slump test, the shape of the paste is not continuous, it is more obvious for the high yield stress paste; the design and preparation of the cylindrical container is easier than the cone container.
     (3) Forecasting model is established based on the principal component analysis and BP neural network. Firstly, the input data was preprocessed and number of network input factors was reduced, the input factors were unrelated to each other, but the main message remains in the main components. The network structure was simplified, and network learning speed was improved; the accuracy and the quality modeling were improved. SPSS software is introduced into backfill design and statistics, and its statistics theory and methods of analysis can enhance the mine management and research. The results showed that:the error between desired output and PCA-BP based predicted value is controlled at less than5%; and compare to the BP based predicted value error, the PCA-BP model is more accurate.
     (4) The principle of the backfill paste mix proportion is established, and setting the paste mass concentration, sand-cement ratio, cement consumption and stick frosted/tailings ratio as main parameters of the backfill paste, setting the backfill paste fluidity, filling body strength and the cost as the optimization target. Optimization model of the mix proportion based on orthogonal design, uniform design and formula experiment design were established, comparing the experiments and site testing, the outcome and backfill practice nearly same. The results showed that:with paste concentration, cement consumption and stick frosted/tailings ratio increases, the slump is about250mm-300mm, and it's within the backfill requirements; increasing the stick frosted is useful to the paste fruity, when the frosted/tailings ratio is0.75, the paste has a good fluidity; with f consumption of cement, it can help reduce the hydraulic gradient, thereby reducing the transportation resistance loss; in the backfill paste, cement play a role as combining agent and lubricating agent, it is useful to the paste consolidation and it can increase the strength of the paste, as well as improve the paste transportation, et al.
     (5)According to lubrication theory and deposition theory, the geometry prediction model of backfill paste flow deposition was established, after the experiment checking, the predicted and measured results were nearly same. The results showed that the model can be used to predict geometry shape of backfill paste deposition in the goaf, and then guide the paste backfill practice; the physics experiment platform of backfill paste flow and deposition based on similarity theory is established, and the inhomogeneity of the paste filled-body after deposition is studied, and it can provide some theoretical guidance to the paste backfill practice.
引文
[1]周爱民.基于工业生态学的矿山充填模式与技术[D].长沙:中南大学,2004.
    [2]钱庆伟.塌陷区新型立井井壁结构与受力机理研究[D].合肥:安徽理工大学,2006.
    [3]杨泽,侯克鹏,乔登攀.我国充填技术的应用现状与发展趋势[J].矿业快报,2008,(4):1-5.
    [4]丁德强.矿山地下采空区膏体充填理论与技术研究[D].长沙:中南大学,2007.
    [5]王艳阳.基于ABS轮速信号的间接胎压监测技术研究[D].淄博:山东理工大学,2008.
    [6]J.Murata. Flow and deformation of fresh concrete, Mater[J]. Constr.1984,17(98): 117-129.
    [7]G.Christensen.Modeling the Flow Properties of Fresh Concrete:TheSlump Test[D].Princeton:Princeton University,1991.
    [8]N. Pashias, D.V. Boger, J. Summers, D.J. Glenister, A fifty cent rheometer for yield stress measurement, J. Rheol.40 (6) (1996):1176-1189.
    [9]季韬,林挺伟,郑忠双.水泥胶砂流动度预测方法的研究[J].建筑材料学报,2005,8(1):17-22.
    [10]邓代强,朱永建,李健等.基于BP神经网络的充填料浆流变参数预测分析[J].武汉理工大学学报,2012,34(7):1-5.
    [11]Krieger I M, Dougherty T J. Amechanism for non-Newtonian flows in suspensions of rigid spheres [J]. Trans. the Society of Rheology,1959, (3):137-152.
    [12]Simms. On the relation between laboratory flume tests and deposition angles of high density tailings[C]. Perth:Proceedings of the tenth international seminar on paste and thickened tailings,2007:329-335.
    [13]王新民,肖卫国,张钦礼.深井矿山充填理论与技术[M].长沙:中南大学出版社,2005.
    [14]Mitchell RJ. Stability of cemented tailings backfill [J].Computer and physical modeling in geotechnical engineering,1989, (2):501-507.
    [15]Tikov Belem.Mostafa Benzaazoua. Design and Application of Underground Mine Paste Backfill Technology [J]. Geotech Geol Eng,2008, (26):147-174.
    [16]Marston A. The theory of external loads on closed conduits in the light of latest experiments Bulletin No.96, Iowa Engineering Experiment Station, Ames, Iowa.
    [17]Aubertin M, Li L, Arnoldi S, Belem T, Bussie're B, Benzaazoua M, Simon R. Interaction between backfill and rock mass in narrow stopes[C]. Proceedings of 12th Pan-american conference on soil mechanics and geotechnical engineering and 39th U.S. rock mechanics symposium,2003, (1):1157-1164.
    [18]Brooker EH, Ireland HO. Earth pressures at rest related to stress history [J]. Can Geotech J 1965,2(1):1-15.
    [19]Terzaghi K.Theoretical soil mechanics [M]. New York:John Wiley &Sons,1943.
    [20]Van Horn AD.A study of loads on underground structures [J].Iowa Engineering Experiment Station Ames,1943:1159-1180.
    [21]Belem T, Harvey A, Simon R, Aubertin M. Measurement and prediction of internal stresses in an underground opening during its filling with cemented fill[C]. Villaescusa E, Potvin Y (eds) Proceedings of the fifth international symposium on ground support in mining and underground construction, 2004:619-630.
    [22]Askew JE, McCarthy PL, Fitzerald DJ.Backfill research for pillar extraction at ZC/NBHC[C].Proceedings of 12th Canadian rock mechanics symposium, Canadian,1978:100-110.
    [23]Donovan JG. The effects of backfilling on ground control and recovery in thin-seam coal mining[D].Blacksburg:Virginia Polytechnic Institute and State University,1999.
    [24]Mitchell RJ, Olsen RS, Smith JD. Model studies on cemented tailings used in mine backfill [J].Can Geotech J,1998,19(1):14-28.
    [25]Benzaazoua M, Fall M, Belem T. A contribution to understanding the hardening process of cemented pastefill. Minerals Engineering,2004,17(2):141-152.
    [26]Craig RF. Soil mechanics [M]. London:Chapman and Hill Publishing,1995.
    [27]N.Sivakugan, R.M.Rankine, K.J. Rankine, K.S.Rankine. Geotechnical considerations in mine backfilling in Australia. Journal of Cleaner Production, 2006(14):1168-1175.
    [28]胡华,孙恒虎.矿山充填工艺技术的发展及似膏体充填新技术[J].中国矿业,2001:47-50.
    [29]胡尊杰,李明,苗强等.充填料浆的配比试验研究[J].金属矿山,2012,(2):45-48.
    [30]余斌,张绍才,李政等.高浓度尾砂充填料浆管道输送性能试验[J].河北冶金,(3):7-10.
    [31]谢佃和,高浩宏,祁九菊.AR-G2型流变仪[J].现代仪器,2009,15(1):50-51.
    [32]Chappell B, Huggins G. Effect of backfill strength and stiffness on stope stability. Australasian Institute of Mining and Metallurgy Publication Series,1998, n2: 213-217
    [33]Hu K X, Kemeny J. Fracture stability mechanics analysis of the effect of backfill on the stability of cut and fills mine works [J]. International Journal of Rock Mechanics and Mining Sciences.1994,31(3):231-241.
    [34]K Kuganathan, L Neindorf. Backfill Technology Development at Xstrata Mount Isa Mines between 1995 and 2005 [C]. Perth:Proceedings 9th AusIMM Underground Operators 'Conference,2005:125-528.
    [35]Aubertin M, Bussiere B. Meeting environmental challenges for mine waste management[J]. Geotechnical News,2001,19(3):21-26.
    [36]Jian-qiang Cui, Heng-hu Sun, Yu-cheng Huang. A new mode of coal mining under building with paste-like backfill technology [J]. Journal of China University of Mining & Technology,2002,2(2):143-147.
    [38]Takahashi T. Debris flows on prismatic open channel [J]. J. Hydr. Div., ASCE, 1980,106(3):381-396.
    [37]BRABYN, S.M. and GILCHRIST, I. C. R. Materials selection for backfill transportation guideline[C].Backfill in South African Mites. Johannesburg. SAIMM,1988:287-298.
    [38]Aubertin M, Bussiere B. Meeting environmental challenges for mine waste management [J].Geotechnical News,2001,19(3):21-26.
    [39]Helms W. Environmental protection in the metal ore mining industry[J]. Environmental Policy and Law,1993,23(5):212-218.
    [40]Potgieter J H, Potgieter S S. Mining backfill formulations from various cementitious and waste materials [J]. Indian Concrete Journal,2003, 77(5):1071-1075.
    [41]谢佃和,于能文,张忠武,周峰.AR-G2型流变仪的特点及应用[J].现代科学仪器,2009,(1):21-23.
    [42]周波,任建新,张鹏.基于ZLJ-C系列科里奥利质量流量计的流体粘度测量技术研究[J].传感技术学报,2008,21(5):891-893.
    [43]S. Clayton, T.G. Grice, D.V. Boger. Analysis of the slump test for on-site yield stressmeasurement of mineral suspensions [J]. Int. J. Miner. Process,2003, 70:3-21.
    [44]Boger, D.V.. Environmental rheology and the mining industry[C]. Proceedings of the Sixth InternationalSymposium on Mining with Backfill. BrisbanerThe Australasian Institute of Mining and Metallurgy Publication Series,1998:15-17.
    [45]Chandler, J.L.The stacking and solar drying process for disposal of bauxite tailings in Jamaica[c]. Proceedings of the International Conference on Bauxite Tailings, Kingston:Jamaica Bauxite Institute, University of the West Indies, 1986:101-105.
    [46]Christensen, G. Modelling the flow of fresh concrete:the slump test[D]. Princeton: Princeton University.Grice, T.G.,1991.
    [47]Liddell, P.V. The rheology of titanium dioxide pigment suspensions[C]. Melbourne:Proceedings of the 6th NationalConference on Rheology, 1992:55-58.
    [48]Pashias, N., Boger, D.V., Summers, J., Glenister, D.J. A fifty cent rheometer for yield stress measurement [J].Journal of Rheology,1996,40 (6):1179-1189.
    [49]Rajani, B., Morgenstern.On the yield stress of geotechnical materials from the slump test [J]. CanadianGeotechnical Journal,1991,(28):457-462.
    [50]Liddell. The rheology of titanium dioxide pigment suspensions [D]. Melbourne: Department of ChemicalEngineering, University of Melbourne,1996.
    [51]胡小芳,苏志学.改进坍落筒法测定新拌混凝土流变性能[J].混凝土,2006,(8):64-68.
    [52]U.Yamaguchi, J.Yamatomi. A consideration on the effect of backfill for the ground stability[C]. Lulea:Proc. of the Internat. Symp. on Mining with Backfill,1984:7-9.
    [53]Gundersen R E. Hydro-power. Extracting the coolth, Journal of The South African Institute of Mining and Metallurgy,1990,90(5):103-109.
    [54]Sun Henghu, Liu Wenyong, Huang Yucheng, et al. Use of high-water rapid-solidifying material as backfill binder and its application in metal mines [M]. Brisbane:In:Australian Institute of Mining and Metallurgy Publication, 1998:21-24.
    [55]Potgieter J H, Potgieter S S. Mining backfill formulations from various cementitious and waste materials [J]. Indian Concrete Journal,2003,77(5): 1071-1075.
    [56]P.F.G. Banfill. The rheological behavior of cement and concrete[C].Mag. Concr. Res.,1991, (3):1-21.
    [57]陈建宏,刘浪,周智勇,永学艳.基于主成分分析与神经网络的采矿方法优选[J]. 中南大学学报(自然科学版),2010,41(5):1967-1972.
    [58]李云,刘霁.神经网络与主元分析在采矿工程中的应用[J].中南林业科技大学学报,2010,30(6):141-146.
    [59]王淑红,李英龙,戈保梁.主成分分析法与神经网络在选矿建模中的应用[J].有色矿冶,2001,17(6):25-28.
    [60]李英龙,严碧.SPSS统计软件包在矿山统计分析中的应用[J].黄金,2000,21(5):17-20.
    [61]叶双峰.关于主成分分析做综合评价的改进[J].数理统计与管理,2001,20(2):52-56.
    [62]林杰斌,刘明德.SPSS10.0与统计模式建构[M].北京:人民统计出版社,2001:185-190.
    [63]Januj Juneja. Common factors, principal components analysis, and the term structure ofinterest rates [J]. International Review of Financial Analysis,2012, (24):48-56.
    [64]Boente, G., Pires, A. M., & Rodrigues, I. M. Robust tests for the common principalcomponents model [J]. Journal of Statistical Planning and Inference, 2009,(89),159-182.
    [65]Litterman, R., & Scheinkman, J. Common factors affecting bond returns[J]. Journalof Fixed Income,(1):54-61.
    [66]Novosyolov, A., & Satchkov, D. Global term structure modeling using principalcomponents analysis [J]. Journal of Asset Management,2008, (9):49-60.
    [67]Cheng X J, Wang C N, Chen S T. Neural Network Theory and Its Applications [J]. Beijing:National Defense Industry Press,1995.
    [68]Russo F, Ramponi G. Fuzzy methods for multi-sensor data fusion. IEEE Trans on Instrum Meas,1994,43(2):288-294.
    [69]Ma Haibo, Zhang Liguo, Chen Yangzhou. Recurrent neural network for vehicle dead-reckoning [J]. Journal of Systems Engineering and Electronics,2008, 19(2):351-355.
    [70]Wan W, Fraser D. Multi-source data fusion with multiple self-organizing maps[J]. IEEE Trans on Geosci Remote Sensing,1999,37(3):1344-1349.
    [71]Chen H X, Wu X W, Huang Z C. Multi-sensors information based on neural network integration. Wuhan Polytechnic UniversityJournal,2001, (6):13-15.
    [72]杨文斌,陈眉雯.利用神经网络预测木材径向导热系数[J].林业科学,2006,(3):590-595.
    [73]Ashit Talukder, David Casasent. A closed-form neural network for discriminatory feature extraction from high-dimensional data [J].Neural Networks,2001, 14(9):1201-1208.
    [74]Emad W. Saad, Donald C. Wunsch Ⅱ. Neural network explanation using inversion [J]. Neural Networks,2007,20(1):78-93.
    [75]Shigeo Abe, Masahiro Kayama, Hiroshi Takenaga, Tadaaki Kitamura. Extracting algorithms from pattern classification neural networks [J]. Neural Networks,1993, 6(5):729-735.
    [76]Tarek M. Nabhan, Albert Y. Zomaya. Toward generating neural network structures for function approximation. Toward generating neural network structures for function approximation [J]. Neural Networks,1994,7(1):89-99.
    [77]J.M. DeLaurentis, F.M. Dickey. A convexity-based analysis of neural networks [J]. Neural Networks,1994,7(1):141-146.
    [78]刘瑞江,张业旺,闻崇炜等.正交试验设计和分析方法研究[J].正交试验设计和分析方法研究,实验技术与管理,2010,17(9):52-54.
    [79]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [80]周中,傅鹤林,宝琛等.土石混合体渗透性能的正交试验研究[J].岩土工程学报,2006,28(9):1134-1138.
    [81]苑玉凤.多指标正交试验分析[J].湖北汽车工业学院学报,2005,19(4):53-56.
    [82]杨维权.现代质量管理统计方法[M].广州:中山大学出版社,1990.
    [83]刘希亮,罗静,朱维申.深部含水层渗透系数均匀试验研究[J].岩石力学与工程学报,2005,24(16):2990-2996.
    [84]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [85]宓永宁,梁雪坷,张树伟等.基于均匀试验的多孔混凝土的配比研究[J].中国农村水利水电,2010,(1):90-92.
    [86]韩汉鹏.试验统计与引论[M].北京:中国林业出版社,2006.
    [87]王浩,陈会凡,师金锋.混杂纤维增强混凝土的均匀试验研究[J].混凝土,2005,(3):59-61.
    [88]黄贤春.灰岩模拟材料配方试验研究[J].广州建筑,2005,(3):5-7.
    [89]张楠,王阿川.化学添加剂优化配方试验设计与分析的研究[J].信息技术,2007,(5):129-131.
    [90]郭森林,邹文俊,王勇峰,韩平.SPSS在金属结合剂配方试验中的应用[J].超硬材料工程,23(4):29-32.
    [91]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版 社,2005,(2):143-194.
    [92]栾军.现代试验设计优化方法[M].上海:上海交通大学出版社,1995.
    [93]王致清.粘性流体动力学[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [94]王正辉.膏休充填料的工程检测与判别[J].有色矿山,2000,(5):25-31..
    [95]方开泰.均匀设计和均匀设计表[M].北京:科学出版社,1994.
    [96]周术涛.黄芪活性成分提取工艺实验方法的研究[D].兰州:兰州理工大学,2009.
    [97]陈跃涛.塑料水性凹印油墨的研究[D].北京:北京印刷学院,2008.
    [98]Brawner C.Design construction and repair of tailings dams for metal mines waste disposal[J].Current Geotechnical Practice in Mine Waste Disposal,ASCE,1979.
    [99]Simms, P. On the relation between laboratory flume tests and deposition angles of high density tailings [C]. Perth:Proceedings of the tenth international seminar on paste and thickened tailings,2007:329-335.
    [100]Simms, P., Grabinsky, M.W., Zhan, G.,2007. Modelling evaporation of paste tailings from the Bulyanhulu mine [J].Canadian Geotechnical Journal,2007, 44(12):1417-1432.
    [101]S ANNOR, A.B. A study of characteristics and behaviour of composite backfill material [D]. Montreal:McGill University,1999.
    [102]Been K, Brown E T, Hepworth N. Liquefaction potential of paste fill at Neves Corvo mine[J]. Transactions of the Institution of Mining and Metallurgy, Section A:Mining Industry,2001,111(1):47-58.
    [103]史铁钧,吴德峰.高分子流变学基础[M].北京:化学工业出版社,2009.
    [104]Julia Maldonado-Valderrama, Juan M. Rodriguez Patino. Interfacial rheology of protein-surfactant mixtures [J].Current Opinion in Colloid & Interface Science, 2010, (150):271-282.
    [105]Fainerman VB, Lucassen-Reynders EH, Miller R. Description of the adsorptionbehaviour of proteins at water/fluid interfaces in the framework of a twodimensionalsolution model[J]. Adv Colloid Interface Sci,2003, (106):237-59.
    [106]Bos MA, van Vliet T. Interfacial rheological properties of adsorbed protein layersand surfactants:a review [J]. Advances Colloid Interface Sci, 2001(91):437-71.
    [107]Wilde P, Mackie A, Husband F, Gunning P, Morris V. Proteins and emulsifiers atliquid interfaces [J]. Adv Colloid Interface Sci,2004:108-109.
    [108]卢晓江.假塑性流体的本构方程[J].天津轻工业学院学报,1991,(2):63-67.
    [109]周爱民.我国充填技术概述[A].第八届充填采矿会议论文集[C].长沙:长沙矿冶研究院,2004,1-7.
    [110]周爱民.基于工业生态学的矿山充填模式与技术[D].长沙:中南大学,2004.
    [111]魏亚兴,吴超.近十年我国安全系统工程学发展研究综述[J].中国安全生产科学技术,2011,7(6):162-165.
    [112]肖卫国.深井充填技术的研究[D].长沙:中南大学,2003.
    [113]FARSANGIP., andHARAA., Consolidated rockfill design and quality control at Kidd Creek Mines,CIM Bulletin,1993,86(972):68-74.
    [114]于学馥,刘同有.金川的充填机理与采矿理论[M].冶金工业出版社,1996.
    [115]I.H.Clark.尾砂胶结充填的评价.南非矿业协会研究中心,中国矿业协会采矿专业委员会,中国有色金属学会采矿学术委员会,金川有色金属公司,长沙矿山研究院,1998.
    [116]王新民,肖卫国.金川矿山膏体充填料浆流变性能的研究[J].矿业工程,2002.3(4):12-15.
    [117]蔡嗣经.矿山充填力学基础[M].北京:冶金工业出版社,2009.
    [118]ASTM.C143/C 143M-97Standard Test Method for Slump of Hydraulic-Cement Concret:Concrete and Aggregates[S].ASTM,1998,4(2):89-91.
    [119]马英芳.现代充填理论基础[M].西安:西安冶金建筑学院,1988.
    [120]Bartos P J M,Sonebi M,Tamimi A K.Workability and Rheology of Fresh Concrete:Compendium of Tests [M].Cachan Cedex:Publications S.A.R.L.,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700