用户名: 密码: 验证码:
血管内皮抑素协同肿瘤特异性DC-T细胞的抗肿瘤效应及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,恶性肿瘤已成为全球主要的公共卫生问题,对于大多数肿瘤患者,手术、化疗和放疗等传统治疗未能有效控制病情。作为一种新兴的治疗模式,细胞免疫治疗能够有效控制某些化放疗失败的肿瘤,但总体而言其临床有效率仍然偏低。目前肿瘤生物治疗研究的热点之一就是寻找具有较强靶向性的、安全有效的肿瘤联合治疗新模式,以提高细胞免疫治疗恶性肿瘤的有效性。
     血管新生是肿瘤的基本生物学特征,靶向肿瘤的血管新生是一种有良好前景的控制肿瘤生长的治疗策略。研究证实单独使用抗血管新生药物不能带来长期的生存获益,联合细胞免疫治疗可能获得持续性的肿瘤消退,这提示抗血管新生药物与细胞免疫治疗有协同效应。血管内皮抑素(Endostatin)被认为是一种没有毒副作用且不易耐药的、有潜力的抗血管新生药物。但迄今为止,Endostatin对细胞免疫治疗抗肿瘤效应的影响尚不清楚,上述的协同效应能否延伸到Endostatin还需明确。Endostatin与细胞免疫治疗联合应用的研究将为抗肿瘤效应强大而持久的发挥提供新的视角。
     炎性微环境是肿瘤的主要构成特征,对于细胞免疫治疗的成败起决定性作用,其通过MDSC等多种抑制性因素使回输的杀伤性T细胞转换为抑制性调节T细胞(Treg)。此外,肿瘤微环境内的骨髓来源抑制细胞(MDSC)、肿瘤相关巨噬细胞(TAM)、未成熟树突状细胞因子(imDC)等免疫细胞及促炎细胞因子(IL-6、IL-17、 TNF-α及趋化因子等)能通过刺激血管新生和组织重构促进肿瘤发展,并形成肿瘤微环境内抑制性的免疫状态。新近研究证实抗血管新生药物Sunitinib可减少肿瘤微环境中的免疫抑制性细胞(MDSC、Treg)的数量、下调抑制性细胞因子[IL-10、转化生长因子(TGF)-β]和程序性死亡受体-1(PD-1)的表达,缓解与肿瘤相关的免疫抑制,促进肿瘤特异性TIL细胞在肿瘤组织内的浸润。但至今Endostatin对肿瘤微环境内免疫状态及对过继免疫细胞抗肿瘤效应的影响及机制尚未明确。本课题通过Lewis肺癌荷瘤鼠模型,研究Endostatin在发挥抗肿瘤效应过程中对肿瘤微环境内免疫网络的影响,进一步明确Endostatin抗肿瘤效应的具体机制,从而为开展抗血管新生的分子靶向治疗与细胞免疫治疗的联合寻找理论依据。
     精确评估抗血管新生治疗后肿瘤微环境的改变对于明确其具体的抗肿瘤效应、优化治疗策略是十分重要的。肿瘤微环境中的炎性介质与促血管新生因子之间存在密切关系。其中,肿瘤坏死因子-α(TNF-α)和白介素-6(IL-6)是肿瘤微环境内重要的促血管新生炎性细胞因子,在调节免疫细胞、促进血管新生中发挥重要作用。TNF-α驱动的CXC趋化因子(CXCLs)与其受体(CXCR2)轴通路在肺损伤所致的血管新生中发挥关键作用。研究发现非小细胞肺癌(NSCLC)患者血清中TNF-α的水平较健康人群显著升高。IL-6主要通过转录信号传导子与激活子3(STAT3)信号通路促进VEGF的转录、内皮细胞的增殖和转移,从而在多种实体瘤的肿瘤微环境中发挥促血管新生的作用。目前国际上已有关于TNF-α和IL-6基因多态性与疾病的相关性研究。在本课题的工作中,我们探讨了肿瘤微环境中的TNF-α和IL-6基因型与肺癌发生的相关性,以进一步论证肿瘤微环境促血管新生的炎性因子与肺癌发生的关系,并为深入研究Endostatin抗肿瘤效应的主要作用靶点及机制提供新的线索。
     为了刺激血管新生,肿瘤上调了一系列与血管新生相关的因子,这些发现为抗血管新生治疗的发展提供了理论基础。近年来,国际上抗血管新生的机制研究主要集中于VEGF及其受体通路,VEGF-A和其受体VEGFR-2是抗血管新生药物的关键靶点。而有关Endostatin抗血管新生的作用靶点及其机制的研究少有。一项对人类90%基因组的分析结果揭示Endostatin下调了微血管内皮细胞的调节血管生成因子的信号通路,包括VEGF、乏氧诱导因子-1α (HIF-1α)、肿瘤坏死因子受体(TNFR)等。这一研究提示Endostatin是一种多靶点的抗血管新生药物。鉴于肿瘤微环境内的免疫细胞、细胞因子及趋化因子在肿瘤血管新生中发挥的重要作用,使其成为抗血管新生治疗的理想靶点。本课题以肿瘤微环境中的TNF-α、IL-6或其受体、信号通路下游因子等作为主要靶目标,采用蛋白芯片技术筛选Endostatin抗肿瘤效应的主要作用靶点,进一步明确Endostatin与免疫系统间的相互作用,有望为合理设计抗血管新生的靶向药物Endostatin与细胞免疫治疗联合的最佳模式(应用顺序、时间及剂量)提供理论和实验基础。
     总之,本课题组前期成功获得Lewis肺癌肿瘤抗原特异性的DC-T细胞,并经流式细胞术分析其细胞亚群主要为细胞毒性的CD8+T细胞。在此基础上,本课题研究了Endostatin对肿瘤特异性DC-T细胞抗肿瘤效应的影响,进而探求其对肿瘤微环境内的免疫网络的作用,以明确Endostatin与细胞免疫治疗的联合抗肿瘤的效应机制;从遗传多态性的角度,探讨肿瘤微环境的重要促血管新生炎性因子TNF-α和IL-6的基因型与中国北方汉族人群肺癌发生的相关性;进而以TNF-α和IL-6及其受体、信号通路下游因子为主要靶目标,利用蛋白芯片筛选Endostatin抗肿瘤效应的主要作用靶点,为合理设计抗血管新生的Endostatin与细胞免疫治疗联合的最佳模式提供了理论和实验基础。
     第一部分血管内皮抑素协同肿瘤特异性DC-T细胞的抗肿瘤效应
     目的探讨血管内皮抑素(Endostatin)对肿瘤特异性DC-T细胞抗肿瘤效应的影响。
     方法
     1.建立Lewis肺癌C57BL/6鼠移植瘤模型,设DC-T组、DC-T+Endostatin组及PBS对照组,每组均设C57BL/6鼠7只,小鼠种瘤后第7天开始给予治疗干预,第14天给药后24小时处死小鼠;隔日观察肿瘤生长情况、测量瘤径,并绘制肿瘤生长曲线;
     2. DC-T+Endostatin组中,每只C57BL/6鼠给予重组人血管内皮抑素(rhEndostatin, Simcere公司)15mg/Kg/d,经鼠尾静脉注射,共14天;
     3.取健康C57BL/6小鼠抗凝静脉血,采用Ficoll梯度离心法分离外周血单个核细胞(PBMC),尼龙毛柱法分离得到T淋巴细胞,将培养5天的DC细胞与Lewis肺癌细胞株反复冻融所获得的肿瘤抗原共同孵育3天,转入培养第9天的T淋巴细胞培养瓶内,再共同培养24小时,所获得的细胞即为肿瘤特异性DC-T细胞,经流式细胞分析验证其主要的细胞亚群
     4.DC-T组及DC-T+Endostatin组中,每只C57BL/6鼠于种瘤后第7天,给予肿瘤特异性DC-T细胞5×106个,经鼠尾静脉输注,共1次;
     5.分离小鼠体内的肿瘤组织,观察肿瘤组织内的坏死情况,检测各组肿瘤组织微血管密度(MVD)评价血管新生情况;
     6.Western blot、免疫组化分别检测各组肿瘤组织内VEGF和HIF-1α蛋白表达;
     7.制备肿瘤组织单细胞悬液,流式细胞术检测各组肿瘤组织细胞悬液内CD8+T、mDC、TAM (M1/M2)和MDSC等细胞的比例;
     8.酶联免疫吸附试验(ELISA)检测肿瘤组织细胞悬液中IL-6、IL-10、IL-17、TGF-β及干扰素-γ(INF-γ)等细胞因子表达。
     结果
     1.相较于对照组,肿瘤特异性DC-T细胞组有效抑制肿瘤生长(P=0.021);肿瘤特异性DC-T细胞联合Endostatin治疗较对照组显著抑制了肿瘤的生长(P=0.009)。免疫组化检测显示,肿瘤特异性DC-T细胞治疗组的肿瘤组织内微血管密度(MVD)少于对照组(P=0.027);而肿瘤特异性DC-T细胞联合Endostatin治疗组肿瘤组织的MVD显著减少(P=0.002),肿瘤组织坏死明显增加;
     2.Western blot检测显示,相较于对照组,肿瘤特异性DC-T细胞治疗使肿瘤组织内的VEGF蛋白表达明显下降(P=0.002),且HIF-1α蛋白表达增加(P=0.000);而肿瘤特异性DC-T细胞联合Endostatin治疗组VEGF表达显著下降(P=0.000),HIF-1α蛋白表达明显增加(P=0.000);免疫组化染色结果支持了上述变化。ELISA检测显示,相较于对照组,肿瘤特异性DC-T细胞治疗使肿瘤组织内的促血管新生因子IL-6、IL-17表达明显减少(P值分别为0.026,0.044),而抑制血管新生的IFN-γ表达增加(P=0.026);肿瘤特异性DC-T细胞联合Endostatin治疗使IL-6、IL-17显著减少(P值分别为0.008,0.01),而IFN-γ表达明显增加(P=0.009);
     3.流式细胞分析显示,相较于对照组,DC-T细胞治疗使肿瘤组织内免疫抑制性细胞MDSC(P=0.03)比例下降,TAM细胞的免疫增强M1型升高(P=0.045)而免疫抑制性的M2型下降(P=0.038);肿瘤特异性DC-T细胞联合Endostatin治疗更显著地减少肿瘤组织内MDSC(P=0.009)和M2型TAM明显下降(P=0.008),M1型TAM细胞显著增加(P=0.005)。DC-T细胞治疗单独较对照组增加了肿瘤组织内mDC(P=0.038)和CD8+T细胞的浸润(P=0.019);肿瘤特异性DC-T细胞联合Endostatin治疗显著上调mDC比例(P=0.005),明显增加肿瘤组织内CD8+T细胞的浸润(P=0.008);
     4.ELISA检测进一步证实了流式细胞分析的结果,相较于对照组,DC-T细胞治疗单独应用下调了肿瘤组织内的免疫抑制性细胞因子IL-6、IL-10、TGF-β和IL-17(P值分别为0.026,0.032,0.029,0.044),增加了参与溶瘤作用的IFN-γ表达(P=0.026);肿瘤特异性DC-T细胞联合Endostatin治疗较PBS对照更显著地下调肿瘤组织内的IL-6、IL-10、TGF-β和IL-17表达(P值分别为0.008,0.008,0.002,0.01),IFN-γ表达明显增加(P=0.009)。
     结论
     1.肿瘤特异性DC-T细胞联合Endostatin治疗显著地减少了肿瘤组织内的血管结构,强力抑制肿瘤血管新生,明显减缓肿瘤生长,并促进了肿瘤坏死;
     2.两种治疗的联合显著抑制了多种促血管新生因子表达,并上调抑制血管新生因子的表达,同时使HIF-1α蛋白表达显著增加,加剧了肿瘤组织内的低氧状态;
     3.肿瘤特异性DC-T细胞联合Endostatin治疗显著地抑制了肿瘤组织内的免疫抑制性的MDSC和M2型TAM细胞比例,上调了免疫增强的M1型TAM比例,并使肿瘤组织内成熟DC和CD8+T细胞浸润明显增加,逆转了肿瘤微环境的免疫抑制;
     4.两种治疗联合显著地下调了肿瘤组织内免疫抑制性的IL-6、IL-10、TGF-β和IL-17表达,增加了参与溶瘤作用的IFN-y表达,进一步支持了Endostatin协同肿瘤特异性DC-T细胞治疗在强力抑制血管新生和肿瘤生长的同时,有效逆转肿瘤微环境的免疫抑制,使肿瘤细胞更易被抗肿瘤免疫反应损伤。
     第二部分血管内皮抑素有效纠正肺癌炎性肿瘤微环境的免疫抑制
     目的探讨Endostatin对肺癌肿瘤微环境内的免疫抑制细胞及相关细胞因子的影响。
     方法
     1.建立Lewis肺癌C57BL/6鼠移植瘤模型,分为对照组、低剂量Endostatin、高剂量Endostatin三组,每组均设C57BL/6鼠7只。对照组给予PBS0.2ml/只/天,低剂量Endostatin组给予rhEndostatin7.5mg/Kg/d,高剂量Endostatin组给予rhEndostatin15mg/Kg/d,三组均于小鼠种瘤第7日开始给予治疗干预,均为经鼠尾静脉注射药物,治疗共14天。第14天给药后24小时处死荷瘤鼠。隔日观察肿瘤生长情况、测量瘤径,绘制肿瘤生长曲线;
     2.分离小鼠体内的肿瘤组织,观察肿瘤组织内的坏死情况,检测肿瘤组织MVD,评价肿瘤血管新生;
     3.Western blot、免疫组化分别检测各组肿瘤组织内VEGF和HIF-la蛋白表达;
     4.制备肿瘤组织单细胞悬液,流式细胞术检测各组肿瘤组织细胞悬液内CD8+T、mDC、TAM (M1/M2)和MDSC等细胞的比例;
     5.ELISA检测各组肿瘤组织细胞悬液中IL-6、IL-10、IL-17、TGF-β和IFN-γ等细胞因子的表达。
     结果
     1.相对于对照组,Endostatin使肿瘤生长明显受抑(P=0.013),且低剂量与高剂量Endostatin组间无明显差别(P>0.05)。免疫组化检测显示,CD31作为血管内皮细胞的标记,内皮细胞胞浆被染为黄棕色。低剂量Endostatin使肿瘤组织内微血管密度(MVD)较对照组明显减少(P=0.014);高剂量Endostatin组肿瘤组织的MVD显著减少(P=0.002),肿瘤坏死明显增加;且低剂量与高剂量Endostatin组间存在明显差别(P<0.05);
     2.Western blot检测显示,相较于对照组,低剂量Endosattin治疗使肿瘤组织内的VEGF蛋白表达明显下降(P=0.001),且HIF-1α蛋白表达增加(P=0.000);而高剂量Endostatin治疗组VEGF表达显著下降(P=0.000),HIF-1α蛋白表达明显增加(P=0.001);免疫组化染色结果支持了上述变化。ELISA检测显示,相较于对照组,低剂量Endosattin治疗使肿瘤组织内的促血管新生因子IL-6、IL-17表达明显减少(P值分别为0.022,0.038),而抑制血管新生的IFN-y表达增加(P=0.044);而高剂量Endostatin治疗组IL-6、IL-17显著减少(P值分别为0.012,0.029),而IFN-γ表达明显增加(P=0.036)。而低剂量与高剂量Endostatin组之间的上述变化无统计学差异(P>0.05);
     3.流式细胞分析显示,相较于对照组,低剂量Endosattin治疗使肿瘤组织内免疫抑制性细胞MDSC(P=0.035)和M2型TAM(P=0.042)比例下降,免疫增强的M1型TAM升高(P=0.031);高剂量Endostatin治疗更显著地减少了肿瘤组织内MDSC(P=0.019)和M2型TAM(P=0.013),而M1型TAM显著增加(P=0.017)。低剂量Endosattin治疗较对照增加了肿瘤组织内mDC(P=0.034)和CD8+T细胞的浸润(P=0.038);高剂量Endostatin治疗显著上调mDC比例(P=0.018),明显增加肿瘤组织内CD8+T细胞的浸润(P=0.017)。而低剂量与高剂量Endostatin组间的上述变化无显著差异(P>0.05);
     4ELISA检测进一步证实了流式细胞分析的结果,相较于PBS对照,低剂量Endostatin治疗后荷瘤鼠肿瘤组织内的免疫抑制性细胞因子IL-6、IL-10、IL-17及TGF-p表达明显下降(P值分别为0.022,0.020,0.038,0.018),增加了参与溶瘤作用的IFN-γ,表达(P=0.044);高剂量Endostatin治疗更显著地下调肿瘤组织内的IL-6、IL-10、TGF-p和IL-17表达(P值分别为0.012,0.018,0.014,0.029),IFN-γ表达明显增加(P=0.036)。而低剂量与高剂量Endostatin组间的上述变化无统计学差异(P>0.05)。
     结论
     1. EEndostatin以剂量依赖模式显著地抑制肿瘤血管新生,促进肿瘤坏死,从而强力抑制肿瘤的生长;
     2.Endostatin通过抑制肿瘤组织内多种促血管新生因子的表达,上调抑制血管新生因子的表达,并使HIFla蛋白表达明显增加,加剧了肿瘤组织内的低氧状态;
     3.Endostatin通过下调肿瘤微环境内免疫抑制性细胞MDSC和M2型TAM的比例,上调了免疫增强的M1型TAM细胞比例,并使肿瘤组织内成熟DC和CD8+T细胞浸润明显增加,有效纠正肿瘤微环境的免疫抑制;
     4.Endostatin使肿瘤组织内的多种免疫抑制性细胞因子表达减少,同时增加了参与溶瘤作用的IFN-γ表达,进一步支持Endostatin可有效改善肿瘤微环境的免疫抑制,从而发挥协同DC-T细胞治疗的抗肿瘤效应。
     第三部分促炎细胞因子TNF-α和IL-6的基因多态性与肺癌的发生相关
     目的研究促炎细胞因子TNF-α和IL-6的基因启动子区多态性与肺癌发生的相关性。
     方法
     1.提取中国北方地区汉族人群中138例肺癌患者(肺癌组)和138位健康人(对照组)外周血基因组总DNA,两组的年龄和性别分布无统计学差异(P>0.05);
     2.用PCR方法分别扩增TNF-α基因启动子区-238G位点和IL-6基因启动子区-572C位点的片段;
     3.PCR扩增TNF-α基因位点的产物片段约290个碱基对,采用Bgl Ⅱ酶进行酶切以明确-238G位点是否发生了G-to-A单碱基转换;
     4.PCR扩增IL-6基因位点的产物片段约400碱基对,采用BsrBI酶进行酶切以明确-572C位点是否发生了C-to-G单碱基转换;
     5.以χ2-Test验证基因型频率是否符合与Hardy-Weinberg平衡定律,采用非条件Logistic回归校正混杂因素,行多态性与肺癌风险关联性的统计学分析。
     结果
     1TNF-a基因-238G位点的单核苷酸多态性(SNP)检测
     两组276例含290碱基对片段的PCR扩增产物,经Bgl II酶切产生了三种条带型,分别为80、210和290碱基对条带。由于酶Bgl II识别AGATCT,-238G位点发生单碱基G-to-A转换产生80和210碱基对条带,生成一个Bgl Ⅱ酶切位点。IRFLP结果提示TNF-a基因-238位点有三种SNP基因型,这三种多态性包括无转换、两个等位基因-238G位点都有一个单碱基G-to-A转换、等位基因中的一个基因-238G位点有一个单碱基G-to-A转换,即分别为野生型(wt),G-A/G-A和G-A基因型。
     2IL-6基因-572C位点的SNP检测
     两组276例含400碱基片段的PCR扩增产物,经BsrBI酶切产生了三种条带型分别为150、250和400碱基对条带。由于酶BsrBI识别CCGCTC,-572C位点发生了单碱基C-to-G转换产生150和250碱基对条带,生成一个BsrBI酶切位点。RFLP结果提示IL-6基因-572C位点有三种SNP基因型,这三种多态性包括无转换、两个等位基因-572C位点都有一个单碱基C-to-G转换、等位基因中的一个基因-572C位点有一个单碱基C-to-G转换,即分别为野生型(wt),G-A/G-A和G-A基因型。
     3TNF-a基因-238G位点单碱基G-to-A转换的高频率分布与肺癌的发生相关
     对TNF-a基因-238G位点的SNP进行统计学分析,证实两个等位基因-238GSNP的基因频率分布符合Hardy-Weinberg平衡定律(P>0.05)。大多数的病例具有-238G位点的野生型(wt) SNP(对照组113例,肺癌组99例);对照组和肺癌组有相同数量的G-A基因型,对照组有2例G-A/G-A基因型,而肺癌组有14例G-A/G-A基因型。肺癌组G-A SNP数量的增加提示两个等位基因上G-A SNP与肺癌的发生相关(P=0.005,OR=1.74395%C10.232-0.682)。
     4IL-6基因-572C位点单碱基C-to-G转换的高频率分布与肺癌的发生相关
     对IL-6基因-572C位点的SNP进行统计学分析,证实两个等位基因-572C位点SNPs的基因频率分布符合Hardy-Weinberg平衡定律(P>0.05)。在IL-6基因-572C位点的SNP,对照组和肺癌组有相同数量的野生型(wt)或C-G SNP,而对照组有3例C-G/C-G基因型,肺癌组有9例C-G/C-G基因型。肺癌组C-G/C-GSNP数量的增加提示两个等位基因上纯合型C-G/C-G SNP与肺癌的发生相关(P=0.029,OR=I.23495%CI1.412-2.727)。
     结论
     1.肿瘤微环境中重要的促血管新生炎性因子TNF-a和IL-6的基因多态性是中国北方汉族人群肺癌遗传易感性的关键因素;
     2. TNF-a基因启动子区-238G位点单碱基G-to-A转换和IL-6基因启动子区-572C位点单碱基C-to-G转换的高频率分布与肺癌的发生相关。
     第四部分趋化因子CXCL1-2/CXCR2轴通路参与血管内皮抑素的抗肿瘤效应
     目的采用蛋白芯片技术筛选Endostatin抗肿瘤效应的主要作用靶点。
     方法
     1.建立Lewis肺癌C57BL/6鼠移植瘤模型,设对照组和实验组,每组均设C57BL/6小鼠7只,于小鼠种瘤后第7天开始给予治疗干预,对照组给予PBS0.2m1/只/天,实验组给予rhEndostatin15mg/Kg/d,均经鼠尾静脉注射给药,治疗共14天。第14天末次治疗后24小时处死小鼠;
     2.分离小鼠体内的肿瘤组织,取各组肿瘤组织块行蛋白芯片检测。检测项目包括CCL11、CCL2、CCL3、GM-CSF、IFN-γ、IL-12p70、IL-2、IL-4、IL-6、 IL-9、CXCL1、CXCL2、MCP5、SCF、sTNFR1、TIMP1和VEGF-A等19种促/抗血管新生因子。统计学分析采用Significance Analysis of Microarrays(SAM)基因芯片分析软件;
     3.将对照组和实验组的样本量均扩大一倍,并重复上述实验,经处理后留取肿瘤组织行蛋白芯片检测。并根据第一次筛选的结果调整检测项目。统计学分析采用Significance Analysis of Microarrays (SAM)基因芯片分析软件,并将肿瘤样品的蛋白芯片检测结果进行聚类分析。
     结果
     1.初次实验中蛋白芯片杂交图和SAM分析结果显示,肿瘤组织内趋化因子CXCL1和CXCL2、CCL3的水平显著升高(分别为4.1倍,2.4倍,2.3倍),而VEGF-A、GM-CSF、sTNFR1/2、TIMP1等重要的促/抗血管新生因子的水平未发生明显变化;
     2.根据第一次筛选的结果调整检测项目,包括GM-CSF、CCL27、CXCL1、 CXCL2、IL-2、MCP5、sTNFR1、TIMP1和VEGF-A等9种促/抗血管新生因子。重复实验中蛋白芯片杂交图和SAM分析结果显示,肿瘤组织内的趋化因子CXCL2水平仍呈显著升高,同时VEGFA、GM-CSF亦明显升高(分别为1.964倍,1.505倍,2.18倍),聚类分析结果验证了上述因子的变化趋势。
     结论
     1.肿瘤微环境内的多个促血管新生因子在Endostatin治疗后发生显著变化,证实了Endostatin具有多靶点抗血管新生的特征;
     2.除了VEGF信号通路,肿瘤微环境内的趋化因子CXCL1-2/CXCR2轴信号通路也参与了Endostatin的抗肿瘤效应。
In recent years, malignant tumors have been a worldwide issue of public health. To most patients with tumors, conventional treatment strategies such as surgery, chemotherapy and radiotherapy couldn't effectively control diseases. As an emerging antitumor therapeutic method, cellular immunotherapy has remarkable curative effect on tumors, even those refractory to chemotherapy and radiotherapy. However, its clinical benefits in cancer therapy are very modest. At present, how to improve antitumor effect of cellular immunotherapy by combination with different safty and targeted therapies is always the key point in cancer research of antitumor biotherapy.
     Angiogenesis is one of the basic hallmarks of cancer. Antiangiogenic therapy is a new and good prospective treatment strategy. Studies showed that monotherapy with antiangiogenic agents is failing to produce longlasting clinical responses in most patients, however, antiangiogenic molecules may contribute to persistent tumor's remission in combination with immunotherapy. And it suggested that antiangiogenic agents synergized with cellular immunotherapy. Endostatin is regarded as one of the promising antiangiogenesis agents with less adverse side effects and seldom susceptible to the resistance to antigiogenesis. However, it's rare to study on the role and mechanism of Endostatin playing in cellular therapeutic potency. To explore the relationship between Endostatin and cellular immunotherapy on antitumor treatment and provide a theoretical basis for raising the longlasting and potent therapeutic efficacy of Endostatin combined with cellular immunotherapy.
     The inflammatory tumor microenvironment forms a major part of tumors and plays a vital role in the antitumor effect of cellular therapy, and adoptive cytotoxic T cells would be changed into immunosuppressive regular T cells (Treg) through many immunosuppressive factors such as MDSC in the tumor microenvironment. The immune inhibitory cells (MDSC, TAM, and imDC) and proinflammatory cytokines (IL-6,Il-17, TNF-α and chemokines) promote angiogenesis and tissue remodeling and contribute to tumor development and innumosuppression in the tunor micro-environment. Recent studies demonstrated that antiangiogenic agent Sunitinib decreased immunosuppressive cells such as MDSC and Treg, immunosuppressive cytokines IL-10and TGF-β, as well as T cell inhibitory factor PD-1and reversed immunosuppression in the tumor microenvironment. However, it's rare to study on the role and mechanism of Endostatin playing in the immune cells and related cytokines in the tumor microenvironment. In a Lewis lung cancer tumor-bearing mice model, we investigated the mechanism of Endostatin antitumor potency and provided a theoretical basis for designing the optimal strategy of Endostatin combined with cellular immunotherapy in cancer treatment.
     Accurate evaluation of the changes in the tumor microenvironment after antiangiogenic therapy is very important to definite the mechanism of antitumor effect and design the optimal strategy in cancer treatment. Inflammatory cells and mediators are tightly related to proangiogenesis factors in the tumor microenvironment. Both TNF-α and IL-6are the vital proinflammatory cytokines in the tumor microenvironment. TNF-α promotes CXC chemokines and their receptor CXCR2axis signaling and plays the crucial role in neuvascularization of lung tissue in pulmonary inflammation and ischemia injury. The level of TNF-α is significantly higher in the serums of patients with non-small cell lung cancer (NSCLC) than that of healthy individuals. IL-6induces VEGF transduction, proliferation of endothial cells, and tumor metastasis via STAT3signaling in many solid tumors. Studies have demonstrated that genic polymorphisms of TNF-α and IL-6are associated with increased occurring risk of some benign or malignant diseases. In the present study, we studied SNP markers in the promoter-regulating regions of TNF-α and IL-6genes in the ethnic group Han of North China, to explore the SNP polymorphisms of the TNF-α and IL-6genes relevant to occurring of lung cancer. It will further investigate the relationship between pro-angiogenic inflammatory cytokines in the tumor microenvironment and occurring of lung cancer. Moreover, we may provide the theoretical basis for the main targets and mechanism of Endostatin antitumor effect.
     Induction of angiogenesis requires a shift/switch towards activation/upregulation of inducers of angiogenesis over suppression of angiogenic inhibitors in the tumor microenvironment. Preclinical studies and clinical trials mainly focused on VEGF and its receptors signaling, and demonstrated that VEGF-A and its receptor VEGFR-2are key targets of antiangiogenic agents. However, it's rare to study on role and the molecular mechanism of Endostatin antitumor effect. In the human Genome study, the data demonstrated that Endostatin down-regulated proangiogenic signaling relevant to the endothelial cells such as VEGF, HIF-lα, and TNF-a receptor (sTNFR) and so on.The data suggested that Endostatin is a multi-target antiangiogenic agent. The cells and mediators of inflammation play the crucial role in tumor angiogenesis, so they are the promising therapeutic standpoints in antiangiogenic therapy.To screen the proflammatory cytokines TNF-α, IL-6and their receptors as well as down-stream factors of their signaling pathways by Propeome Profiling microarray and definite the main targets and mechanism of Endostatin antitumor effect, so as to provide a new perspective and theoretical basis for the optimal strategy of Endostatin combined with cellular immunotherapy.
     Based on the previous study that we successfully cultured and achieved tumor antigen special DC-T cells of Lewis lung cancer, further demonstrated cytotoxic CD8+T cells are the main subpopulation of the DC-T cells detected by Flow cytometry (FCM). In this project, we explored the relationship between Endostatin and cellular immunotherapy on antitumor treatment, the role and molecular mechanisms of Endostatin playing its antitumor effect in the tumor microenvironment, then provided a theoretical basis for the main targets and mechanism of Endostatin antitumor effect and promoting the longlasting and potent therapeutic efficacy of Endostatin combined with cellular immunotherapy. Moreover, we invetigated the SNP polymorphisms of the TNF-a and IL-6genes relevant to occurring of lung cancer in the ethnic group Han of North China.Furthermore, we screened the main targets of Endostatin antitumor effect by Propeome Profiling microarray, we may provide a theoretical basis for the optimal strategy of raising the longlasting and potent therapeutic efficacy of Endostatin combined with cellular immunotherapy.
     Part I Endostatin Synergized with Tumor Special DC-T Cellular Therapy on Antitumor Effect
     OBJECTIVE To investigate the role of Endostatin playing in tumor special DC-T cellular therapy on antitumor effect.
     METHODS
     1. The transplanted Lewis lung cancer models of C57BL/6mice were established by left extremity axillary subcutaneous injection of Lewis lung cancer cells (LLC). The tumor-bearing mice were randomly divided into three groups, including DC-T cells combined with Endostatin group, DC-T cells group, and PBS control group.There were seven mice in each group. Since day7, the tumor-bearing mice had been administered by Endostatin or DC-T cells or PBS.The body weight and tumor diameter were measured every other day, respectively; and the tumor growth curve was drawn.
     2. In DC-T cells combined with Endostatin group, each tumor-bearing mouse had been treated by rhEndostatin15mg/Kg/d by tail vein injection since day7after transplanted with LLCs, for14days.
     3. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood of healthy C57BL/6mice by Ficoll density gradient centrifugation, T lyphoytes were enriched from PBMCs by Nylon wool column method. On day5, DCs and tumor antigen from LLC by repetitive freeze thaw method were cocultured for3days, then transferred into the culture flasks containing T cells, and cocultured for24hours, tumor antigen special DC-T cells were harvested. And, the T cell subpopulation was detected by Flow cytometry (FCM).
     4. In DC-T cells group and DC-T cells combined with Endostatin group, each tumor-bearing mouse was treated by DC-T cells5×106by tail vein injection on day7after transplanted with LLCs.
     5. All the mice were sacrificed24hours later after the last time of administration. Separated the tumor tissue of tumor-bearing mice and observed the tumor necrosis. The microvessel density (MVD) in the tumor tissue of tumor-bearing mice was detected by immunohistochemistry.
     6. The VEGF and HIF-1α expressions were determined by Western blot and immunohistochemical staining, respectively.
     7. The proportions of CD8+T, mDC, TAM (M1/M2), and MDSC in suspended tumor cells of tumor tissue were detected by FCM.
     8. The expressions of IL-6, IL-10, IL-17, TGF-β and IFN-γ in suspended tumor cells of tumor tissue were detected by ELISA.
     RESULTS:
     1. Compared with control group, tumor special DC-T cells inhibited the tumors growth (P=0.021); tumor special DC-T cells combined with Endostatin remarkably regressed the tumors better than PBS control (P=0.009). The data of immunohistochemical staining are shown that CD31was emplored as the marker of vascular endothelial cell and its cytoplasm was dyed yellow-brown. The Microenvironment Density in DC-T cells group was slightly lower than that in the control group (P=0.027); the MVD of tumor special DC-T cells combined with Endostatin was deeply lowest in comparison with control group (P=0.002), concurrently tumor necrosis obviously increased in comparison with control group.
     2. The expressions of VEGF, IL-6, IL-17in the tumors were decreased, concurrently those of IFN-γ and HIF-la were increased administered with DC-T cells compared with PBS control (P<0.05, respectively). Tumor special DC-T cells combined with Endostatin alleviated VEGF, IL-6, and IL-17, concurrently elevated IFN-y and HIF-la remarkably better than PBS control (P<0.01, respectively).
     3. Flow cytometric data are shown that the proportions of MDSC and TAM (M2type) were significantly lower, those of mDC and TAM (M1type) were up-regulated, and CD8+T cells were recruited to infiltrated the tumors by DC-T cells therapy, compared with PBS control(P<0.05, respectively). The changes in tumor special DC-T cells combined with Endostatin were strongly more than PBS control (P<0.01, respectively).
     4. Tumor special DC-T cells combined with Endostatin potently reduced the expressions of IL6, IL-10, TGF-β and IL-17in the tumor tissue, enhanced that of IFN-γ, concurrently recruited CD8+T cells into the tumor tissue in comparison with control group (P<0.01, respectively); The changes in DC-T cells group were significantly more than control group(P<0.05, respectively).
     CONCLUSIONS:
     1. Tumor special DC-T cells combined with Endostatin potently reduced tumor vasculature and tumor growth, and augmented tumor necrosis, implying the better antitumor effects than monotherapy.
     2. Tumor special DC-T cells combined with Endostatin strongly inhibited tumor angiogenesis via regulating the pro/anti-angiogenic factors, and intensified the hypoxia in the tumors.
     3. Tumor special DC-T cells combined with Endostatin remarkably inhibited immunosuppressive MDSC and TAM (M2type), enhanced mature DC and TAM (M1type), moreover, increased the number of CD8+T cells infiltrating the tumors, efficiently reversed the immunosuppression of the tumor microvironment.
     4. Tumor special DC-T cells combined with Endostatin effectively provided the advantage of reducing the levels of immunosuppressive cytokines in the tumor regions, further exhibited synergistic and much better antitumor effects than monotherapy strategy, making them more vulnerable to the immune reactions.
     Part Ⅱ Endostatin Effectively Relieved Immunosuppression of the Inflammatory Tumor Microenvironment in Lung Caner
     OBJECTIVE To investigate the role of Endostatin playing in immunosuppressive cells and related cytokines in the inflammatory tumor microenvironment in lung caner.
     METHODS
     1. The transplanted Lewis lung cancer model of C57BL/6mice were established by left extremity axillary subcutaneous injection of Lewis lung cancer cells(LLC). The tumor-bearing mice were randomly divided into three groups, including high-dose Endostatin group (rhEndostatin15mg/Kg/d), low-dose Endostatin (rhEndostatin7.5mg/Kg/d) group, and control group(PBS0.2ml/d), all the mice were administrated by tail vein injection since day7after transplanted with LLCs, for14days.There were seven mice in each group. All the mice were sacrificed24hours later after the last time of administration. The body weight and tumor diameter were measured every other day, respectively; and the tumor growth curve was drawn.
     2. Separated the tumor tissue of tumor-bearing mice and observed the tumor necrosis. The microvessel density (MVD) in the tumor tissue of tumor-bearing mice was detected by immunohistochemistry.
     3. The VEGF and HIF-1α expressions were determined by Western blot and immunohistochemical staining, respectively.
     4. The proportions of CD8+T, mDC, TAM(M1/M2), and MDSC in suspended tumor cells of tumor tissue were detected by Flow cytometry (FCM).
     5. The expressions of IL-6, IL-10, IL-17, TGF-β and IFN-γ in suspended tumor cells of tumor tissue were detected by ELISA.
     RESULTS
     1. Compared with PBS control group, Endostatin inhibited the tumors growth (P<0.05), and there were no significant difference between high-dose and low-dose Endostatin (P>0.05); the Microenvironment Density in low-dose Endostatin group was slightly lower than that in the control group (P<0.05), that strongly reduced in high-dose Endostatin (P<0.01). There were significant difference between high-dose and low-dose Endostatin (P<0.05).
     2. Endostatin greatly decreased the expressions of VEGF, IL-6and IL-17, enhanced the expressions of IFN-y and HIF-la compared with control group (P<0.05, respectively) by Western blot, immunohistochemistry or ELISA. There were significant difference between high-dose and low-dose Endostatin (P<0.05).
     3. Flow cytometric data are shown that the proportions of MDSC and TAM (M2type) were significantly lower, those of mDC and TAM (M1type) were up-regulated, and CD8+T cells were recruited to infiltrated the tumors by Endostatin therapy, compared with PBS control(P<0.05, respectively). And there were no significant difference between high-dose and low-dose Endostatin (P>0.05).
     4. Endostatin significantly reduced the expressions of IL6, IL-10, TGF-β and IL-17in the tumor tissue, and concurrently elevated that of IFN-γ in comparison with control group (P<0.05, respectively); There were no significant difference between high-dose and low-dose Endostatin (P>0.05).
     CONCLUSIONS
     1. Endostatin strongly reduced tumor vasculature and tumor growth, and augmented tumor necrosis.
     2. Endostatin inhibited tumor angiogenesis via regulating the pro/anti-angiogenic factors in dose-dependent manner, and intensified the hypoxia in the tumors.
     3. Endostatin remarkably inhibited immunosuppressive MDSC and TAM, remarkably inhibited immunosuppressive MDSC and TAM (M2type), enhanced mature DC and TAM (M1type), moreover, increased the number of CD8+T cells infiltrating the tumors, efficiently reversed the immunosuppression of the tumor microvironment.
     4. Endostatin effectively provided the advantage of reducing the levels of immune inhibitory cytokines in the tumor regions, further demonstrated that Endostatin efficantly reversed immunosuppression of the inflammatory tumor microenvironment in lung caner, promoted mature DC and CD8+T cells to infiltrate the tumors, so as to synergize with tumor special DC-T cellular therapy on antitumor effect.
     Part Ⅲ Pro-inflammatory cytokines TNF-α and IL-6gene polymorphisms were associated with occurring of lung cancer
     OBJECTIVE To investigate the relationship between SNP polymorphisms of pro-inflammatory cytokines TNF-α and IL-6genes and occurring of lung cancer.
     METHODS
     1.138consecutive patients with primary lung cancer were recruited in this study. The control group consisted of138healthy individuals. All of them were from the ethnic group Han of North China. The ages, sex distribution, and behaviors (such as smoking or not) between lung cancer group and healthy control group had no significant difference statistically (P>0.05). Total DNAs were isolated from Peripheral blood mononuclear cells of138lung cancer patients and138healthy individuals.
     2. PCR were performed and amplified-238G locus of TNF-α gene and-572C locus of IL-6gene, respectively. Further, the gene polymorphisms of two cytokines were revealed by restriction fragment length polymorphism (RFLP).
     3. The PCR produced fragments of-238G locus of TNF-α gene about290bp as expected. The PCR products were then subjected to BglⅡ digestion to explore if a G-to-A single base alteration occurring at-238locus.
     4. The PCR produced fragments of-572C locus of IL-6gene about400bp as expected. The PCR products were digested with BsrBI to explore if a C-to-G single base alteration occurring at-572C locus.
     5. The correlation between the polymorphisms and risks of lung cancer was indicated by odds ratio (OR) and their95%confidence interval (CI). OR values and their95%CI were calculated using a non-conditional logistic regression model, which were adjusted by ages, gender, smoking and other factors.
     RESULTS
     1Detection of SNP polymorphisms at-238G locus of the TNF-a gene
     The PCR produced fragments about290bp as expected, digestion of the290bp fragments from the276individuals in both groups with BglⅡ generated three kinds of band patterns on agarose gels:(ⅰ) a band of about290bp,(ⅱ) two bands with sizes of about80and210bp, respectively, or (ⅲ) three bands with sizes of80,210, and290bp, respectively.
     Since BglⅡ recognizes AGATCT, generation of the80and210bp bands may be explained by a single-base G-to-A alteration occurred at-238G locus, which would generate a BglⅡ locus. Three kinds of SNP patterns were found at-238G locus of the TNF-a gene, including no alteration, a single-base G-to-A alteration at-238G locus of both alleles, a single-base G-to-A alteration at-238G locus of one of both alleles, were named as wt, G-A/G-A, and G-A, respectively.
     2Detection of SNP polymorphisms at-572C locus of the IL-6gene
     The PCR produced fragments about400bp as expected, digestion of the400bp fragments from the276individuals in both groups with BsrBI generated3kinds of band patterns on agarose gels:(ⅰ) a band of about400bp,(ⅱ) two bands with sizes of about150and250bp, respectively, or (ⅲ) three bands with sizes of150,250, and400bp, respectively.
     Since BsrBI recognizes CCGCTC, generation of the150and250bp bands may be explained by a single-base C-to-G alteration at-572C locus, which would generate a BsrBI locus.These three polymorphisms, including no alteration, a single-base C-to-G alteration at-572C locus of both alleles, a single-base C-to-G alteration at-572C locus of one of both alleles, were named as wt, C-G/C-G, and C-G, respectively.
     3High rates of single-base G-to-A alteration at-238G locus of the TNF-a gene
     correlated with occurring of lung cancer
     It was founded that the frequency distribution of-238G SNPs at both alleles fits the Hardy-Weinberg equilibrium (.P>0.05). Most cases possessed a wt SNP at-238G locus (113and99for healthy control group and lung cancer group, respectively). The control group and lung cancer group had similar number of G-A cases, respectively. The control group had2G-A/G-A cases, while lung cancer group had14G-A/G-A cases. It was suggested that correlations between G-A/G-A cases of-238G SNPs and occurring of lung cancer (P=0.005, OR=1.74395%CI0.232-0.682)
     4High rates of single-base C-to-G alteration at-572C locus of the IL-6gene correlated with tumorgenesis of lung cancer.
     Similar situations were also found for the SNPs on-572C locus of the IL-6gene. The healthy control group and lung cancer group had similar numbers of wt or C-G SNPs. However, the control group had three C-G/C-G cases, while lung cancer group had nine C-G/C-G cases. The increased numbers of C-G/C-G SNPs in lung cancer group suggested that the homozygous C-G/C-G SNPs on both alleles may be related to occurring of lung cancer (P=0.029, OR=1.23495%CI1.412-2.727).
     CONCLUSIONS
     1. The TNF-α and IL-6gene polymorphisms may be a critical risk for the genie susceptibility to lung cancer in the ethnic group Han of North China.
     2. The high rates of singlebase G-to-A alteration at-238G locus of both alleles of the TNF-α gene and high rates of single-base C-to-G alteration at-572G locus of both alleles of the IL-6gene correlated with tumorgenesis of lung cancer.
     Part Ⅳ Chemokines CXCL1-2/CXCR2Axis Signaling were Involved in the Antitumor Effect of Endostatin
     OBJECTIVE To screen the main targets of the antitumor effect of Endostatin using Proteome Profiler arrays.
     METHODS
     1. The transplanted Lewis lung cancer model of C57BL/6mice were established by left extremity axillary subcutaneous injection of Lewis lung cancer cells (LLC). The tumor-bearing mice were randomly divided into two groups, including Endostatin group (rhEndostatin15mg/Kg/d) and control group (PBS0.2ml/d). There were seven mice in each group. All the mice were administrated by tail vein injection since day7after transplanted with LLCs, for14days. All the mice were sacrificed24hours later after the last time of administration.
     2. The tumor specimens were separated from tumor-bearing mice. Proteome Profiling array of tumor specimens was performed, which included19pro/anti-angigenic factors such as CCL11, CCL2, CCL3, GM-CSF, IFN-γ, IL-12p70, IL-2, IL-4, IL-6, IL-9, CXCL1, CXCL2, MCP5, SCF, sTNFRl, TIMP1and VEGF-A so on. Significance Analysis of Microarrays (SAM) soft was used for statistical analysis.
     3. The sample sizes of Endostatin group and control group both were expanded doubly, and the experiment was repeated for further validation. Moreover, the molecular profiling was adjusted based on the data of the first experiment. Significance Analysis of Microarrays (SAM) soft and clustering analysis were used for statistical analysis.
     RESULTS
     1. The levels of CXCL1, CXCL2, and CCL3in the tumors were remarkably enhanced (4.1fold,2.4fold, and2.3fold, respectively), however, the critical pro-angiogenic factors including VEGF-A, GM-CSF, sTNFR1/2and TIMP1had no significant change.
     2. Based on the above data, the Proteome profiling was adjusted to include the key pro/anti-angiogenic factors such as GM-CSF、CCL27、CXCL1、CXCL2、IL-2、 MCP5、sTNFR1、TIMP1and VEGF-A. In the repeated experiment, according to SAM soft and clustering analysis, CXCL2was still strongly elevated, concurrently VEGF-A and GM-CSF were significantly enhanced (1.964fold, 1.505fold, and2.18fold, respectively).
     CONCLUSIONS
     1. The data demonstrated that multiple proangiogenic factors had remarkable changes after receiving Endostatin therapy, and strongly supported that Endostatin have the characteristic of multi-targeted antiangiogenic efficancy.
     2. Besides VEGF signaling pathway, chemokines CXCL1-2/CXCR2axis signaling in the tumor microvironment participated in the antitumor effect of Endostatin.
引文
1. Teicher BA. Antiangiogenic agents and targets:A perspective. Biochem Pharmacol,2011;81(1):6-12.
    2. Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit:recent successes and next steps. Nat Rev Cancer,2011; 11(11):805-812.
    3. Rosenberg SA. Overcoming obstacles to the effective immunotherapy of human cancer. ProcNatl Acad Sci USA,2008;105(35):12643-12644.
    4. Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des,2009;15(17):1949-1955.
    5. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer.Cell, 2010; 140(6):883-899.
    6. Vasievich EA, Huang L. The Suppressive Tumor Microenvironment:A Challenge in Cancer Immunotherapy. Mol Pharm,2011;8(3):635-641.
    7. Hanahan D, Weinberg RA. Hallmarks of Cancer:The Next Generation. Cell, 2011; 144(5):646-674.
    8. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res,2010; 70(15): 6171-6180.
    9. Folkman J. Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp Cell Res,2006;312(5):594-607.
    10. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell,2011; 146(6):873-887.
    11. Ebos JM, Kerbel RS. Antiangiogenic therapy:impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol,2011;8(4):210-221.
    12. GriYoen AW. Anti-angiogenesis:making the tumor vulnerable to the immune system. Cancer Immunol Immunother,2008;57:1553-1558.
    13. Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E. Synergy between tumor immunotherapy and antiangiogenic therapy. Blood,2003; 102(3):964-971.
    14. Siegel R, Naishadham D, Jemal A. Cancer Statistics,2012. CA Cancer J Clin, 2012;62:10-29.
    15. Prager GW, Poettler M. Angiogenesis in cancer. Basic mechanisms and therapeutic advances. Hamostaseologie,2012;32(2):105-114.
    16. Sonpavde G, Agarwal N, Choueiri TK, Kantoff PW. Recent advances in immunotherapy for the treatment of prostate cancer. Expert Opin Biol Ther,2011; 11 (8):997-1009.
    17. Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer-what clinicians need to know. Nat Rev Clin Oncol,2011;8(10):577-585.
    18. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC,Dreicer R, Sims RB,Xu Y, Frohlich MW, Schellhammer PF. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 2010;363(5):411-422.
    19. Alevizakos M, Kaltsas S, Syrigos KN. The VEGF pathway in lung cancer. Cancer Chemother Pharmacol,2013;72(6):1169-1181.
    20. Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother,2008;57(8):1115-1124.
    21. Johnson BF, Clay TM, Hobeika AC, Lyerly HK, Morse MA. Vascular endothelial growth factor and immunosuppression in cancer:current knowledge and potential for new therapy. Expert Opin Biol Ther,2007;7(4):449-460.
    22. Butt AQ, Mills KH. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene,2013 [Epub ahead of print]
    23. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garda J, Dreicer R, Bukowski R, Finke JH. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res,2009;15(6):2148-2157.
    24. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY, Chen SH. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res,2009;69(6):2514-2522.
    25. Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science,2005;307(5706):58-62.
    26. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J,Santosuossob M, Martin JD, Martin MR, Vianello F, Leblanc P, Munn L, Huang P, Duda DG, Fukumura D, Jain RK, Poznansky MC.Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor micro-environment and enhance immunotherapy. Proc Natl Acad Sci USA,2012;109 (43): 17561-17566.
    27. Chan SF, Wang HT, Huang KW, Torng PL, Lee HL, Hwang LH. Anti-angiogenic therapy renders large tumors vulnerable to immunotherapy via reducing immunosuppression in the tumor microenvironment. Cancer Lett,2012;320(1):23-30.
    28. Schoenfeld JD, Dranoff G. Anti-angiogenic immunotherapy. Hum Vaccin,2011; 7(9):976-981.
    29. Huang KW, Wu HL, Lin HL, Liang PC, Chen PJ, Chen SH, Lee HI, Su PY, Wu WH, Lee PH, Hwang LH, Chen DS. Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma model. Proc Natl Acad Sci USA,2010; 107(33):14769-14774.
    30. Kanzler I, Tuchscheerer N, Steffens G, Simsekyilmaz S, Konschalla S, Kroh A, Simons D, Asare Y, Schober A, Bucala R, Weber C, Bernhagen J, Liehn EA. Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis. Basic Res Cardiol,2013;108(1):310.
    31. Schoenfeld J, Jinushi M, Nakazaki Y, Wiener D, Park J, Soiffer R, Neuberg D, Mihm M, Hodi FS, Dranoff G. Active immunotherapy induces antibody responses that target tumor angiogenesis. Cancer Res,2010;70(24):10150-10160.
    32. De Bock K, Mazzone M, Carmeliet P. Antiangiogenic therapy, hypoxia, and metastasis:risky liaisons, or not? Nat Rev Clin Oncol,2011;8(7):393-404.
    33. Coussens L M, Werb Z. Inflammation and cancer. Nature,2002;420(6917):860-867.
    34. Mbeunkui F, Johann DJ Jr. Cancer and the tumor microenvironment:a review of an essential relationship. Cancer Chemother Pharmacol,2009;63(4):571-582.
    35. Bruno A, Pagani A, Magnani E, Rossi T, Noonan DM, Cantelmo AR, Albini A.Inflammatory Angiogenesis and the Tumor Microenvironment as Targets for Cancer Therapy and Prevention. Cancer Treat Res,2014;159:401-426.
    36. Samples J, Willis M, Klauber-DeMore N. Targeting Angiogenesis and the Tumor Microenvironment. Surg Oncol Clin N Am,2013;22(4):629-639.
    37. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis.Cancer Cell, 2009;15(3):220-231.
    38. Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, Badoual C, Tedgui A, Fridman WH, Oudard S. Angiogenesis and immunity:a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev,2011;30(1):83-95.
    39. Folkman J. Angiogenesis. Annu Rev Med,2006;57:1-18.
    40. Carmeliet P. Angiogenesis in health and disease. Nat Med,2003;9(6):653-660.
    41. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature,2008; 454 (7203):436-444.
    42. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression:The role of tumor-associated macrophages. Crit Rev Oncol Hematol,2008; 66(1):1-9.
    43. Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft.J Invest Dermatol,2007; 127(8):2031-2041.
    44. Neufeld G, Kessler O. Pro-angiogenic cytokines and their role in tumor angiogenesis. Cancer and Metastasis Rev,2006;25(3):373-385.
    45. Sakurai T, Kudo M. Signaling Pathways Governing Tumor Angiogenesis. Oncology,2011; 81(suppl 1):24-29.
    46. Schmid MC, Varner JA. Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. J Oncol,2010;2010: 201026.
    47. Kimura YN, Watari K, Fotovati A, Hosoi F, Yasumoto K, Izumi H, Kohno K, Umezawa K, Iquchi H, Shirouzu K, Takamori S, Kuwano M, Ono M.Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis.Cancer Sci,2007;98(12):2009-2018.
    48. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis.Nat Rev Cancer,2008; 8(8):618-631.
    49. Mlecnik B, Bindea G, Pages F, Galon J. Tumor immunosurveillance in human cancers. Cancer Metastasis Rev,2011;30(1):5-12.
    50. Weinberg, RA. The biology of cancer. Garland Science. Taylor & Francis Group, LLC; 2007.
    51. Vaupel P, Mayer A. Hypoxia in cancer:significance and impact on clinical outcome. Cancer Metastasis Rev,2007;26:225-239.
    52. Chang Q, Jurisica I, Do T, Hedley DW. Hypoxia Predicts Aggressive Growth and Spontaneous Metastasis Formation from Orthotopically Grown Primary Xenografts of Human Pancreatic Cancer. Cancer Res,2011;71(8):3110-3120.
    53. Chan N, Koch CJ, Bristow RG. Tumor hypoxia as a modifier of DNA strand break and cross-link repair. Curr Mol Med,2009;9(4):401-410.
    54. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med,2011;364 (7):656-665.
    55. Rapisarda A, Melillo G. Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat Rev Clin Oncol,2012;9(7):378-390.
    56. Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G. HIF1 alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion.Cancer Cell,2008;13(3):206-220.
    57. Welti J, Loges S, Dimmeler S, Carmeliet P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest,2013; 123(8):3190-3200.
    58. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med,2008;359(4):378-390.
    59. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, Michaelson MD, Gorbunova VA, Gore ME, Rusakov IG, Negrier S, Ou YC, Castellano D, Lim HY, Uemura H, Tarazi J, Cella D, Chen C, Rosbrook B, Kim S, Mortzer RJ. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma(AXIS):a randomized phase 3 trial. Lancet,2011;378(9807):1931-1939.
    60. Karamouzis MV, Moschos SJ. The use of endostatin in the treatment of solid tumors. Expert Opin Biol Ther,2009;9(5):641-648.
    61. Wen QL, Meng MB, Yang B, Tu LL, Jia L, Zhou L, Xu Y, Lu Y. Endostar, a recombined humanized endostatin, enhances the radioresponse for human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts in mice. Cancer Sci,2009;100(8):1510-1519.
    62. Wang J, Sun Y, Liu Y, Yu Q, Zhang Y, Li K, Zhu Y, Zhou Q, Hou M, Guan Z, Li W, Zhuang W, Wang D, Liang H, Qin F, Lu H, Liu X, Sun H,Zhang Y, Wang J, Luo S, Yang R, Tu Y, Wang X, Song S, Zhou J, You L, Wang J, Yao C. Results of randomized, multicenter, double-blind phase III trial of rh-endostatin (YH-16) in treatment of advanced non-small cell lung cancer patients. Zhongguo Fei Ai Za Zhi, 2005;8(4):283-290
    63. Murakami M, Zhao S, Zhao Y, Chowdhury NF, Yu W, Nishijima K, Takiguchi M, Tamaki N, Kuge Y. Evaluation of changes in the tumor microenvironment after sorafenib therapy by sequential histology and 18F-fluoromisonidazole hypoxia imaging in renal cell carcinoma. Int J Oncol,2012;41(5):1593-1600.
    64. Choi YS, Jeong JA, Lim DS. Mesenchymal stem cell-mediated immature dendritic cells induce regulatory T cell-based immunosuppressive effect. Immunol Invest,2012;41(2):214-229.
    65. Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich DI. Vascular Endothelial Growth Factor-Trap Overcomes Defects in Dendritic Cell Differentiation but Does Not Improve Antigen-Specific Immune Responses. Clin Cancer Res,2007; 13(16):4840-4848.
    66. Boissel N, Rousselot P, Raffoux E, Cayuela JM, Maarek O, Charron D, Degos L, Dombret H, Toubert A, Rea D. Defective blood dendritic cells in chronic myeloid leukemia correlate with high plasmatic VEGF and are not normalized by imatinib mesylate. Leukemia,2004; 18(10):1656-1661.
    67. Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A, Wood L, Elson P, Garcia J, Dreicer R, Bukowski R. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients.Clin Cancer Res,2008;14(20):6674-6682.
    68. Adotevi O, Pere H, Ravel P, Haicheur N, Badoual C, Merillon N, Medioni J, Peyrard S, Roncelin S, Verkarre V, Mejean A, Fridman WH, Oudard S, Tartour E. A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients.J Immunother,2010; 33(9): 991-998.
    69. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients.Clinical Cancer Research,2009; 15(6):2148-2157.
    70. Li Y, Liang J, Liu X, Liu H, Yin B, Xiao J, Bi Z. Correlation of polymorphisms of the vascular endothelial growth factor gene and the risk of lung cancer in an ethnic Han group of North China. Exp Ther Med,2012;3(4):673-676.
    71. Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer,2010;102(4):639-644.
    72. Sethi G, Sung B, Kunnumakkara AB, Aggarwal BB. Targeting TNF for treatment of cancer and autoimmunity. Adv Exp Med Biol,2009;647:37-51.
    73. Sansone P, Bromberg J.Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol,2012;30(9):1005-1014.
    74. Ettinger DS. Ten years of progress in non-small cell lung cancer. J Natl Compr Canc Netw,2012;10(3):292-295.
    75. Pao W. New approaches to targeted therapy in lung cancer. Proc Am Thorac Soc, 2012;9(2):72-73.
    76. Young RJ, Tin AW, Brown NJ, Jitlal M, Lee SM, Woll PJ. Analysis of circulating angiogenic biomarkers from patients in two phase III trials in lung cancer of chemotherapy alone or chemotherapy and thalidomide. Br J Cancer,2012; 106(6): 1153-1159.
    77. Miki Y, Suzuki T, Abe K, Suzuki S, Niikawa H, Lida S, Hata S, Akahira J, Mori K, Evans DB, Kondo T, Yamada-Okada H, Sasano H. Intratumoral localization of aromatase and interaction between stromal and parenchymal cells in the non-small cell lung carcinoma microenvironment. Cancer Res,2010;70(16):6659-6669.
    78. Rubie C, Frick VO, Wagner M, Schuld J, Graber S, Brittner B, Bohle RM, Schilling MK. ELR+ CXC chemokine expressionin benign and malignant colorectal conditions. BMC Cancer,2008; 8:178-189.
    79. Nannuru KC, Sharma B, Vamey ML, Singh RK. Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis. J Carcinog,2011;10:40-64.
    80. Vieira SM, Lemos HP, Grespan R, Napimoga MH, Dal-Secco D, Freitas A, Cunha TM, Verri WA Jr, Souza-Junior DA, Jamur MC,Fernandes KS, Oliver C, Silva JS, Teixeira MM, Cunha FQ. A crucial role for TNF-ain mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5. Br J Pharmacol,2009;158(13);779-789.
    81. Sanchez J, Moldobaeva A, McClintock J, Jenkins J, Waqner E. The role of CXCR2 in systemic neovascularization of the mouse lung. J Appl Physiol,2007; 103 (2):594-599.
    82. Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett,2008;267(2):226-244.
    83. Baird AM, Gray SG, O'Byrne KJ. Epigenetics Underpinning the Regulation of the CXC(ELR+) Chemokines in Non-Small Cell Lung Cancer,2011;6(1):e14593.
    84. Grivennikov S, Karin M. Autocrine IL-6 signaling:a key event in tumorigenesis? Cancer Cell,2008; 13(1):7-9.
    85. Sato-Otsubo A, Sanada M, Ogawa S. Single-nucleotide polymorphism array karyotyping in clinical practice:where, when, and how? Semin Oncol,2012;39(1): 13-25.
    86. Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L. New goals for the U.S. human genome project:1998-2003. Science,1998;282(5389):682-689.
    87. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science,1998;280(5366):1077-1082.
    88. Fehringer G, Liu G, Briollais L, Brennan P, Amos CI, Spitz MR, Bickeboller H, Wichmann HE, Risch A, Hung RJ. Comparison of pathway analysis approaches using lung cancer GWAS data sets. PLoS One,2012;7(2):e31816
    89. de Andrade M, Li Y, Marks RS, Deschamps C, Scanlon PD, Olswold CL, Jiang R, Swensen SJ, Sun Z, Cunningham JM,Wampfler JA, Limper AH, Midthun DE, Yang P. Genetic variants associated with the risk of chronic obstructive pulmonary disease with and without lung cancer. Cancer Prev Res (Phila),2012;5(3): 365-373.
    90. Barbisan G, Pe'rez LO, Contreras A, Golijow CD. TNF-a and IL-10 promoter polymorphisms, HPV infection, and cervical cancer risk. Tumour Biol,2012;33(5): 1549-1556.
    91. Yang Y, Luo C, Feng R, Bi S. The TNF-a, IL-1B and IL-10 polymorphisms and risk for hepatocellular carcinoma:a metaanalysis. J Cancer Res Clin Oncol,2011; 137(6):947-952.
    92. Wang B, Wang J, Zheng Y, Zhou S, Zheng J, Wang F, Ma X, Zeng Z, HBV Study Consortium. A study of TNF-alpha-238 and-308 polymorphisms with different outcomes of persistent hepatitis B virus infection in China. Pathology,2010;42 (7):674-680.
    93. Feldmann M, Maini SR. Role of cytokines in rheumatoid arthritis:an education in pathophysiology and therapeutics. Immunol Rev,2008;223(1):7-19.
    94. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, Gould D, Ayhan A, Balkwill F. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res,2007;67(2):585-592.
    95. Yang H, Bocchetta M, Kroczynska B, Elmishad AG, Chen Y, Liu Z, Bubici C, Mossman BT, Pass HI, Testa JR, Franzoso G, Carbone M. TNF-alpha inhibits asbestos-induced cytotoxicity via a NFkappaB-dependent pathway, a possible mechanism for asbestosinduced oncogenesis. Proc Natl Acad Sci USA,2006; 103 (27): 10397-10402.
    96. Mocellin S, Rossi CR, Pilati P, Nitti D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev,2005;16(1):35-53.
    97. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell,2005;121(7):977-990.
    98. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest,2008;118(2):560-570.
    99. Kitakata H, Nemoto-Sasaki Y, Takahashi Y, Kondo T, Mai M, Mukaida N. Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells.Cancer Res,2002;62(22):6682-6687.
    100. Zins K, Abraham D, Sioud M, Aharinejad S. Colon cancer cellderived tumor necrosis factor-amediates the tumor growthpromoting response in macrophages by up-regulating the colony stimulating factor-1 pathway. Cancer Res,2007;67(3):1038-1045.
    101. Harrison ML, Obermueller E, Maisey NR, Hoare S, EdmondsK, Li NF, Chao D, Hall K, Lee C, Timotheadou E, Charles K, Ahern R, King DM, Eisen T, Corringham R, DeWitte M, Balkwill F, Gore M. Tumor necrosis factor alpha as a new target for renal cell carcinoma:two sequential phase Ⅱ trials of infliximab at standard and high dose. J Clin Oncol,2007;25(29):4542-4549.
    104. Bommert K, Bargou RC, Stuhmer T. Signalling and survival pathways in multiple myeloma. Eur J Cancer,2006;42(11):1574-1580.
    103. Mudter J, Amoussina L, Schenk M, Yu J, Brustle A, Weigmann B, Atreya R, Wirtz S, Becker C, Hoffman A, Atreya I, Biesterfeld S, Galle PR, Lehr HA, Rose-John S, Mueller C, Lohoff M, Neurath MF. The transcription factor IFN regulatory factor-4 controls experimental colitis in mice via T cell-derived IL-6. J Clin Invest, 2008; 118(7):2415-2426.
    104. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science,2007;317(5834):121-124.
    105. Weigmann B, Lehr HA, Yancopoulos G, Valenzuela D, Murphy A, Stevens S, Schmidt J, Galle PR, Rose-John S, Neurath ME. The transcription factor NFATc2 controls IL-6-dependent T cell activation in experimental colitis. J Exp Med,2008; 205(9):2099-2110.
    106. Liang J, Li Y, Liu X, Xu X, Zhao Y. Relationship between cytokine levels and clinical classification of gastric cancer. Asian Pac J Cancer Prev,2011;12(7):1803-1806.
    107. Bouma G, Crusius JBA, Oudkerk Pool M, Kolkman JJ, von Blomberg BM, Kostense PJ, Giphart MJ, Schreuder GM, Meuwissen SG, Pena AS. Secretion of tumour necrosis factor and lymphotoxin in relation to polymorphisms in TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease. Scand J Immunol, 1996; 43(4):456-463.
    108. Hajeer AH, Hutchinson IV. Influence of TNF-a gene polymorphisms on TNF-a production and disease. Hum Immunol,2001;62(11):1191-1199.
    109. Yin YW, Sun QQ, Hu AM, Wang Q, Liu HL, Hou ZZ, Zeng YH, Xu RJ, Shi LB, Ma JB. Associations between interleukin-6 gene-174 C/G and-572 C/G polymorphisms and the risk of gastric cancer:A meta-analysis. J Surg Oncol,2012; 106(8):987-993.
    110. Vieira SM, Lemos HP, Grespan R, Napimoga MH, Dal-Secco D, Freitas A, Cunha TM, Verri Jr WA, Souza-Junior DA, Jamur MC, Fernandes KS, Oliver C, Silva JS, Teixeira MM, Cunha FQ.A crucial role for TNF-a in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5. Br J Pharmacol,2009;158(3):779-789.
    111. Bolitho C, Hahn MA, Baxter RC, Marsh DJ. The chemokine CXCL1 induces proliferation in epithelial ovarian cancer by transactivation of the epidermal growth factor receptor. Endocr Relat Cancer,2010;17(4):929-940.
    112. Liu W, Xie S, Chen X, Rao X, Ren H, Hu B, Yin T, Xiang Y, Ren J.Activation of the IL-6/JAK/STAT3 signaling pathway in human middle ear cholesteatoma epithelium. Int J Clin Exp Pathol,2014;7(2):709-715.
    113. Yadav A, Kumar B, Datta J, Teknos TN, Kumar P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res,2011;9(12):1658-1667.
    114. Zhang L, Ge W, Hu K, Zhang Y, Li C, Xu X, He D, Zhao Z, Zhang J, Jie F, Chen Y, Zheng Y. Endostar down-regulates HIF-1 and VEGF expression and enhances the radioresponse to human lung adenocarcinoma cancer cells. Mol Biol Rep,2012;39(1):89-95.
    115. Oklu R, Walker TG, Wicky S, Hesketh R. Angiogenesis and current antiangiogenic strategies for the treatment of cancer. J Vasc Interv Radiol,2010;21 (12):1791-1805.
    116. Murakami M, Elfenbein A, Simons M. Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res,2008;78(2):223-231.
    117. Yan L, Anderson GM, DeWitte M, Nakada MT. Therapeutic potential of cytokine and chemokine antagonists in cancer therapy. Eur J Cancer,2006;42(6):793-802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700