用户名: 密码: 验证码:
中国大陆科学钻探井中磁热资源处理与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国大陆科学钻探(CCSD)工程是利用现代深部钻探技术,在具有全球地学意义的中朝和扬子板块之间于中生代碰撞形成的大别—苏鲁超高压变质岩(UHPM)带的东段实施中国第一口5000m科学深钻。中国大陆科学钻探对我国地球科学的研究具有十分重要的意义,其对解决中国大陆的许多关键性科学问题起着重要的作用。地球物理测井是其重要组成部分。测井可提供的井温、压力等参数和磁场、重力场、热场、自然电场等丰富的高精度原位信息,有利于获取和推测原始条件下的岩石参数,为研究超高压变质岩的形成与折返机理、深部物质组成与结构、地球动力学过程和壳—幔相互作用、资源的开发及地震发生机制等方面的提供基础性资料及数据。
     中国大陆科学钻探(CCSD)先后进行了两口预先导孔(CCSD-PP1和CCSD-PP2)的试钻,其主孔CCSD-1井于2001年6月试钻,截止于2005年4月停钻,终孔深度5118.20m。期间先后进行了多次测井工作,获取了大量宝贵的地质与地球物理资料。
     本文根据100~3600m的井中温度测量和井中磁化率、井中磁三分量测量资料,进行了一系列数据处理和分析工作,计算了大量的井中磁场、热场及岩石物性等参数,得出了许多宝贵的基础性数据,解释了井中地磁场、地热场的主要异常,对岩石物性与井中磁、热场的关系加以讨论,并提出了一些有待深入研究的问题。
     主要的处理工作包括:
     (1)测井数据的预处理。主要包括100~2000m测井数据的深度标定,0~3600m的测井资料的拼接以及全井数据点距的统一。
     (2)井中热场参数的计算。包括温度资料的圆滑滤波、地温梯度的计算、岩石热产率的计算、井中岩石热导率的计算井中热流的计算等。
     (3)井中磁场参数的计算。包括计算井中岩石磁化率分布,井中地磁总场及其垂直分量和水平分量的模量。
     (4)井中磁场、热场及岩石物性的统计。包括按照CCSD工程中心提供的岩性分层表进行按层位统计,按岩性的不同进行按厚度加权平均统计等。
     主要的分析工作包括:
     (1)井中温度、温梯、热流及岩石热物性的基本特征分析,井中温度和温梯的统计分析,温度与温梯异常的解释等。
     (2)井中磁场的基本特征与统计分析,井中岩石磁化率随深度的分布特征分析,产生负磁化率的原因,岩石磁化率的统计分析,岩石磁化率与其密度、钾(K)和铀(U)含
China Continent Scientific Drilling (CCSD) Project sunk the first 5km deep well using the ultra-deep drilling technology in the east Dabie-Sulu ultra-high-pressure metamorphic (UHPM) zone in China generated by the collision of China-Korea plate and Yangtze plate in mesozoic which has a global geosciences significance. It also has an important significance to the research study of geosciences in China and important to the solution of many key problems of China continent. Geophysical logging is the basic component of CCSD. Plenty of the high precision primary information of borehole temperature, pressure, magnetic field, gravity field, thermal field and self potential data provided by logging is propitious to gathering and study of characters of rocks in the original circumstances. It provides the basal data and information for the study of mechanism of UHPM's generation and return, component and structure of deep mass, process of geodynamics, mutual actions of the crust and mantle, exploration of resources, mechanism of earthquake and so on.
    Two pilot holes (CCSD-PP1 and CCSD-PP2) were drilled experimentally by CCSD orderly. The drilling of primary hole (CCSD-1) was start at June of 2001 and finished at April of 2005 with the 5118.20m total depth. Much valuable geophysical and geological data was obtained by times logging in the period.
    A series of data processing and analysis was carried out here based on the borehole temperature data, borehole susceptibility data and magnetic data of 100-3600m. Many parameters of the borehole magnetic field, thermal field and rock properties were calculated and much valuable basic data and information was obtained. The primary anomaly of the borehole magnetic field and thermal field was interpreted. The relationship between the thermal field, the magnetic field and the rock properties was discussed and some problems need much more study was brought out.
    The primary processing here includes:
    (1) Preprocessing of the logging data. It mostly includes the depth correction from 100 to 2000m, the consistency processing and coherence processing of the data from 0 to 3600m.
引文
[1] 许志琴;中国大陆科学钻探工程的科学目标及初步成果;岩石学报;2004,20(1):1-8.
    [2] 许志琴,张良弼;大陆科学钻探的现状及展望;地球物理学进展;1994,9(4):55-65.
    [3] 杨文采;大陆科学钻探与中国科学深钻工程:石油地球物理勘探;2002,37(2):196-200.
    [4] 杨天南,许志琴:国际大陆科学钻探进展及我国的研究现状;地质论评;1996,42(1):93-96.
    [5] V.I.卡赞斯基;科拉超深钻:期望与结果;长春地质学院学报;1996,26(4):368-370.
    [6] 刘德辉,李占武,毕千才,等;俄罗斯科拉半岛CF-3超深井钻井施工简况;石油钻采工艺;1998,20(6):44-45.
    [7] W. Bosum, U. Casten, F. C. Fieberg, et al; Three-dimensional interpretation of the KTB gravity and magnetic anomalies; Journal of Geophysical Research; 1997, 102(8): 18037-18321.
    [8] H.-U. Worm, Rock Magnetism and Modelling of Magnetic Borehole Anomalies; KTB Report; 1993, 93(2): 331-333.
    [9] M. M. Gobashy,, U. Casten, F. M. Neubauer; Borehole gravimetry in the KTB-main well and a new structural interpretation; KTB Report; 93(2): 357-360.
    [10] H. Market, A. Lehmann; Viscous Magnetization of Pyrrhotite-bearing Rock; KTB Report; 93(2): 353-356.
    [11] U. J. Seipold; Determination of the thermal transport properties of amphibolites at high pressure and high temperature; KTB Report; 93(2): 305-308.
    [12] C. Clauser, Peter Giese, Ernst Huenges, et al, The thermal regime of the crystalline continental crust: Implication from the KTB, Journal of Geophysical Research, 1997, 102(8): 18417-18441.
    [13] 杨文采,程振炎,张春贺;中国科学深钻选址地球物理调查与大别—苏鲁岩石圈;2003,24(5):391-404.
    [14] 许志琴;中国大陆科学钻探面临解决的关键地球科学问题;地球学报;1995,1:101-106.
    [15] 牛一雄,潘和平,王文先,等;中国大陆科学钻探主孔(0-2000m)地球物理测井;岩石学报;2004,20(1):165-178.
    [16] 汪集旸,胡圣标,程本合,等;中国大陆科学钻探靶区深部温度预测;地球物理学报;2001,44(6):774-782.
    [17] L. Rybach; An attempt to interpret the temperature profile of the KTB pilot Drill hole(Germany) by paleoclimatic considerations; Paleogeogr Paleochmatol Paleoecol.;1992, 98(2/4): 193-197.
    [18] 欧新功,金振民,王璐,等;中国大陆科学钻探主孔100~2000m岩石热导率及其各向异性:对研究俯冲带热结构的启示;岩石学报;2004,20(1):109-118.
    [19] 欧新功,金振民,金淑燕,等:江苏东海超高压榴辉岩的热导率及对大陆科学钻探研究的意义;地球科学——中国地质大学学报;2003,28(2):129-136.
    [20] U. Seipold; Temperature dependence of thermal transport properties of crystalline rocks—a general law. Tectonophysics; 1998, 291(1-4): 161-171.
    [21] 汪集旸,胡圣标,杨文采,等;中国大陆科学钻探先导孔地热测量;科学通报;2001,46(10):847-850.
    [22] O.卡普迈耶(德),R.海涅尔(德)著;《地热学及其应用》:北京大学地质学系地热研究室译;北京:科学出版社;1981.
    [23] 杨晓松,金振民;大陆科学钻探中岩石物理性质研究的意义;地学前缘;1998,5(4):338-346.
    [24] 王祝文,刘菁华,李舟波,等;大陆科学钻探测井岩石物理参数的提取;物探与化探;2002,26(4):268-272.
    [25] 余钦范,郭友钊,孟小红,等;苏北大陆科学钻探靶区岩石物理性质;地球物理学报;2002,45(1):93-100.
    [26] 杨文采,方慧,程振炎,等;苏鲁超高压变质带北部地球物理调查(Ⅱ)—非地震方法;地球物理学报;1999,44(4):508-519.
    [27] 地质矿产部第一综合物探大队编著;《井中磁测》;北京:地质出版社;1985.
    [28] 许延清,李舟波,陆敬安,等;科学钻探中的井中磁测;世界地质;1998,17(21):59-66.
    [29] 余钦范,姚长利,孟小红,等;苏北大陆科学钻探靶区重磁异常反演解释;地球物理学报;2001,44(6):825-832.
    [30] Liou J G, Wang Q, Zhang R, et al.; Ultrahigh-P metamorphic rocks and their associated lithologies from the Dabie Mountains, Central China; A field trip guide to the 3rd International Eclogite Field Symposium; Chinese Sci Bull; 1995, 40(sup): 1-71.
    [31] Cong B, Zhai M, Carswell D A, et al.; Peotrogenesis of ultrahigh-pressure rocks and their country rocks at Shuanghe in Dabieshan; Central China Eur J Mineral; 1995, 7: 119-138.
    [32] 王良书,李成,施央申,等;下扬子区地温场和大地热流密度分布;地球物理学报;1995,38(4):470-476.
    [33] H. N. Pollack, S. J. Hurter, J. R. Johnson; Heat flow from the Earth's interior: Analysis of the global data set; Rev Geophys, 1993, 31: 267-280.
    [34] Hu S, He L, Wang J; Heat flow in the continental area of China: A new data set; Earth and Planetary Science Letters; 2000, 179(2): 407-419.
    [35] Burkhardt H, Honarmand H, Pribnow D.; Test measurements with a new thermal conductivity borehole tool; Tectonophysics; 1995, 244(1-3): 161-165.
    [36] Sass J H, Lachenbruch A H, Moses T H.; Heat flow from a scientific research well at Cajon Pass, California; Geophys Res; 1992, 97(134): 5017-5030
    [37] Liou J G, Zhang R Y, Ernst W G; An introduction to ultrahigh-P metamorphism; Island Arc; 1995, 3: 1-24.
    [38] 高山,张本仁,金振民;秦岭—大别造山带下地壳拆沉作用;中国科学;1999,D29(6):532-541.
    [39] 索书田,钟增球,游振东;大别地块超高压变质期后伸展变形及超高压变质岩石折返过程;中国科学,2000,D30(1):9-17.
    [40] 李曙光,黄方,李晖;大别—苏鲁造山带碰撞后的岩石圈拆离;科学通报;2001, 46(17):1487-1491.
    [41] 索书田,钟增球,游振东,等;大别—苏鲁区残余超高压构造及其动力学意义;地球科学——中国地质大学学报;2000,25(6):557-563.
    [42] A. Kapicka, E. Petrovsky, F. Hrouda, et al; Changes in Magnetic Parameters of Rocks Under Pressure Conditions of the Earth's Crust: Relationship to Magnetic Mineralogy; Rev. High Pressure Sci. Technol; 1998, 7: 69-71
    [43] 刘福来,许志琴,杨经绥,等;中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别;岩石学报;2004,20(1):9-26.
    [44] 刘景波,吴颖,国联杰;榴辉岩和围岩片麻岩之间的关系:来自片麻岩副矿物包裹体的研究;科学通报;1997,42(23):2531-2534.
    [45] 叶凯,大别山-苏鲁超高压变质带的矿物学和岩石学研究进展,矿物岩石地球化学通报,2001,20(3):141—148.
    [46] 从柏林,王清晨,大别山—苏鲁超高压变质带研究的最新进展,科学通报,1999,44(11):1127—1141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700