用户名: 密码: 验证码:
多能干细胞定向分化为中脑多巴胺能神经元及其在治疗帕金森氏症中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于中脑腹侧黑质的多巴胺能神经元的退行性病变会导致帕金森氏症。目前对于帕金森氏症仍无有效的治疗方法,因此,寻求新型疗法成为当务之急。人多能干细胞,包括人胚胎干细胞和人诱导多能干细胞,具有分化的全能性,在特定条件下能定向分化为人体任何一种细胞,包括特种神经元。这些人类神经细胞被进一步修饰后可用来研究神经退行性疾病的病理发生过程,从而可以被用来进一步探索神经疾病的治疗方式。他们也很有可能被用于细胞替代治疗,从而达到治愈神经退行性疾病治疗的目的。
     病人特异性诱导多能干细胞(human induced pluripotent stem cells, hiPSCs)取自病人本身,一般认为在移植回病人本身后不会被免疫排斥,可以被用来作为自体细胞移植。为了模拟将来对帕金森病人的细胞替代疗法,我们探索从帕金森恒河猴获取的iPSCs在体外定向分化为多巴胺能神经元,然后将这些体外分化而来的多巴胺能神经元移植回恒河猴脑内。用SHH和FGF8进行处理后,猴iPSCs分化的神经上皮细胞进一步分化为多巴胺能神经元,表达酪氨酸羟化酶(TH),而其中一些表达中脑的标记物Enl和Foxa2。在不使用免疫抑制剂的情况下,恒河猴iPS来源的多巴胺能神经前体细胞被移植到MPTP造模的恒河猴脑内纹状体后,发现移植的细胞能够存活,并进一步分化成为神经元和胶质细胞,且未激活宿主的免疫系统。这为将来可能的个体化细胞移植疗法的开展带来了希望。
     在恒河猴iPS来源多巴胺能神经前体细胞被移植到恒河猴帕金森模型脑内后,虽然移植细胞得以存活并成熟,但由于分化所得的多巴胺能神经元不具备中脑的特性,接受细胞移植的猴子的症状并未缓解。遵循体内中脑多巴胺能神经元的发育,使用SHH和CHIR99021诱导多能干细胞产生中脑底板细胞,并在FGF8的作用下,进一步分化成为中脑多巴胺能神经元。我们发现在神经分化过程中,在特定时间段使用特定浓度的CHIR99021能特异性地诱导中脑底板细胞的生成,这些底板细胞表达Corin, Enl, FoxA2and Lmxla。FGF8能够促进中脑底板细胞分化成为多巴胺能神经元,这些分化所得的多巴胺能神经元表达中脑的标志物Lmxla/b、FoxA2、FoxP1、Nurr1以及Enl,并且具有典型的中脑多巴胺能神经元的电生理特征。这些中脑多巴胺能神经元中,有超过一半的细胞表达中脑A9亚群的标志物Girk2和ALDHlal。运用这一新的分化策略能够有效地从人/恒河猴多能干细胞分化得到大量的中脑多巴胺能神经元,为中脑多巴胺能神经元的发育研究、帕金森氏症发病机制的研究以及细胞移植治疗的开展奠定了基础。
Degeneration of dopamine(DA)-producing neurons in the midbrain, especially the substantia nigra, underlies the pathophysiology of Parkinson's disease(PD). At present, there has been no effective treatment for such disease. Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), can differentiate to any cell types of the human body, including DA neurons. These DA neurons may be used to study pathological processes of neural degeneration, which in turn may become a target for therapeutic discovery. These DA procursors may also become a source of cell based therapy for the Parkinson's diseases.
     Autologous transplantation via induced pluripotent stem cells (iPSCs) is a potential strategy to have readily available matching donor cells and therefore, minimize host immune response. A recent study with iPSC transplants showed rejection of teratomas by syngenic host mice, casting doubt on the utility of reprogrammed cells for autologous transplant therapy. Clinical translation of cell replacement strategies will rely upon iPSC-differentiated progenies instead of iPSCs themselves. Here we show that transplantation of rhesus monkey iPSC-derived neural progenitors survive for up to6months without immune suppression and differentiate into neurons, astrocytes, and oligodendrocytes in the striatum of MPTP-induced hemiparkinsonian rhesus monkeys with minimal presence of inflammatory cells. This finding raises hopes of personalized regenerative therapies.
     By sequentially applying sonic hedgehog (C25II) and CHIR99021(GSK3□inhibitor) to induce the midbrain floor plate progenitors and fibroblast growth factor8(FGF8) to promote dopaminergic differentiation in a chemically defined medium, we have established a robust system for generation of midbrain dopamine (DA) neurons from human and rhesus monkey embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).
     We found that CHIR99021specifies diencephalon to hindbrain fates in a concentration-dependent manner and only a narrow concentration range of CHIR99021at a particular window is necessary to induce the midbrain floor plate progenitors, expressing Corin, Enl, FoxA2and Lmxla. FGF8enhances the dopaminergic fate of the progenitors, thus generating DA neurons with midbrain characteristics, including expression of TH, Lmxla/b, FoxA2, FoxPl, Nurr1and Enl as well as typical electrophysiological properties. More than half of these DA neurons expressed A9DA neuron markers Girk2and ALDHlal. The new strategy will allow generation of enriched populations of functional midbrain DA neurons from both human and monkey PSCs for disease modeling, drug testing, and potential cell therapy.
引文
1. Thomson, J. A., et al., Embryonic stem cell lines derived from human blastocysts. Science,1998.282(5391):p.1145-7.
    2. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell,2007.131(5):p.861-72.
    3. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science,2007.318(5858):p.1917-20.
    4. Zhang, X., et al., Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell,2010.7(1):p.90-100.
    5. Lu, R., A. Yang, and Y. Jin, Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J Biol Chem,2011.286(10):p.8425-36.
    6. Dyson, S. C. and R. A. Barker, Cell-based therapies for Parkinson's disease. Expert Rev Neurother,2011.11(6):p.831-44.
    7. Kriks, S., et al., Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature,2011. 480(7378):p.547-51.
    8. Yang, D., et al., Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells,2008. 26(1):p.55-63.
    9. Lindvall,O., et al., Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell,2012.10(2):p.151-5.
    10. Cooper,O., P. Hallett, and 0. Isacson, Using stem cells and iPS cells to discover new treatments for Parkinson's disease. Parkinsonism Relat Disord,2012.18 Suppl 1:p. S14-6.
    11. Jiang, H., et al., Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun,2012.3:p.668.
    12. Soldner, F., et al., Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 2012.146(2):p.318-31.
    13. Ma, L., et al., Human Embryonic Stem Cell-Derived GABA Neurons Correct Locomotion Deficits in Quinolinic Acid-Lesioned Mice. Cell Stem Cell,
    2012. 14. Zhang, S. C., et al., In vitro differentiation of transplantable neural
    precursors from human embryonic stem cells. Nat Biotechnol,2001.19(12): p.1129-33.
    15. Hu, B. Y., Z. W. Du, and S. C. Zhang, Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc,2009.4(11): p.1614-22.
    16. Hu, B. Y. and S. C. Zhang, Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc,2009.4(9):p.1295-304.
    17. Krencik, R., et al., Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol,2011.29(6): p.528-34.
    18. Krencik, R. and S. C. Zhang, Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc,2011. 6(11):p.1710-7.
    19. Hu, B. Y., et al., Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development, 2009.136(9):p.1443-52.
    20. Lees, A. J., J. Hardy, and T. Revesz, Parkinson' s disease. Lancet,2009. 373(9680):p.2055-66.
    21. Fahn, S., et al., Levodopa and the progression of Parkinson's disease. N Engl J Med,2004.351(24):p.2498-508.
    22. Muenter, M. D. and G. M. Tyce, L-dopa therapy of Parkinson's disease: plasma L-dopa concentration, therapeutic response, and side effects. Mayo Clin Proc,1971.46(4):p.231-9.
    23. Gash, D. M., Z. Zhang, and G. Gerhardt, Neuroprotective and neurorestorative properties of GDNF. Ann Neurol,1998.44(3 Suppl 1):p. S121-5.
    24. Grondin, R., et al., Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain,2002.125 (Pt 10):p.2191-201.
    25. Kordower, J.H., et al., Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science, 2000.290(5492):p.767-73.
    26. Kordower, J. H., et al., Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann Neurol,1999.46(3):p.419-24.
    27. Gill, S. S., et al., Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med,2003.9(5):p.589-95.
    28. Lang, A. E., et al., Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol,2006.59(3):p.459-66.
    29. Madrazo, I., et al., Neural transplantation (auto-adrenal, fetal nigral and fetal adrenal) in Parkinson's disease:the Mexican experience. Prog Brain Res,1990.82:p.593-602.
    30. Lindvall,O., et al., Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol,1989.46(6): p.615-31.
    31. Lindvall,O., et al., Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science,1990.247(4942): p.574-7.
    32. Lindvall,O., et al., Neural transplantation in Parkinson's disease: the Swedish experience. Prog Brain Res,1990.82:p.729-34.
    33. Freed, C. R., et al., Transplantation of human fetal dopamine cells for Parkinson's disease. Results at 1 year. Arch Neurol,1990.47(5):p. 505-12.
    34. Freed, C. R., et al., Therapeutic effects of human fetal dopamine cells transplanted in a patient with Parkinson's disease. Prog Brain Res,1990. 82:p.715-21.
    35. Freed, C.R., et al., Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N Engl J Med,1992.327(22):p.1549-55.
    36. Freed, C. R., et al., Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med,2001.344(10):p.710-9.
    37. Olanow, C. W., et al., A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol,2003. 54(3):p.403-14.
    38. Graff-Radford, J., et al., Deep brain stimulation of the internal segment of the globus pallidus in delayed runaway dyskinesia. Arch Neurol, 2006.63(8):p.1181-4.
    39. Politis, M., et al., Serotonergic neurons mediate dyskinesia side effects in Parkinson's patients with neural transplants. Sci Transl Med, 2010.2(38):p.38ra46.
    40. Barker, R. A. and W. L. Kuan, Graft-induced dyskinesias in Parkinson's disease:what is it all about? Cell Stem Cell,2010.7(2):p.148-9.
    41. Lindvall,0., Parkinson disease. Stem cell transplantation. Lancet, 2001.358 Suppl:p. S48.
    42. Lee, S.H., et al., Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol,2000.18(6):p. 675-9.
    43. Kim, J. H., et al., Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature,2002. 418(6893):p.50-6.
    44. Kawasaki, H., et al., Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron,2000.28(1): p.31-40.
    45. Park, S., et al., Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett,2004.359(1-2):p.99-103.
    46. Buytaert-Hoefen, K. A., E. Alvarez, and C. R. Freed, Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells, 2004.22(5):p.669-74.
    47. Perrier, A.L., et al., Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A,2004.101(34):p. 12543-8.
    48. Zeng, X., et al., Dopaminergic differentiation of human embryonic stem cells. Stem Cells,2004.22(6):p.925-40.
    49. Roy, N.S., et al., Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med,2006.12(11):p.1259-68. 50. Schulz, T.C., et al., Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells, 2004.22(7):p.1218-38.
    51. Yan, Y., et al., Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells,2005.23(6):p. 781-90.
    52. Cooper,0., et al., Differentiation of human ES and Parkinson' s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol Cell Neurosci,2010.45(3):p.258-66.
    53. Jaeger, I., et al., Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells. Development,2011.138(20):p.4363-74.
    54. Redmond, D. E., Jr., Cellular replacement therapy for Parkinson's disease—where we are today? Neuroscientist,2002.8(5):p.457-88.
    55. Wernig, M., et al., Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A,2008.105(15):p. 5856-61.
    56. Chung, S., et al., Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem,2006. 97(5):p.1467-80.
    57. Fukuda, H., et al., Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells,2006.24(3):p. 763-71.
    58. Hedlund, E., et al., Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations. Stem Cells,2007.25(5):p.1126-35.
    59. Hedlund, E., et al., Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson's disease. Stem Cells,2008.26(6):p.1526-36.
    60. Ono, Y., et al., Differences in neurogenic potential in floor plate cells along an anteroposterior location:midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development,2007. 134(17):p.3213-25.
    61. Chung, S., et al., ES cell-derived renewable and functional midbrain dopaminergic progenitors. Proc Natl Acad Sci U S A,2011.108(23):p. 9703-8.
    62. Wider, C. and Z. K. Wszolek, Clinical genetics of Parkinson's disease and related disorders. Parkinsonism Relat Disord,2007.13 Suppl 3:p. S229-32.
    63. Farrer, M. J., Genetics of Parkinson disease:paradigm shifts and future prospects. Nat Rev Genet,2006.7(4):p.306-18.
    64. Mueller, J.C., et al., Multiple regions of alpha-synuclein are associated with Parkinson's disease. Ann Neurol,2005.57(4):p.535-41.
    65. Myhre, R., et al., Multiple alpha-synuclein gene polymorphisms are associated with Parkinson's disease in a Norwegian population. Acta Neurol Scand,2008.118(5):p.320-7.
    66. Winkler, S., et al., alpha-Synuclein and Parkinson disease susceptibility. Neurology,2007.69(18):p.1745-50.
    67. Lin, X., et al., Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron,2009.64(6):p.807-27.
    68. Anand, V. S. and S. P. Braithwaite, LRRK2 in Parkinson's disease: biochemical functions. FEBS J,2009.276(22):p.6428-35.
    69. Mata, I. F., et al., LRRK2 in Parkinson's disease:protein domains and functional insights. Trends Neurosci,2006.29(5):p.286-93.
    70. Smith, W. W., et al., Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA,2005.102(51):p.18676-81.
    71. Goldwurm, S., et al., The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson's disease and originates from a common ancestor. J Med Genet,2005.42(11):p. e65.
    72. Bialecka, M., et al., Analysis of LRRK 2 G 2019 S and I 2020 T mutations in Parkinson's disease. Neurosci Lett,2005.390(1):p.1-3.
    73. Kachergus, J., et al., Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism:evidence of a common founder across European populations. Am J Hum Genet,2005.76(4):p.672-80.
    74. Johnson, B. N., et al., The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci U S A.
    75. Zimprich, A., Genetics of Parkinson's disease and essential tremor. Curr Opin Neurol.24(4):p.318-23.
    76. Ghazavi, F., et al., PRKN, DJ-1, and PINK1 screening identifies novel splice site mutation in PRKN and two novel DJ-1 mutations. Mov Disord. 26(1):p.80-9.
    77. Ren, Y., et al., Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Hum Mol Genet.20(6):p.1074-83.
    78. Zhong, N., et al., DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. J Biol Chem,2006.
    281(30):p.20940-8.
    79. Xu, J., et al., The Parkinson's disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hum Mol Genet,2005.14(9):p.1231-41.
    80. Moore, D. J., et al., Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet,2005.14(1): p.71-84.
    81. Abou-Sleiman, P.M., et al., The role of pathogenic DJ-1 mutations in Parkinson's disease. Ann Neurol,2003.54(3):p.283-6.
    82. Schneider, B. L., et al., Over-expression of alpha-synuclein in human neural progenitors leads to specific changes in fate and differentiation. Hum Mol Genet,2007.16(6):p.651-66.
    83. Hanna, J., et al., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science,2007.318(5858):p. 1920-3.
    84. Mauritz, C., et al., Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation,2008.118(5):p. 507-17.
    85. Xu, D., et al., Phenotypic correction of murine hemophilia A using an IPS cell-based therapy. Proc Natl Acad Sci U S A,2009.106(3):p. 808-13.
    86. Raya, A., et al., Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature,2009.460(7251): p.53-9.
    87. Park, I.H., et al., Disease-specific induced pluripotent stem cells. Cell,2008.134(5):p.877-86.
    88. Soldner, F., et al., Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell,2009. 136(5):p.964-77.
    89. Hargus, G., et al., Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A,2010.107(36): p.15921-6.
    90. Seibler, P., et al., Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci,2011.31(16):p.5970-6.
    91. Nguyen, H. N., et al., LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell,2011.8(3): p.267-80.
    92. Byers, B., et al., SNCA triplication Parkinson's patient's iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PLoS One.6(11):p. e26159.
    93. Devine, M. J., et al., Parkinson's disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat Commun.2:p. 440.
    94. Brennand, K. J., et al., Modelling schizophrenia using human induced pluripotent stem cells. Nature,2011.473(7346):p.221-5.
    95. Ebert, A. D., et al., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature,2009.457(7227):p.277-80.
    1. Samii, A., J. G. Nutt, and B. R. Ransom, Parkinson's disease. Lancet, 2004.363(9423):p.1783-93.
    2. Lees, A. J., J. Hardy, and T. Revesz, Parkinson's disease. Lancet,2009. 373(9680):p.2055-66.
    3. Fahn, S., et al., Levodopa and the progression of Parkinson's disease. N Engl J Med,2004.351(24):p.2498-508.
    4. Dyson, S. C. and R. A. Barker, Ce11-based therapies for Parkinson's disease. Expert Rev Neurother,2011.11(6):p.831-44.
    5. Lindvall,0., et al., Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol,1989.46(6): p.615-31.
    6. Freed, C. R., et al., Transplantation of human fetal dopamine cells for Parkinson's disease. Results at 1 year. Arch Neurol,1990.47(5):p. 505-12.
    7. Freed, C. R., et al., Therapeutic effects of human fetal dopamine cells transplanted in a patient with Parkinson's disease. Prog Brain Res,1990. 82:p.715-21.
    8. Lindvall,0., et al., Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science,1990.247(4942): p.574-7.
    9. Freed, C. R., et al., Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med,2001.344(10):p.710-9.
    10. Redmond, D. E., Jr., J. R. Sladek, and D. D. Spencer, Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med,2001.345(2):p.146-7.
    11. Olanow, C. W., et al., A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol,2003. 54(3):p.403-14.
    12. Barker, R. A. and W. L. Kuan, Graft-induced dyskinesias in Parkinson's disease:what is it all about? Cell Stem Cell,2010.7(2):p.148-9.
    13. Politis, M., et al., Serotonergic neurons mediate dyskinesia side effects in Parkinson's patients with neural transplants. Sci Trans 1 Med, 2010.2(38):p.38ra46.
    14. Kawasaki, H., et al., Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron,2000.28(1): p.31-40.
    15. Lee, S. H., et al., Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol,2000.18(6):p. 675-9.
    16. Fairchild, P. J., The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol,2011.10(12):p.868-75.
    17. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell,2006.126(4):p.663-76.
    18. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell,2007.131(5):p.861-72.
    19. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science,2007.318(5858):p.1917-20.
    20. Aoi, T., et al., Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science,2008.321(5889):p.699-702.
    21. Stadtfeld, M., K. Brennand, and K. Hochedlinger, Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol,2008. 18(12):p.890-4.
    22. Kim, J. B., et al., Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature,2008.454(7204): p.646-50.
    23. Seki, T., S. Yuasa, and K. Fukuda, Derivation of induced pluripotent stem cells from human peripheral circulating T cells. Curr Protoc Stem Cell Biol,2011. Chapter 4:p. Unit4A 3.
    24. Seki, T., et al., Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell,2011. 7(1):p.11-4.
    25. Zhao, T., et al., Immunogenicity of induced pluripotent stem cells. Nature,2011.474(7350):p.212-5.
    26. Yan, Y., et al., Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells,2005.23(6):p. 781-90.
    27. Yang, D., et al., Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells,2008. 26(1):p.55-63.
    28. Emborg, M. E., et al., Basal ganglia lesions after MPTP administration in rhesus monkeys. Neurobiol Dis,2006.23(2):p.281-9.
    29. Emborg-Knott, M. E. and E. F. Domino, MPTP-Induced hemiparkinsonism in nonhuman primates 6-8 years after a single unilateral intracarotid dose. Exp Neurol,1998.152(2):p.214-20.
    30. Zhang, X. Q. and S. C. Zhang, Differentiation of neural precursors and dopaminergic neurons from human embryonic stem cells. Methods Mol Biol, 2010.584:p.355-66.
    31. Xia, X., et al., Transgenes delivered by lentiviral vector are suppressed in human embryonic stem cells in a promoter-dependent manner. Stem Cells Dev,2007.16(1):p.167-76.
    32. Krencik, R., et al., Specification of transplan table astroglial subtypes from human pluripotent stem cells. Nat Biotechnol,2011.29(6): p.528-34.
    33. Krencik, R. and S. C. Zhang, Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc,2011. 6(11):p.1710-7.
    34. Kriks, S., et al., Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature,2011. 480(7378):p.547-51.
    35. Stadtfeld, M., et al., Induced pluripotent stem cells generated without viral integration. Science,2008.322(5903):p.945-9.
    36. Zhou, H., et al., Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell,2009.4(5):p.381-4.
    37. Soldner, F., et al., Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell,2009. 136(5):p.964-77.
    38. Ban, H., et al., Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A,2011.108(34):p.14234-9.
    39. Seki, T., et al., Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell,2010. 7(1):p.11-4.
    40. Warren, L., et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell,2010.7(5):p.618-30.
    1. Carlsson, A., B. Falck, and N. A. Hillarp, Cellular localization of brain monoamines. Acta Physiol Scand Suppl,1962.56(196):p.1-28.
    2. Dahlstroem, A. and K. Fuxe, Evidence for the Existence of Monoamine-Containing Neurons in the Central Nervous System. I. Demonstration of Monoamines in the Cell Bodies of Brain Stem Neurons. Acta Physiol Scand Suppl,1964:p. SUPPL 232:1-55.
    3. Bjorklund, A. and S. B. Dunnett, Dopamine neuron systems in the brain: an update. Trends Neurosci,2007.30(5):p.194-202.
    4. Lees, A. J., et al., The black stuff and Konstantin Nikolaevich Tretiakoff. Mov Disord,2008.23(6):p.777-83.
    5. Bower, J. H., et al., Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota,1976 to 1990. Neurology,1997.49(5):p.1284-8.
    6. de Ri jk, M. C., et al., Prevalence of Parkinson's disease in the elderly: the Rotterdam Study. Neurology,1995.45(12):p.2143-6.
    7. Lindvall,O., et al., Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol,1989.46(6): p.615-31.
    8. Freed, C. R., et al., Transplantation of human fetal dopamine cells for Parkinson's disease. Results at 1 year. Arch Neurol,1990.47(5):p. 505-12.
    9. Freed, C. R., et al., Therapeutic effects of human fetal dopamine cells transplanted in a patient with Parkinson's disease. Prog Brain Res,1990. 82:p.715-21.
    10. Lindvall,O., et al., Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science,1990.247(4942): p.574-7.
    11. Freed, C. R., et al., Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N Engl J Med,1992.327(22):p.1549-55.
    12. Freed, C.R., et al., Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med,2001.344(10):p.710-9.
    13. Redmond, D. E., Jr., J. R. Sladek, and D. D. Spencer, Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med,2001.345(2):p.146-7.
    14. Thomson, J. A., et al., Embryonic stem cell lines derived from human blastocysts. Science,1998.282(5391):p.1145-7.
    15. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell,2007.131(5):p.861-72.
    16. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science,2007.318(5858):p.1917-20.
    17. Hynes, M., et al., Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron,1995.15(1):p.35-44.
    18. Hynes, M. and A. Rosenthal, Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol,1999. 9(1):p.26-36.
    19. Millet, S., et al., A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature,1999.401(6749):p. 161-4.
    20. Wingate, R. J. and M. E. Hatten, The role of the rhombic lip in avian cerebellum development. Development,1999.126(20):p.4395-404.
    21. Zervas, M., et al., Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron,2004.43(3):p.345-57.
    22. Martinez, S., M. Wassef, and R. M. Alvarado-Mallart, Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron,1991.6(6):p. 971-81.
    23. Bally-Cuif, L., et al., Relationship between Wnt-1 and En-2 expression domains during early development of normal and ectopic met-mesencephalon. Development,1992.115(4):p.999-1009.
    24. Placzek, M. and J. Briscoe, The floor plate:multiple cells, multiple signals. Nat Rev Neurosci,2005.6(3):p.230-40.
    25. Yamada, T., et al., Control of cell pattern in the developing nervous system:polarizing activity of the floor plate and notochord. Cell,1991. 64(3):p.635-47.
    26. Blaess, S., J. D. Corrales, and A. L. Joyner, Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development,2006.133(9):p.1799-809.
    27. Hynes, M., et al., Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron,1997.19(1): p.15-26.
    28. Ye, W., et al., FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell,1998.93(5): p.755-66.
    29. Lee, S.H., et al., Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol,2000.18(6):p. 675-9.
    30. Kawasaki, H., et al., Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron,2000.28(1): p.31-40.
    31. Perrier, A. L., et al., Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A,2004.101(34):p. 12543-8.
    32. Zeng, X., et al., Dopaminergic differentiation of human embryonic stem cells. Stem Cells,2004.22(6):p.925-40.
    33. Ono, Y., et al., Differences in neurogenic potential in floor plate cells along an anteroposterior location:midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development,2007. 134(17):p.3213-25.
    34. Joksimovic, M., et al., Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat Neurosci,2009.12(2):p.125-31.
    35. Nakatani, T., et al., Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon. Development,2007.134(15):p.2783-93.
    36. Chung, S., et al., Wntl-lmxla forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell,2009.5(6):p.646-58.
    37. Mavromatakis, Y. E., et al., Foxal and Foxa2 positively and negatively regulate Shh signalling to specify ventral midbrain progenitor identity. Mech Dev,2011.128(1-2):p.90-103.
    38. Lin, W., et al., Foxal and Foxa2 function both upstream of and cooperatively with Lmxla and Lmxlb in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Dev Biol,2009.333(2) p.386-96.
    39. Ferri, A. L., et al., Foxal and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development,2007.134(15):p.2761-9.
    40. Kittappa, R., et al., The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol,2007.5(12):p. e325.
    41. Nakatani, T., et al., Lmxla and Lmxlb cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev Biol, 2010.339(1):p.101-13.
    42. Andersson, E., et al., Identification of intrinsic determinants of midbrain dopamine neurons. Cell,2006.124(2):p.393-405.
    43. Omodei, D., et al., Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. Development,2008.135(20):p.3459-70.
    44. Prakash, N., et al., A Wntl-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development,2006.133(1):p.89-98.
    45. Chambers, S. M., et al., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 2009.27(3):p.275-80.
    46. Johnson, M. A., et al., Functional neural development from human embryonic stem cells:accelerated synaptic activity via astrocyte coculture. J Neurosci,2007.27(12):p.3069-77.
    47. Fasano, C. A., et al., Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell,2010.6(4):p. 336-47.
    48. Denham, M., et al., Glil is an inducing factor in generating floor plate progenitor cells from human embryonic stem cells. Stem Cells,2010. 28(10):p.1805-15.
    49. Puelles, E., Genetic control of basal midbrain development. J Neurosci Res,2007.85(16):p.3530-4.
    50. Perez-Balaguer, A., et al., Shh dependent and independent maintenance of basal midbrain. Mech Dev,2009.126(5-6):p.301-13.
    51. Muhr, J., et al., Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron,1999.23(4):p.689-702.
    52. Nordstrom, U., T. M. Jessell, and T. Edlund, Progressive induction of caudal neural character by graded Wnt signaling. Nat Neurosci,2002.5(6): p.525-32.
    53. Nelander, J., J. B. Hebsgaard, and M. Parmar, Organization of the human embryonic ventral mesencephalon. Gene Expr Patterns,2009.9(8):p. 555-61.
    54. Guo, C., et al., Lmxlb is essential for Fgf8 and Wntl expression in the isthmic organizer during tectum and cerebellum development in mice. Development,2007.134(2):p.317-25.
    55. Sato, T., A. L. Joyner, and H. Nakamura, How does Fgf signaling from the isthmic organizer induce midbrain and cerebellum development? Dev Growth Differ,2004.46(6):p.487-94.
    56. Wurst, W. and L. Bally-Cuif, Neural plate patterning:upstream and downstream of the isthmic organizer. Nat Rev Neurosci,2001.2(2):p. 99-108.
    57. Lahti, L., et al., Cell-autonomous FGF signaling regulates anteroposterior patterning and neuronal differentiation in the mesodiencephalic dopaminergic progenitor domain. Development,2012. 139(1):p.894-905.
    58. Yan, Y., et al., Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells,2005.23(6):p. 781-90.
    59. Sonntag, K. C., et al., Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells,2007. 25(2):p.411-8.
    60. Wernig, M., et al., Neurons derived from reprograramed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A,2008.105(15):p. 5856-61.
    61. Yang, D., et al., Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells,2008. 26(1):p.55-63.
    62. Cooper,0., et al., Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol Cell Neurosci,2010.45(3):p.258-66.
    63. Jaeger, I., et al., Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells. Development,2011.138(20):p.4363-74.
    64. Kriks, S., et al., Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature,2011. 480(7378):p.547-51.
    65. Crossley, P. H. and G. R. Martin, The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development,1995.121 (2):p. 439-51.
    66. Shamim, H., et al., Sequential roles for Fgf4, Enl and Fgf8 in specification and regionalisation of the midbrain. Development,1999. 126(5):p.945-59.
    1. Antony, P.M., N. J. Diederich, and R. Balling, Parkinson's disease mouse models in translational research. Mamm Genome,2011.22(7-8):p. 401-19.
    2. Przedborski, S. and M. Vila, The 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine mouse model:a tool to explore the pathogenesis of Parkinson's disease. Ann N Y Acad Sci,2003.991:p.189-98.
    3. Paul, G., Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice. Behavioural Brain Research 2005. 162:p.1-10.
    4. rklund, A. B., Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson's disease. European Journal of Neuroscience,2010.31:p. 2266-2278.
    5. Chung, S., et al., ES cell-derived renewable and functional midbrain dopaminergic progenitors. Proc Natl Acad Sci U S A,2011.108(23):p. 9703-8.
    6. Bjorklund, A. and S. B. Dunnett, Dopamine neuron systems in the brain: an update. Trends Neurosci,2007.30(5):p.194-202.
    7. Redmond, D. E., Jr., J. R. Sladek, and D. D. Spencer, Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med,2001.345(2):p.146-7.
    8. Olanow, C. W., et al., A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol,2003. 54(3):p.403-14.
    9. Grealish, S., et al., The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson's disease. Brain,2010.133(Pt 2): p.482-95.
    10. Miller, J. C., et al., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol,2011.29(2):p.143-8.
    11. Sander, J. D., et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol,2011.29(8):p.697-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700