用户名: 密码: 验证码:
孟加拉湾夏季风爆发过程的海气相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用多源观测资料,使用统计、合成、诊断和数值模拟等多种分析方法,对夏季风爆发过程的海气相互作用进行了系统的研究。首先分析了全球逐日SST和风场的季节变化,发现季风区经向最暖海表温度轴(海温暖轴)存在突然北跳的特征,并且海温暖轴的突然北跳可以触发夏季风爆发。然后,通过分析海洋混合层热收支及其影响因子的季节变化,发现海温暖轴的突然北跳是海-陆-气耦合系统对太阳辐射季节变化的响应。最后,以孟加拉湾夏季风爆发为典型例子,从气候平均、个例分析和年际变化的角度,深入研究海温暖轴突然北跳对夏季风爆发的影响。主要结论如下:
     (1)海表温度的季节变化及其对夏季风爆发的影响
     热带地区边界层环流主要受SST的影响,暖SST区域与南北风的辐合区和降水大值中心相对应。信风区,SST的季节变化表现为海温暖轴在赤道两侧两个局地SST暖中心之间来回跳动,或是海温暖轴在赤道地区较小范围内移动,它对区域SST经向梯度的影响较小,因此风的变化也小。季风区,SST的季节变化主要表现为海温暖轴的突然北跳、南撤和阶段性停滞,显著影响着区域SST的经向梯度及风的季节变化。
     研究发现西南风的爆发时间和降水中心突然从南半球北跳到北半球的时间晚于海温暖轴从赤道突然北跳到10°N以北的时间。不同纬向区域,海温暖轴突然北跳时间越早(晚),西南风爆发越早(晚)。海温暖轴的突然北跳主要通过两种方式影响夏季风的爆发,一是通过暖SST提高大气的不稳定性;二是通过改变区域SST梯度,使层辐合增强,边界层水汽增加。
     (2)海温暖轴突然北跳的成因
     夏季风爆发前,北半球中层副热带高压脊线位于15°N附近,受副高内部下沉气流的影响,15°N附近总云量最少,春季在这里形成了经向海表面短波辐射通量的大值区;随着冬季风的不断减弱,海表面风速逐渐减小,引起季风区海表面潜热通量逐渐减弱,海洋混合层逐渐变浅。春季,南亚大陆迅速增温,这一方面在对流层低层的阿拉伯海和孟加拉湾强迫出反气旋性环流,中心位于15°N附近,反气旋中心的低风速和负涡度强迫使这里成为经向海表面潜热通量、海洋混合层深度和混合层底卷入冷海水的低值区;另一方面,南亚作为整体与西北太平洋的海陆热力差强迫出南风气流,使西太平洋15°N附近的北风减弱,于是逐渐形成经向海表面潜热通量和海洋混合层深度的低值区。这些作用使得春季15。N附近的SST增温速度最大,导致15°N附近SST大于赤道SST的时间早于其南面区域SST大于赤道SST的时间,于是海温暖轴突然北跳。
     (3)孟加拉湾夏季风爆发的定义
     夏季风爆发过程中,孟加拉湾受多种来源气流影响,经向风和纬向风的扰动多,不太适合于判断夏季风的爆发。但是,可以利用孟加拉湾风向绝对转角或孟加拉湾西南面西风风速的突然增加来定义孟加拉湾夏季风的爆发。这两种方法定义的夏季风爆发时间的年际变化与使用热力学变量和对流变量定义的一致。受热带对流环流关系支配,利用孟加拉湾西南面西风风速定义夏季风爆发时间能更好的反映出对流的变化。
     (4)孟加拉湾夏季风爆发的基本特征
     孟加拉湾夏季风在24候爆发。夏季风爆发前,孟加拉湾SST的快速增加使海温暖轴从赤道突然北跳,SST在夏季风爆发时达到最大;夏季风爆发后SST降低,海温暖轴南撤回赤道。孟加拉湾夏季风爆发前,在赤道中印度洋存在较强的降水和涡旋对。孟加拉湾夏季风爆发后经圈环流发生明显的变化,南北半球相互作用增加。孟加拉湾夏季风爆发后其上空对流层中上层形成暖中心,引起经向气温最大值从南半球移到北半球,同时区域经向温度梯度反向。
     (5)海温暖轴突然北跳影响孟加拉湾夏季风爆发的年际变化特征
     孟加拉湾夏季风爆发时间与海温暖轴突然北跳的时间之间存在显著的正相关,海温暖轴的突然北跳均超前于夏季风爆发。海温暖轴的突然北跳主要是通过经向SST梯度,而非SST强度来影响孟加拉湾夏季风爆发的年际变化的。孟加拉湾夏季风爆发偏早(晚)年,海温暖轴突然北跳后夏季风迅速(缓慢)爆发。孟加拉湾夏季风爆发偏早年与偏晚年相比,偏早年前期在海洋大陆地区降水偏多,凝结潜热加热在赤道东印度洋激发出强的西风气流。该西风气流一方面可使赤道东印度洋SST偏低,引起海温暖轴突然北跳和孟加拉湾夏季风爆发偏早;另一方面,它可能是海温暖轴突然北跳后导致孟加拉湾夏季风迅速爆发的原因。
     (6)海温暖轴突然北跳和青藏高原加热在孟加拉湾夏季风爆发过程中的相对重要性
     CAM3的试验结果表明,相对于青藏高原春季的地表加热,海温暖轴的突然北跳在触发孟加拉湾夏季风爆发中起着更为重要的作用。海温暖轴突然北跳后,孟加拉湾低层将产生辐合,对流得以发展并在低层激发出气旋性环流,对流和环流之间存在正反馈作用。模式中海温暖轴突然北跳对夏季风爆发的影响特征与观测一致。受春季西风基本气流的影响,青藏高原加热异常主要影响高原下游地区,对孟加拉湾环流的影响较小
Air-sea interactions during monsoon onset over the Bay of Bengal (BOB) have been investigated by utilizing observational data and many analysis methods, such as statistical analysis, diagnostic analysis and numerical simulation. First, the seasonal cycle of sea surface temperature (SST) and wind show that this is an abrupt northward jump (ANJ) of the meridional warmest SST (WSSTA), and it can trigger the monsoon onset. Second, the analysis of seasonal cycle of heat budget of the ocean mixed layer (ML), general circulations and thermal condition of sea, land, and atmosphere indicated that ANJ of WSSTA is a response of ocean-land-atmosphere coupled system to seasonal cycle of solar radiation. Finally, the BOB has been selected as an example to investigate the climatology, case and interannual variability of how the ANJ of WSSTA triggers the monsoon onset. The major conclusions can be summarized as follows:
     (1) Influence of the annual cycle of SST on the monsoon onset
     It is found that SST is a major driver of tropical circulations in the atmospheric boundary layer. The warm SST zone is corresponds to the zone of convergence of southerly and northerly winds and precipitation maximum. In the trade wind regions, the annual cycle of SST involves a shift in the warmest SST axis (WSSTA) between two local maxima on either sides of the equator, or slight movement of WSSTA north of the equator. Consequently, WSSTA has little effect on the regional meridional SST gradient and wind direction. However, in the monsoon regions, the annual cycle of SST is characterized by an ANJ of WSSTA, resulting in a marked change in regional meridional SST gradient and consequent onset of winds and rain. The onset of the southwesterlies and the shift of rainfall maximum from the Southern Hemisphere (SH) to Northern Hemisphere (NH) lags behind the ANJ of WSSTA from the equator to north of 10°N. The ANJ of the WSSTA triggers convection by two ways. One is by destabilizing the atmosphere; the other is moisture convergence in the atmospheric boundary layer due to the SST gradient.
     (2) Why is there an ANJ of WSSTA?
     The ridgeline of subtropical high is located around 15°N, where the sky is clear due to subsidence, leading to formation of meridional maximum of surface short wave radiation flux in spring. As the winter monsoon weakens, the surface wind speed slows down, accompanied by weak latent heat flux and shallow ML. In spring, the land over south Asia warms rapidly. This leads to the anticyclonic circulations over the BOB and the Arabia Sea forced by sub-continent scale land-sea contrast, and southerlies in the northwestern Pacific forced by the thermal contrast between southern Asian and northwestern Pacific. In the center of the anticyclonic circulations, wind speed is weak and vorticity is positive, leading to weak sea surface evaporation, weak entrainment of cold water at the base of ML, and shallow ML. These processes contribute to the largest increase in the rate of SST around 15°N. Thus the SST around the 15°N is warmer than the equator before the SST south of 15°N greater than the equator, the result is the ANJ of the WSSTA before the monsoon onset.
     (3) Definition of the monsoon onset over the BOB
     During the monsoon onset, the winds in the BOB originate from different regions. Thus, the reversal of zonal wind or merdional wind is not stable which makes it difficult to define the monsoon onset by wind components. However, the monsoon onset can be defined objectively by using wind absolute angle and the westerly component in the southwest of the BOB. There is high correlation between the monsoon onset dates defined in these two ways and the dates determined by thermodynamic variables and convection. The variability of the westerlies in the southwest of the BOB can well represent the variability of convection in the BOB.
     (4) Characteristics of the monsoon onset over the BOB The climatological onset of the monsoon in the BOB shows that the ANJ of the WSSTA is caused by an increase SST in pentad 22 in the BOB, leading to the monsoon onset after about 2 pentads. Maximum SST values occur just before the monsoon onset. SST decrease after the monsoon onset, associated with an abrupt southward retreat to the equator. There are intensified rainfall and twin vortices in the equatorial central Indian Ocean (10). The meridional circulations show distinct differences after the monsoon onset, and intensified the interaction between the NH and SH. The monsoon onset leads to the formation of warm center in middle and upper troposphere over the BOB, resulting in the meridional warmest air axis shift from the SH to the BOB and the resultant reversal of merdional temperature gradient.
     (5) Interannual variability of the monsoon onset over the BOB and its relationship with ANJ of WSSTA
     There is a significant positive correlation between the monsoon onset over the BOB and the ANJ of WSSTA. The dates of ANJ of WSSTA are prior to the dates of the monsoon onset for all years, although with different lead time. The interannual variability of ANJ of WSSTA affect the monsoon onset mainly by the meridional SST gradient, rather than the magnitude of SST. The earlier the monsoon onset, the quicker the monsoon onset is after ANJ of WSSTA. Compared with the late onset, the early onset show more rainfall in the Maritime Continent before the monsoon onset, resulting in westerly anomalies in the equatorial eastern 10 excited by the release of latent heat. The anomalous westerlies lead to the earlier ANJ of the WSSTA by cooling the SST in the equator, and the rapid monsoon onset.
     (6) Relative importance of ANJ of the WSSA and the Tibetan Plateau heating in the monsoon onset over the BOB
     The experiment results of Community Atmosphere Model (CAM3) indicate that ANJ of WSSTA plays a more important role in the monsoon onset over the BOB than the Tibetan Plateau (TP) heating. After the ANJ of the WSSTA, convections occurred due to air convergence in lower troposphere, accompanied by cyclonic circulations. There is a positive feedback process between circulation and convection. The characteristics of circulation and rainfall induced by the ANJ of the WSSTA in the CAM3 are the same as observation. Affected by the westerlies in spring, the impacts of the TP heating are concentrated on its downstream regions. Therefore, TP heating has limited effects on the monsoon onset over the BOB.
引文
包庆.青藏高原气候动力学的数值模拟[博士学位论文].北京:中国科学院研究生院.2010.
    陈隆勋,张博,张瑛.东亚季风研究进展[J].应用气象学报.2006(17):711-724.
    陈隆勋,刘洪庆,王文等.南海及其邻近地区夏季风爆发的特征及其机制的初步研究[J].气象学报.1999,57(1):16-29.
    丁一汇,李崇银主编.南海季风爆发和演变及其海洋的相互作用[M].北京:气象出版社.1999.
    丁一汇,李崇银.南海季风试验研究.气候与环境研究[J].2002,7(2):202-208.
    高辉,何金海,谭言科,柳俊杰.40a南海夏季风建立日期的确定[J].南京气象学院学报.2001,24:379-383.
    关月.海气相互作用对孟加拉湾夏季风爆发涡旋的形成和亚洲夏季风爆发的影响[博士学位论文].北京:中国科学院研究生院.2010.
    何金海,丁一汇,高辉,徐海明.南海夏季风建立日期的确定与季风指数[M].北京:气象出版社.2001.
    江志红,何金海,李建平等.东亚夏季风推进过程的气候特征及其年代际变化[J].地理学报.2006,61(7):675-686.
    李建平,曾庆存.一个新的季风指数及其年际变化和与雨量的关系[J].气候与环境研究.2005,10(3):351-365.
    李建平,朱建磊.晚春初夏西太平洋副热带高压南撤过程的气候学特征[J].气象学报.2008,66(6):926-939.
    梁建茵,吴尚森,游积平.南海夏季风建立及强度变化研究[J].热带气象学报.1999,15(2):97-105.
    梁潇云,刘屹岷,吴国雄.青藏高原对亚洲夏季风爆发位置及强度的影响[J].气象学报.2005,63(5):799-805.
    吕俊梅,张庆云,陶诗言,踞建华.亚洲夏季风的爆发及推进特征.科学通报.2006,51(3):332-338.
    毛江玉,吴国雄,刘屹岷.季节转换期间副热带高压带形态变异及其机制的研究Ⅰ:副热带高压结构的气候学特征[J].气象学报.2002a,60(4):400-408.
    毛江玉,吴国雄,刘屹岷.季节转换期间副热带高压带形态变异及其机制的研究Ⅱ:亚洲季风区季节转换指数[J].气象学报.2002b,60(4):409-420.
    毛江玉,吴国雄,刘屹岷.季节转换期间副热带高压带形态变异及其机制的研究Ⅲ:热力学诊断[J].气象学报.2002c,60(6):647-659.
    陶诗言,何诗秀,杨祖芳.1979年季风试验期间东亚夏季风爆发的观测研究[J].大气科学.1983,7:347-355.
    吴国雄,李伟平,郭华等.青藏高原感热气泵和亚洲夏季风[M].叶笃正主编,赵九章纪念文集.北京:科学出版社.1997,116-126.
    吴国雄,刘屹岷,刘平.空间非均匀加热对副热带高压形成和变异的影响[J].Ⅰ.尺度分析.气象学报.1999,57(3):257-263.
    吴国雄,关月,王同美等.春季叾加拉湾涡旋形成及其对亚洲夏季风爆发的激发作用[J].中国科学(地球科学).2010,40:1459-1467.
    谢立安,朱乾根.南海夏季风活动对非均匀加热的灵敏性试验[J].气象科学技术集刊.1987, 10:174-184.
    王启炜,丁一汇.南海夏季风演变的气候特征[J].气象学报.1997,55(4):466-483.
    曾庆存,李建平.南北两半球大气的相互作用和季风的本质[J].大气科学.2002,26:433-448.
    张庆云,陶诗言,陈烈庭.东亚夏季风指数的年际变化与东亚大气环流[J].气象学报.2003,61(4):559-568.
    祝从文,何金海,吴国雄.东亚季风指数及其与大尺度热力环流年际变化关系[J].气象学报.2000,58(4):391-402.
    祝从文,何金海,谭言科.春夏季节转换中亚洲季风区副热带高压断裂特征及其可能机制分析[J].热带气象学报.2004,20(3):237-248.
    Behringer, D.W., Ji, M., Leetmaa, A. An improved coupled model for ENSO prediction and implications for ocean initialization. Part Ⅰ:The ocean data assimilation system. Mon. Wea. Rev..1998,126:1013-1021.
    Behringer, D.W., Xue, Y. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface. AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington.2004,11-15.
    Boos, W.R., Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature.2010,463:218-222.
    Bordoni, S., Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nature Geoscience.2008,1:8,515-519.
    Chang, C.P., Chen, G.T.J. Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea. Mon. Wea. Rev..1995,123(11):3254-3267.
    Chao, W.C. Multiple quasi equilibria of the ITCZ and the origin of monsoon onset. J. Atoms. Sci.. 2000,57:641-652.
    Chao, W.C., Chen, B. The origin of monsoons, J. Atoms. Sci..2001,58:3497-3507.
    Collins, W.D., Rasch, P.J., et al. Description of the NCAR Community Atmosphere Model (CAM 3.0), Technical Report NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, Colorado.2004,210pp.
    Collins, W.D., et al. The Community Climate System Model Version 3 (CCSM3). J. Clim..2006a, 19:2122-2143. doi:10.1175/JCLI3761.1
    Collins, W.D., et al. The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3(CAM3). J. Clim..2006b,19:2144-2161.doi:10.1175/JCLI3760.1.
    Das, P.K. Short and long-range monsoon prediction in India. In:Fein JS, Stephens PL (eds) Monsoons. Wiley, New York.1987,549-578pp.
    Ding, Y. Seasonal March of the East-Asian summer monsoon. In:Chang CP (ed) East Asian monsoon. World Scientific Publishing, Singapore.2004,3-53pp.
    Ding, Y., He, C. The summer monsoon onset over the tropical eastern Indian Ocean:The earliest onset process of the Asian summer monsoon. Adv. Atmos. Sci..2006,23(6):940-950.
    Drosdowsky, W. Variability of the Australian summer monsoon at Darwin:1957-1992. J. Clim.. 1996,9:85-96.
    Emanuel, K. A. On thermally direct circulations in moist atmospheres. J. Atmos. Sci..1995,52: 1529-1534.
    Fu, X., Wang, B., Tao, L. Satellite data reveal the 3-D moisture structure of tropical intraseasonal oscillation and its coupling with underlying ocean. Geophys. Res. Lett.. 2006,33:L03705, doi:10.1029/2005GL025074.
    Gadgil, S. The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci..2003,31:429-67. doi:10.1146/annurev.earth.31.100901.141251.
    Gill, A.E. Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc.. 1980,106:447-662.
    Goswami, B.N., Wu, G., Yasunari, T. The Annual Cycle, Intraseasonal Oscillations, and Roadblock to Seasonal Predictability of the Asian Summer Monsoon. J. Clim..2006,19:5078-5099. doi: 10.1175/JCLI3901.1
    Hack, James J., Caron, Julie M., Danabasoglu, G., Oleson, Keith W., Bitz, Cecilia, Truesdale, John E. CCSM-CAM3 Climate Simulation Sensitivity to Changes in Horizontal Resolution. J. Clim..2006,19:2267-2289. doi: 10.1175/JCLI3764.1
    He, H., McGinnis, J. W., Song, Z., Yanai, M. Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev..1987,115:1966-1995.
    He, J., Wen M., Ding, Y., Zhang, R. Possible mechanism of the effect of convection over Asian-Australian "land bridge" on the East Asian summer monsoon onset. Sci. China (Ser. D). 2006,49(11):1223-1232.
    Holland, G.J. Interannual variability of the Australian summer, monsoon at Darwin:1952-1982. Mon. Wea. Rev..1986,114:594-604.
    Hoskins, B., Wang, B. Large-scale atmospheric dynamics. In:Wang B, ed. The Asian Monsoon. New York:Springer.2006,382-387.
    Hsu, H.H., Terng, C.T., Chen, C.T. Evolution of large-scale circulation and heating during the first transition of Asian Summer Monsoon. J. Clim..1999,12:793-810.
    Hu, Y., Li, D., Liu, J. Abrupt seasonal variation of the ITCZ and the Hadley circulation. Geophys. Res. Lett..2007,34: L18814. doi:10.1029/2007GL030950.
    Huang, B., Xue, Y, Zhang, D., Kumar, A., and McPhaden, M.J. The NCEP GODAS Ocean Analysis of the Tropical Pacific Mixed Layer Heat Budget on Seasonal to Interannual Time Scales. J. Clim..2010,23:4901-4925.
    Huang, R., Gu, L., Zhou, L., Wu, S. Impact of the Thermal State of the Tropical WesternPacific on Onset Date and Process of theSouth China Sea Summer Monsoon. Adv. Atmos. Sci..2006, 23:909-924.
    Hung, C., Yanai, M. Factors contributing to the onset of the Australian summer monsoon. Quart. J. Roy. Meteor. Soc..2004,130:739-758.
    Hurrell, James W., Hack, James J., Phillips, Adam S., Caron, Julie, Yin, Jeffrey. The Dynamical Simulation of the Community Atmosphere Model Version 3 (CAM3). J. Clim..2006,19: 2162-2183. doi:10.1175/JCLI3762.1
    Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R., Joseph, D. The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc..1996,77:437-471.
    Joseph, P.V., Eischeid, J. K., Pyle, R. J. Interannual Variability of the Onset of the Indian Summer Monsoon and Its Association with Atmospheric Features, El Nino, and Sea Surface Temperature Anomalies. J. Clim..1994,7(1):81-105.
    Kalnay, E., Kanamitsu, M., Kistler, R., et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc..1996,77:437-471.
    Kanae, S., Oki, T., Musiake, K. Principal condition for the earliest Asian summer monsoon onset. Geophys. Res. Lett..2002,29(15):1746. doi:10.1029/2002GL015346.
    Krishnakumar, V., Lau, K.M. Symmetric instability of monsoon flows. Tellus. A..1997,49(2): 228-245.
    Krishnakumar, V., Lau, K. M. Possible role of symmetric instability in the onset and abrupt transition of the Asian monsoon. J. Meteor. Soc. Japan.1998,76:363-383.
    Krishnamurthy, V., Shukla, J. Intraseasonal and interannual variability of rainfall over India. J. Clim..2000,13:4366-4377.
    Krishnamurti, T.N., Ardanuy, P., Ramanathan, Y., et al. On the onset vortex of the summer monsoon. Mon. Wea. Rev..1981,109:344-363.
    Krishnamurti, T.N., Ramanathan, Y. Sensitivity of the Monsoon Onset to Differential Heating. J. Atoms. Sci..1982,39(6):1290-1306.
    Kueh, M.T., Lin, S.C. South China Sea summer monsoon-onset definition and characteristics. Atmos. Sci..2001,29:141-170.
    Lau, K.M., Yang, S. Seasonal Variation, Abrupt Transition and Intraseasonal Variability Associated with the Asian Summer Monsoon in the GLA GCM. J. Clim..1996,9(5):965-985.
    Lau, K.M., Yang, S. Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci..1997,14:141-162.
    Lau, K.M., Wu, H. T., and Yang, S. Hydrologic processes associated with the first transition of the Asian summer monsoon:a pilot satellite study, Bull. Am. Meteor. Soc..1998,79:1871-1882.
    Lau, K.M., et al. A report of the field operation and early results of the South China Sea Monsoon Experiment (SCSMEX), Bull. Am. Meteor. Soc..2000,81:1261-1270.
    Lestari, R.K., and Iwasaki, T. A GCM Study on the Roles of the Seasonal Marches of the SST and Land-Sea Thermal Contrast in the Onset of the Asian Summer Monsoon. J. Meteor. Soc. Jpn.. 2006,84: 69-83.
    Li, C., Yanai, M. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J. Clim..1996,9:358-375.
    Li, C., Wu, J. On the onset of the South China Sea summer monsoon in 1998. Adv. Atmos. Sci.. 2000,17:193-204.
    Li, C., Pan, J. Atmospheric circulation characteristics associated with the onset of Asian summer monsoon. Adv. Atmos. Sci..2006,23(6):925-939.
    Li, J., Zeng, Q. Significance of the normalized seasonality of wind field and its rationality for characterizing the monsoon. Sci. China (Ser. D).2000,43(6):646-653.
    Li, J., Zeng, Q. A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci..2003,20:299-302.
    Li, J., Zhang, L. Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Clim. Dyn..2009,32:935-968.
    Liebmann, B., and Smith, C.A. Description of a complete (interpolated) outgoing longwave radiation dataset, Bull. Amer. Meteor. Soc..1996,77:1275-1277.
    Lin, P.H., Lin, H. The Asian summer monsoon and Mei-Yu front. Part I. Cloud patterns as a monsoon index. Atmos. Sci..1997,25:267-287.
    Lindzen, R. S., Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci..1987,44:2418-2436.
    Liu, Y.M., Chan, J.C.L., Mao, J.Y., et al. The role of bay of bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon. Wea. Rev..2002,130:2731-2744.
    Liu, Y.M., Wu, G.X., Liu, H., Liu, P. Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Clim. Dyn..2001,17:327-338.
    Lu, E., Chang, J.C.L. A unified monsoon index for south China. J. Clim..2001,12:2375-2385.
    Mao, J., Wu, G. Interannual variability in the onset of the summer monsoon over the eastern Bay of Bengal. Theor. Appl. Climatol..2007,89:155-170.
    Matsumoto, J. The seasonal changes in Asian and Australian monsoon regions. J. Meteor Soc. Japan.1992,70:15-32.
    Matsumoto, J. Seasonal transition of summer rainy season over Indochina and adjacent monsoon region. Adv. Atmos. Sci..1997,14:231-245.
    May, R.J. A composite study of the South China Sea summer monsoon. M.S. dissertation, Dept. of Atmospheric Sciences. National Central University, Chung-Li, Taiwan.1997,98pp.
    McPhaden, M., Hayes, S. On the variability of winds, sea surface temperature, and surface layer heat content in the western equatorial Pacific.J. Geophys. Res..1991,96: 3331-3342.
    Meehl, Gerald A., Arblaster, Julie M., Lawrence, David M., Seth, Anji., Schneider, Edwin K., Kirtman, Ben P., Min, Dughong. Monsoon Regimes in the CCSM3. J. Clim..2006,19: 2482-2495. doi:10.1175/JCLI3745.1.
    Mitchell, T.P., Wallace, J.M. The annual cycle in equatorial convection and sea surface temperature. J. Clim..1992,5:1140-1156.
    Murakami, T., Matsumoto, J. Summer monsoon over the Asian Continent and western north Pacific. J. Meteor. Soc. Japan.1994,72:719-745.
    Ninomiya, K., Murakami, T. The early summer rainy season (Baiu) over Japan. In:Chang CP, Krishramurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford.1987, 93-121pp.
    Philander, S.G.H., Gu, D., Lambert, G., Li, T., Halpern, D., Lau, N.-C., Pacanowski, R. C. Why the ITCZ is mostly north of the equator. J. Clim..1996,9:2958-2972.
    Plumb. R.A., Hou. A.Y. The response of a zonally symmetric atmosphere to subtropical thermal forcing: threshold behavior. J. Atoms. Sci..1992,49(19):1790-1799.
    Prive, N.C., Plumb, R.A. Monsoon Dynamics with Interactive Forcing. Part Ⅰ:Axisymmetric Studies. J. Atmos. Sci..2007a.64:1417-1430.
    Prive, N.C., Plumb, R.A. Monsoon Dynamics with Interactive Forcing. Part Ⅱ:Impact of Eddies and Asymmetric Geometries. J. Atoms. Sci..2007b,64(5):1431-1442.
    Qian, W., Yang, S. Onset of the regional monsoon over Southeast Asia. Meteor. Atmos. Phys.. 2000,75:29-38.
    Qian, Y., Jiang, J., Zhang, Y., Yao, Y., Xu, Z. The earliest onset area of the tropical Asian summer monsoon and its mechanisms. Acta. Meteorol Sin..2004,62:129-139.
    Rao, R. R., Sivakumar, R. On the possible mechanisms of the evolution of a mini-warm pool during the pre-summer monsoon season and the genesis of onset vortex in the South-Eastern Arabian Sea. Quart. J. Roy. Meteor. Soc..1999,125(555):787-809.
    Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., and Schlax, M.G. Daily high-resolution blended analyses for sea surface temperature. J. Clim..2007,20:5473-5496.
    Rodwell, M., and Hoskins, B. Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc.. 1996,122: 1385-1404.
    Rossow, W.B., and Schiffer, R. A. Advances in understanding clouds from ISCCP. Bull. Amer. Meteorol. Soc..1999,80:2261-2288.
    Roxy, M., Tanimoto, Y. Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteorol Soc. Jpn.2007,85:349-358.
    Shankar, D., Shetye, S., and Joseph, P. Link between convection and meridional gradient of sea surface temperature in the Bay of Bengal. J. Earth Syst. Sci..2007,116:385-406.
    Stephens, G.L., Webster, P.J., Johnson, R.H., Engelen., R., LEcuyer, T. Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical Sea Surface Temperatures. J. Clim..2004,17(11):2213-2224.
    Sud, Y.C., Walker, G.K., Mehta, V.M., Lau, W.K.M. Relative importance of the annual cycles of sea surface temperature and solar irradiance for tropical circulation and precipitation:A Climate Model Simulation Study. Earth Interactions.2002,6:1-32.
    Tamura, T., Taniguchi, K., Koike, T. Mechanism of upper tropospheric warming around the Tibetan Plateau at the onset phase of the Asian summer monsoon. J. Geophys. Res..2010a, 115:D02106. doi:10.1029/2008JD011678.
    Tamura, T., Koike, T. Role of convective heating in the seasonal evolution of the Asian summer monsoon. J. Geophys. Res..2010b,115:D14103. doi:10.1029/2009JD013418.
    Tao, S., Chen, L. A review of recent research on East summer monsoon in China. In:Chang CP, Krishramurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford.1987, 60-92pp.
    Tong, H.W., Chan, J.C.L., Zhou W. The role of MJO and mid-latitude fronts in the South China Sea summer monsoon onset. Clim. Dyn..2009,33:827-841.
    Ueda, H., Yasunari, T. Role of warming over the Tibetan Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea. J. Meteor. Soc. Jpn..1998,76: 1-12.
    Ueda, H. Air-sea coupled process involved in stepwise seasonal evolution of the Asian summer monsoon. Geogr. Rev. Jpn..2005,78:825-841.
    Vecchi, G.A., Harrison, D.E. Monsoon Breaks and Subseasonal Sea Surface Temperature Variability in the Bay of Bengal. J. Clim..2002,15(12):1485-1493.
    Wang, B., Wu, R. Peculiar temporal structure of the South China Sea Summer monsoon. Adv. Atmos. Sci..1997,14:177-194.
    Wang, B., Xu, X. Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Clim..1997,10:1071-1085.
    Wang, B., Fan, Z. Choice of South Asian Summer Monsoon indices. Bull. Am. Meteor. Soc..1999, 80:629-638.
    Wang, B., Lin, H. Rainy season of the Asian-Pacific summer monsoon. J. Clim..2002,15: 386-398.
    Wang, B., Lin, H., Zhang, Y.S. Lu, M.M. Definition of South China Sea Monsoon Onset and Commencement of the East Asia Summer Monsoon. J. Clim..2003, 17:699-710.
    Wang, B., Webster, P.J., Teng, H. Antecedents and self-induction of active-break south Asian monsoon unraveled by satellites. Geophys. Res. Lett..2005,32(4):L04704.
    Wang, B. The Asian monsoon.1st edn. Springer, Berlin.2006.
    Wang, B., Ding, Q., Joseph, P.V. Objective Definition of the Indian Summer Monsoon Onset. J. Clim..2009,22:3303-3316.
    Webster, P.J., Lukas, Roger.1TOGA COARE: The Coupled Ocean—Atmosphere Response Experiment. Bull. Amer. Meteor. Soc..1992,73:1377-1416.
    Webster, P.J., Yang, S. Monsoon and ENSO:Selectively interactive systems. Quart J Roy. Meteor. Soc..1992,118:877-926.
    Webster, P.J., Magana, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., Yasunari, T. Monsoons:processes, predictability, and the prospects for prediction. J. Geophys. Res..1998, 103:14451-14510.
    Wentz, R.J., Gentemann, C., Smith, D., Chelton, D. Satellite measurements of sea surface temperature through clouds. Science.2000,288:847-850.
    Wu, G., Zhang, Y. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev..1998,126:913-927.
    Wu, G., Liu, Y., Zhu, X., Li, W., Ren, R., Duan, A., Liang, X. Multi-scale forcing and the formation of subtropical desert and monsoon. Annales Geophysicae.2009,27:3631-3644.
    Wu, R., Wang, B. Interannual variability of summer monsoon onset over the Western North Pacific and the underlying processes. J. Clim..2000,13:2483-2501.
    Wu, R., Wang, B. Multi-stage onset of the summer monsoon over the western North Pacific. Clim. Dyn..2001,17:277-289.
    Wu, R. Subseasonal variability during the South China Sea summer monsoon onset. Clim. Dyn.. 2010,34:629-642.
    Xie, S.P. On the genesis of the equatorial annual cycle. J. Clim..1994,7: 2008-2013.
    Xie. S.P., Philander, S.G.H. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus.1994,46A:340-350.
    Xie, S.P., Saiki, N. Abrupt onset and slow seasonal evolution of summer monsoon in an idealized gem simulation. J. Meteor. Soc. Japan.1999,77:949-968.
    Xie, S.P., Arkin, P.A. Global precipitation:a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bull. Amer. Meteor. Soc.. 1997,78:2539-2558.
    Yanai, M.H., Li, C.F., Song, Z.S. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Jpn..1992,70:319-351.
    Yanai, M., and Li, C. Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev..1994,122:305-323.
    Yano, J.I., McBride, J. L. An aquaplanet monsoon. J. Atoms. Sci.. 1998,55:1373-1399.
    Yu, L., Weller, R. A. Objectively Analyzed air-sea heat Fluxes (OAFlux) for the global oceans. Bull. Ameri. Meteor. Soc..2007,88:527-539.
    Yu, L., Jin, X., Weller, R. A. Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project:Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01,64pp. Woods Hole. Massachusetts,2008.
    Zeng, X. Lu, E. Globally Unified Monsoon Onset and Retreat Indexes. J. Clim..2004,17: 2241-2248.
    Zhang, L., Li, J. Seasonal rotation features of wind vectors and application to evaluate monsoon simulations in AMIP models. Clim. Dyn..2008,31(4):417-432.
    Zhang, L., Li, J. Twice wind onsets of monsoon over the western north Pacific and their simulations in AMIP models. Int. J. Climatol..2010,30:582-600.
    Zhang, X., Li, J., Ding, Y., Yan, J. A study of circulation characteristics and index of South China Sea summer monsoon. Acta. Meteor. Sin.2001,15:450-464.
    Zhang, Y., Li, T., Wang, B., Wu, G. Onset of the summer monsoon over the Indochina Peninsula: Climatology and interannual variations. J. Clim..2002,15:3206-3221.
    Zhang, Y., Qian, Y. Possible effects and mechanism of thermal features over the Indochina peninsula on the South China Sea monsoon onset. Adv. Atmos. Sci..2002,19(5):745-761.
    Zhang, Y. C., Rossow, W. B., Lacis, A. A., Oinas, V., and Mishchenko, M. I. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets:Refinements of the radiative transfer model and the input data. J. Geophys. Res..2004, 109:D19105. doi:10.1029/2003JD004457.
    Zhang, Z., Chan, J., Ding, Y. Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia. J. Inter. Clim..2004,24:1461-1482.
    Zhao, P., Zhang, R., Liu, J., Zhou, X., He, J. Onset of Southwesterly wind over Eastern China and associated atmospheric circulation and rainfall. Clim. Dyn.2007,28:797-811. doi:10.1007/s00382-006-0212-y.
    Zheng, X. Y. The response of a moist zonally symmetric atmosphere to subtropical surface temperature perturbation. Quart. J. Roy. Meteor. Soc..1998,124:1209-1226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700