用户名: 密码: 验证码:
兔骨髓间充质干细胞对肿瘤局部免疫功能影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察兔骨髓间充质干细胞(MSCs)体外对T淋巴细胞免疫功能的影响。
     方法密度梯度离心法联合细胞贴壁法分离培养扩增MSCs,流式细胞仪检测MSCs表面抗原,培养的MSCs行酸性磷酸酶染色(ACP)、过碘酸—雪夫染色(PAS)、碱性磷酸酶染色(NAP);应用尼龙棉柱分离T淋巴细胞;用植物血凝素(PHA)刺激与或未与MSCs共培养3天的T淋巴细胞,应用MTT法测定T淋巴细胞的增殖,ELISA法检测反应体系中IL-2、IL-4、IL-10、IFN-γ的分泌。
     结果MSCs形态均匀,生长曲线显示增长能力强,MSCs鉴定:ACP(-),PAS(+),NAP(-),CD29(+),CD34(-),CD44(+),CD45(-),Ⅰ型胶原和Ⅱ型胶原均有表达。MSCs及其培养上清抑制PHA刺激引起的T淋巴细胞的增殖,且这种抑制作用是呈剂量依赖性的。MSCs及其培养上清抑制T淋巴细胞IL-2、IFN-γ的分泌;MSCs促进T淋巴细胞IL-4、IL-10的分泌。
     结论本实验获得性能可靠的兔MSCs;MSCs及其培养上清对T淋巴细胞增殖表现为抑制效应,MSCs抑制Th1细胞分泌IL-2和IFN-γ,但对Th2细胞分泌Ⅱ-4和IL-10的作用相反。此外,MSCs培养上清液亦可抑制IL-2和IFN-γ。其抑制T淋巴细胞增殖的作用机制可能包括直接接触及通过改变T淋巴细胞分泌细胞因子的种类和数量影响T淋巴细胞增殖。
     意义本实验结果表明MSCs可能通过可溶性因子调节Th1/Th2反应平衡,抑制Th1细胞亚群的功能发挥免疫调节作用,诱导免疫耐受,为MSCs治疗自身免疫性疾病提供了理论依据。
     目的探讨兔骨髓间充质干细胞对肿瘤局部免疫功能的影响。
     方法22只新西兰大白兔随机分为实验组与对照组,每只动物均行胫骨近端骨髓穿刺抽取骨髓培养间充质干细胞。间充质干细胞培养成功后,所有新西兰大白兔均采用大腿肌肉瘤块包埋法制作肿瘤动物模型。两组动物移植肿瘤1周后,实验组培养的自体骨髓间充质干细胞回输入生成的肿瘤内,每周1次,连续3次,其中第一次输入的F2代间充质干细胞用DAPI标记,用以定位回输入肿瘤组织中的间充质干细胞,对照组回输等量的DMEM。两组动物移植瘤块后第1、2、3、4周各行B超检查一次,记录每只动物生成的肿瘤最大径并计算每组动物肿瘤最大经平均值。第3周两组各处死1只肿瘤直径接近各组平均值的动物,第4周处死所有动物,解剖观察肿瘤生长及转移情况。所有肿瘤标本均连续冰冻切片,免疫组化法检测CD4~+T、CD8~+T淋巴细胞数量。ELISA试剂盒检测肿瘤组织中IL-2、IL-4、IL-10及IFN-γ的含量。
     结果种植瘤块后第一周与第二周肿瘤生长缓慢,实验组与对照组肿瘤最大径平均值相比较差异无显著统计学意义(P>0.05)。第三、四周实验组肿瘤的生长速度逐渐增快,两组肿瘤最大径平均值的差异逐渐增大,且两组相比差异均出现显著统计学意义(P<0.05)。经DAPI标记的骨髓间充质干细胞回输入肿瘤组织后分布于肿瘤间质组织或浸润边缘。免疫组化染色结果显示实验组CD4~+T及CD8~+T淋巴细胞均较对照组明显减少,主要分布在肿瘤细胞周边,肿瘤组织内也有少量浸润。ELISA结果显示实验组IL-2、IFN-γ较对照组明显减少,差异有显著统计学意义(P<0.05),而IL-4较对照组增加,两组比较差异有显著统计学意义(P<0.05),IL-10分泌也较对照组增加,但差异无显著统计学意义(P>0.05)。
     结论兔骨髓间充质干细胞进入肿瘤组织后,在肿瘤局部抑制机体抗肿瘤免疫。机制之一可能是通过影响细胞因子的分泌下调机体的抗肿瘤免疫。
     意义我们的实验结果表明骨髓间充质干细胞在肿瘤局部发挥免疫抑制效应,下调机体对肿瘤的细胞免疫,结合本课题前期研究结果骨髓间充质干细胞在肿瘤微环境诱导下可以分化为肌纤维母细胞,因此我们推测体内骨髓间充质干细胞可能参与了肿瘤的发生与发展,这一假设从另一角度阐述了实体肿瘤发展的可能机制。由于骨髓间充质干细胞具有低免疫原性,肿瘤又具有富集骨髓间充质干细胞的能力,很多学者已利用这些特点将骨髓间充质干细胞作为肿瘤治疗药物的载体;由于我们的研究结果已经提示骨髓间充质干细胞有助于肿瘤的发展,因此将骨髓间充质干细胞作为肿瘤治疗药物的载体的生物安全性问题值得进一步深入研究。
OBJECTIVE To investigate the immunoregulatory effect of rabbit bone marrow mesenchymal stem cells on T lymphocytes in vitro.
     METHODS MSCs were obtained by density gradient centrifugation with Percoll solution and sticking plastic bottle repeatedly;The surface markers CD29,CD34, CD44 and CD45 were tested by flow cytometry;The cultured MSCs were stained by ACP,PAS and NAP;T lymphocytes were harvested by using nylon column and T lymphocyte proliferation in the presence of PHA was evaluated by MTT;ELISA was used to detect the secretion of IL-2、IL-4、IL-10 and IFN-γ.
     RESULTS MSCs were homogenous population,the cell curve showed MSCs had a good ability of proliferation.The cultured MSCs were ACP(-),PAS(+),NAP(-), CD29(+),CD34(-),CD44(+),CD45(-).MSCs and the supernatant inhibited T lymphocytes proliferation and the inhibitory effect depended on the amount of MSCs.IL-2 and IFN-γsecretion of T lymphocytes were suppressed by MSCs or the supematant significantly,IL-4 and IL-10 secretion were promoted by MSCs at the same time.
     CONCLUSION MSCs obtained in this study was reliable.MSCs and the supernatant suppressed the proliferation of T lymphocytes.MSCs or the supernatant could suppress the secretion of IL-2 and IFN-γ,but MSCs had a different result on the secretion of IL-4 and IL-10.MSCs and the supematant might suppress T lymphocytes proliferation through alter cytokine variety and amount of T lymphocytes secretion.
     SIGNIFICANCE This experiment proved that MSCs could regulate the balance of Th1/Th2 by secretion of cytokines,induce the immunotolerance by inhibiting Th1 subset,which provided the theoretic support to treat autoimmune diseases.
     OBJECTIVE To study the effect of bone marrow mesenchymal stem cells on immunoregulation in tumor tissue in rabbit.
     METHODS 22 New Zealand white rabbits were randomly classified into the control group and the test group equally.Bone marrow mesenchymal stem cells were isolated from tibia of each animal.When the mesenchymal stem cells of each animal were cultured successfully,VX-2 tumor tissue was embedded in the thigh muscle of each animal.One week after the transplantation,the mesenchymal stem cells were self transplanted into tumor tissue in the test group while equal DMEM was injected in the control group one time every week for three weeks.F2 passage mesenchymal stem cells were marked by DAPI for locating the distribution in tumor tissue.The ultrasonography was performed for each animal 1,2,3,4 week(s)after the tumor mass was embedded in the thigh muscle.The maximum tumor diameter of each animal was recorded and the mean value of each group was calculated.One animal of each group was put to death in the third week and all the left animals were killed in the fourth week to observe the tumor development.All the tumor samples were made successive frozen section.Immunohistochemical stain and ELISA were performed to determine the content of CD4~+T,CD8~+T and cytokines.
     RESULTS The ultrasonography showed the tumor was growing slowly in the first and second week after the VX-2 tumor mass transplantation.The mean maximum tumor diameter of the control group and test group was no significant difference between them(P>0.05).The tumor growth velocity of the test group increased gradually in the third and fourth week,and the difference of the mean maximum tumor diameter between the two groups increased gradually too,statistical significance appeared when comparing each other(P<0.05).The mesenchymal stem cells were more likely to distribute in tumor stroma or the invasive border,only very few mesenchymal stem cells were seen in the tumor nest.The result of immunohistochemical stain showed that the contents of CD4~+T cells and CD8~+ T cells were decreased obviously,there was significant difference between the test group and the control group.The result of ELISA showed that the secretion of IL-2 and IFN-γwas decreased obviously in the test group while the secretion of IL-4 of test group was increased inversely,and there was significant difference between the test group and the control group.The secretion of IL-10 of the test group was also increase,but there was no significant difference between the two groups.
     CONCLUSIONS Rabbit bone marrow mesenchymal stem cells could make the balance of Th1/Th2 to drift to Th2 so that inhibit the anti-tumor immune response through altering the cytokines secretion.
     SIGNIFICANCE The results of our study show that rabbit bone marrow mesenchymal stem cells can inhibit the immune response in the tumor tissue,in addition,our topic prophase finding bone marrow mesenchymal stem cells may differentiate into myofibroblast under the induction of local tumor microenvironment, we thereby presume these cells may be related with tumor development.This hypothesis can explain the mechanism of tumor progression on another point of view. Because bone marrow mesenchymal stem cells possess the character of low immunogenicity and tumor have the ability to enrich mesenchymal stem cells,some researches have utilized mesenchymal stem cells as the drug carrier for tumor treatment.We have proved that mesenchymal stem cells can accelerate the tumor development in this study,so we think utilizing mesenchymal stem cells as the drug cartier for tumor treatment needs further researches to prove the biological safety.
引文
1. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Scinece, 1997,276:71-74.
    2. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow meshenchymal progenitor cells. J cell physiol, 1999,181: 67-73.
    3. Friedenstein AJ, Petrakova KV, Kurolesova Al, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968, 6: 230-247.
    4. Kopen GC, Prockop DJ, Phinney DG, et al. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 1999, 96: 10711-10716.
    5. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 2005, 105:4120-4126.
    6. Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood, 2006,107:367-372.
    7. Sotiropoulou PA, Perez SA, Gritzapis AD, et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 2006,24:74-85.
    8. Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol, 1998,176(1):57-66.
    9. Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 2001,98(8):2396-402.
    10. Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun.2001,282(1): 148-152.
    11. Dormady SP, Bashayan O, Dougherty R, et al. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. Hematother Stem Cell Res, 2001,10(1):125-140.
    
    12. Park SH, Sim WY, Park SW, et al. An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Tissue Eng, 2006,12(11):3107-3117.
    13. Meisel R, Zibert A, Laryea M, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood,2004,103(12):4619-4621.
    14. Pereira RF, O'Hara MD, Laptrv AV, et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA, 1998, 95: 1142-1147.
    15. Pittenger MF, Mackay AM, Beck SC, et al. Multi-lineage potential of adult human mesenchymal stem cells. Science, 1999, 284: 143-147.
    16. Deans RJ, Moseley AM. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol, 2000,28: 875-884.
    17. McIntosh K, Bartholomew A. Stromal cell modulation of the immune system. Graft, 2000, 3:324-328.
    18. Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci, 2003,10(2):228-241.
    19. Mclntosh KR, Klyushnenkova E, Shustova V, et al. Suppression of ahoreactive T-cell response by human mesenchymal stem cells involves CD8~+ cells. Blood, 1999,94:133a.
    20. Gurevitch O, Prigozhina TB, Pugatsch T, et al. Transplantation of allogeneic or xenogeneic bone marrow within the donor stromal microenvironment. Transplantation, 1999, 68: 1362-1368.
    21. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol, 2002, 30: 42-48.
    22. Koc ON, Lazarus HM. Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant,2001,27:235-239.
    23.Lazarus H,Curtin P,Devine S,et al.Role of mesenchymal stem cells(MSCs)in allogeneic transplantation:Early phase I clinical results.Blood,2000,96:392a.
    24.Koc O,Gerson S,Cooper B,et al.Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy.J Clin Oncol,2000,18:307-316.
    25.Di Nicola M,Carlo-Stella C,Magni M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.Blood,2002.99(10):3838-3843.
    26.宁红梅,金建刚,馗江伟等.人骨髓间充质干细胞体外对异基因T淋巴细胞表型的影响.中国实验血液学杂志.2005:13(1):43-49.
    27.Maccario R,Podesta M,Moretta A,et al.Interaction of human mesenchymal stem cells with cells involved in alloantigen specific immune response favors the differentiation of CD4~+T cell subsets expressing a regulatory/suppressive phenotype.Haematologica,2005,90:516-525.
    28.Aggarwal S,Pittenger MF.Human mesenchymal stem cells modulate allogeneic immune cell response.Blood,2005,105:1815-1822.
    29.Krampera M,Glennie S,Dyson J,et al.Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide.Blood,2003,101:3722-3729.
    30.Djouad F,Plence P,Bony C,et al.Immunosuprressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals.Blood,2003,102:3837-3844.
    31.Maitra B,Szekely E,Gjini K,et al.Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation.Bone Marrow Transplant,2004,33:597-604.
    32.Klyushnenkova E,Mosca JD,Zernetkina V,et al.T cell responses to allogeneic human mesenchymal stem cells:immunogenicity,tolerance,and suppression.J Biomed Sci,2005,12:47-57.
    33. Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human bone marrow stromal cells: implications in transplantation. Transplantation, 2003, 75: 389-397.
    
    34. Nauta AJ, Kruisselbrink AB, Lurvink E, et al. Mesenchymal stem cells inhibit generation and function of both CD34~+ derived and monocyte derived dendritic cells. J Immunol, 2006, 177: 2080-2087.
    
    35. Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NKcells are capable of killing MSC, whereas MSC cannhibit IL222induced NK2cell proliferation. Blood, 2006, 107:1484-1490.
    
    36. Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 2005,105:2821-2827.
    
    37. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Imunol Today, 1996,17:138-143.
    
    38. Lafaille JJ. The role of helper T cells subsets in autoimmune disease. Cytokine Growth Factor Rev, 1998,9: 139-145.
    
    39. Le Blanc K, Ringden O. Use of mesenchymal stem cells for the prevention of immune complications of hematopoietic stem cell transplantation. Haematologica, 2005,90(4):438.
    
    40. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 2005,105(5):2214-2219.
    
    41.Shoham T, Parameswaran R, Shav-Tal Y, et al. The mesenchymal stroma negatively regulates B cell lymphopoiesis through the expression of activin A. Ann N Y Acad Sci, 2003,996:245-260.
    1. Rosenberg SA. New opportunities for the development of cancer immunotherapies. Cancer J Sci Am, 1998,4(suppl 1): S 1.
    2. Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature, 2001,411:380-384.
    3. Seiter S, Marincola FM. The multiple ways to tumor tolerance. Mod Asp Immunobiol, 2000,1(3): 121.
    4. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968, 6:230-247.
    5. Owen M. Marrow stromal stem cells. J Cell Sci, 1988, 10:63-76.
    6. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A, 1999,96(19):107U-10716.
    7. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000,61: 364-370.
    8. Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med, 2000,6: 1282-1286.
    9. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med, 1999,5: 309-313.
    10. Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst, 2004, 96:1593-1603.
    11. Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res, 2005, 65:3307-3318.
    12. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing.N.Engl.J.Med,1986,315:1650-1659.
    13.陈军,徐祗顺,赵海峰,董德鑫.骨髓间充质干细胞在兔肿瘤组织中的分布与分化.中华医学杂志.2007,87:2361-2364.
    14.De Wever O,Mareel M.Role of tissue stroma in cancer cell invasion.J Pathol,2003,200:429-447.
    15.Singh H,Dang TD,Ayala GE,et al.Transforming growth factor-betal induced myofibroblasts regulate LNCaP cell death.J Urol,2004,172(6 Pt 1):2421-2425.
    16.Mosmann TR,Sad S.The expanding universe of T-cell subsets:Th1,Th2 and more.Immunol Today,1996,17(3):138-146.
    17.Lafaille JJ.The role of helper T cell subsets in autoimmune diseases.Cytokine Growth Factor Rev,1998,9(2):139-151.
    18.Yamamura M J,Modlin RL,Ohmen JD,et al.Local expression of antiinflammatory cytokines in cancer.Clin Invest,1993,91:1005-1010.
    19.Kharkevitch DD,Seito D,Balch GC,et al.Characterization of autologous tumor-specific t-helper 2 cells in tumor-infiltrating lymphocytes from a patient with metastatic melanoma.Int J Cancer,1994,58:317-323.
    20.Tsukui T,Hildesheim A,Schiffman MH,et al.Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides:correlation with cervical pathology.Cancer Res,1996,56:3967-3974.
    21.Rosenberg SA.A new era for cancer immunotherapy based on the genes that encode cancer antigens.Immunity,1999,10(3):281-287.
    22.Wang RF.The role of MHC class Ⅱ-restricted tumor antigens and CD4~+T ceils in antitumor immunity.Trends Immunol,2001,22(5):269-276.
    23.Di Nicola M,Carlo-Stella C,Magni M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.Blood,2002.99(10):3838-3843.
    24.Djouad F,Plence P,Bony C,et al.Immunosuprressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals.Blood,2003,102:3837-3844.
    25.Maitra B,Szekely E,Gjini K,et al.Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation.Bone Marrow Transplant,2004,33:597-604.
    26.Krampera M,Glennie S,Dyson J,et al.Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide.Blood,2003,101:3722-3729.
    27.Klyushnenkova E,Mosca JD,Zernetkina V,et al.T cell responses to allogeneic human mesenchymal stem cells:immunogenicity,tolerance,and suppression.J Biomed Sci,2005,12:47-57.
    28.Tse WT,Pendleton JD,Beyer WM,et al.Suppression of allogeneic T-cell proliferation by human bone marrow stromal cells:implications in transplantation.Transplantation,2003,75:389-397.
    29.江小霞,张毅,李秀森,等.间充质干细胞对T淋巴细胞转化的影响.解放军医学杂志,2005,30:131-132.
    30.金建刚,扈江伟,宁红梅,等.骨髓间充质干细胞对体外分化的原态(naive)T 细胞分泌细胞因子的影响.中华血液学杂志,2005,26:339-341.
    31.Aggarwal S,Pittenger ME Human mesenchymal stem cells modulate allogeneic immune cell response.Blood,2005,105:1815-1822.
    32.陆晓茜,刘霆,孟文彤,等.人骨髓间充质干细胞对T淋巴细胞的免疫调节作用.中国实验血液学杂志,2005,13:651-655.
    33.Le Blanc K,Ringden O.Use of mesenchymal stem cells for the prevention of immune complications of hematopoietic stem cell transplantation.Haematologica,2005,90(4):438.
    34.Krampera M,Cosmi L,Angeli R,et al.Role of the IFN-γ in the immunomodulatory activity of human mesenchymal stem cells.Stem cells,2005,24:386-398.
    35.Misel R,Zibert A,Laryea Met al.Human bonemarrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase mediated tryptophan degradation.Blood,2004,103:4619-4621.
    36.Sotiropoulou PA,Perez SA,Gritzapis AD,et al.Interactions between human mensenchymal stem cells and natural killer cells.Stem Cells,2006,24:74-85.
    37.Maccario R,Podesta M,Moretta A,et al.Interaction of human mesenchymal stem cells with cells involved in alloantigen specific immune response favors the differentiation of CD4~+T cell subsets expressing a regulatory/suppressive phenotype.Haematologica,2005,90:516-525.
    38.Aggarwal S,Pittenger MF.Human mesenchymal stem cells modulate allogeneic immune cell response.Blood,2005,105:1815-1822.
    39.宁红梅,金建刚,馗江伟等.人骨髓间充质干细胞体外对异基因T淋巴细胞表型的影响.中国实验血液学杂志.2005:13(1):43-49.
    40.Jiang XX,Zhang Y,Liu B,et al.Human mesenchymal stem cells inhibit differentiation and function of monocyte derived dentritic cells.Blood,2005,105;4120-4126.
    41.Nauta AJ,Kruisselbrink AB,Lurvink E,et al.Mesenchymal stem cells inhibit generation and function of both CD34~+ derived and monocyte derived dendritic cells.J Immunol,2006,177:2080-2087.
    42.Corcione A,Benvenuto F,Ferretti E,et al.Human mesenchymal stem cells modulate B-cell functions.Blood,2006,107:367-372.
    43.Arilkawa T,Omural K.Morita,Regulation of bone morphogenetic protein-2expression by endogenous prostaglandin E2 in human mesenchymal stem cells.J Cell Physiol,2004,200:400-406.
    44.Powell DW,Adegboyega PA,Di Mari JF,et al.Epithelial cells and their neighbors I.Role of intestinal myofibroblasts in development,repair,and cancer.Am J Physiol Gastrointest Liver Physiol,2005,289:G2-7.
    45.Galie M,Sorrentino C,Montani M,et al.Mammary carcinoma provides highly tumourigenic and invasive reactive stromal cells.Carcinogenesis,2005,26:1868-1878.
    46.Silva GV,Litovsky S,Assad JA,et al.Mesenchymal stem cells differentiate into an endothelial phenotype,enhance vascular density,and improve heart function in a canine chronic ischemia model.Circulation,2005,111:150-156.
    47.方利君,付小兵,孙同柱,等.骨髓间充质干细胞分化为血管内皮细胞的实 验研究.中华烧伤杂志,2003,19:22-24.
    1. MacKenzie TC, Flake AW. Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis, 2001,27: 601-604.
    2. Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med, 2000,6: 1282-1286.
    3. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bonemarrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med, 1999,5(3):309-313.
    4. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell, 2000,100: 57-70.
    5. Kuznetsov SA, Friedenstein AJ, Robey PG. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol, 1997,97: 561-570.
    6. Dvorak HF. Tumors: wounds that do not heat Similarities between tumor stroma generation and wound healing. N Engl J Med, 1986,315: 1650-1659.
    7. Studeny M, Marini FC, Champlin RE, et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res, 2002,62(13):3603-3608.
    8. Wallace SR, Oken MM, Lunetta KL, et al. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer, 2001,91(7):1219-1230.
    9. Honegger AE, Hofer EL, Baranao RI, et al. Interleukin-1 beta, transforming growth factor beta 1, prostaglandin E2, and fibronectin levels in the conditioned mediums of bone marrow fibroblast cultures from lung and breast cancer patients. Ann Hematol, 2002,81(2):80-85.
    10. Fierro FA, Sierraha WD, Epunan MJ, et al. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determ ination. Clin Exp M etastasis, 2004,21(4):313-319.
    11. Hombauer H, Minguell JJ. Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells. Br J Cancer, 2000,82(7):1290-1296.
    
    12. Korbling M, Estrov Z. Adult stem cells for tissue repair-a new therapeutic concept? N Engl J Med, 2003,349(6):570-582.
    13. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer, 2001,1(1):46-54.
    14. Hung SC, Deng WP, Yang WK, et al. M esenchymal stem cell targeting of microscopic tumors and tumor stromal evelopment monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res, 2005,11(21):7749-7756.
    15. Nakamura K, Ito Y, Kawano Y, et al. Antitumor effect ogenetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy, 2004,11(14):1155-1164.
    16. Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res, 2005,65(8):3307-3318.
    17. Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst, 2004,96(21) 1593-1603.
    18. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 2003,102: 3837-3844.
    19. Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol, 2006,80:267-274.
    20. Yamamura MJ, Modlin RL, Ohmen JD, et al. Local expression of antiinflammatory cytokines in cancer. Clin Invest, 1993,91:1005-1010.
    21. Kharkevitch DD, Seito D, Balch GC, et al. Characterization of autologous tumor-specific t-helper 2 cells in tumor-infiltrating lymphocytes from a patient with metastatic melanoma. Int J Cancer, 1994,58:317-323.
    22. Tsukui T, Hildesheim A, Schiffman MH, et al. Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides: correlation with cervical pathology.Cancer Res,1996,56:3967-3974.
    23.Folkman J.Angiogenesis.Annu Rev Med,2006,57:1-18.
    24.Cao Y.Therapeutic potentials of angiostatin in the treatment of cancer.Haematologica,1999,84(7):643-650.
    25.Saphir A.Angiogenesis:the unifying concept in cancer? J Natl Cancer Inst,1997,89(22):1658-1659.
    26.Sato T.Transcriptional regulation of vascular development.Circ Res,2001,88(2):127-128.
    27.Abdollahi A,Lipson KE,Sckell A,et al.Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects.Cancer Res,2003,63(24):8890-8898.
    28.Lin ZXH.M.In:Gao J,Zhang JB,eds.Invasion and metastasis of cancer-basis and clinic M.Beijing:Science Press,2003:349-368.
    29.Liotta LA,Kohn EC.The microenvironment of the tumour-host interface.Nature,2001,411(6835):375-379.
    30.Holash J,Maisonpierre PC,Compton D,et al.Vessel cooption,regression,and growth in tumors mediated by angiopoietins and VEGF.Science,1999,284(5422):1994-1998.
    31.Rafii S.Circulating endothelial precursors:mystery,reality,and promise.J Clin Invest,2000,105(1):17-19.
    32.Majumdar MK,Thiede MA,Mosca JD,et al.Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells(MSCs)and stromal cells.J Cell Physiol,1998,176(1):57-66.
    33.殷晓雪,陈仲强,郭昭庆,等.人骨髓间充质干细胞定向诱导分化为成骨细胞及其鉴定.中国修复重建外科杂志,2004,18(2):88-91.
    34.卓本慧,江和碧,瞿平,等.骨髓间充质干细胞向神经细胞定向分化的体外研究.中国修复重建外科杂志,2005,19(5):373-376.
    35.Tremain N,Korkko J,Ibberson D,et al.MicroSAGE analysis of 2,353 expressed genes in a single cell derived colony of undifferentiated human mesenchymal stem cells revealsmRNAs of multiple cell lineages.Stem Cells,2001,19(5):408-418.
    36. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002,109 3 :313-315.
    37. Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells a subpopulation ofmesenchymal stem cells. Ann N Y Acad Sci, 2001,938:231-233.
    38. Jiang Y, Vaessen B, Lenvik T, et al. Multipotent progenitor cells can be isolated from postnatalmurine bonemarrow muscle and brain. Exp Hematol, 2002,30 (8 ):896-904.
    39. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 2001,98( 9) :2615-2625.
    40. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002,418 (6893):25-27.
    41. Jiang Y, Henderson D, Blackstad M, et al. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci U SA 2003,100(1):11854-11860.
    42. Roberts DM, Kearney JB, Johnson JH, et al. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am J Pathol, 2004,164(5):1531-1535.
    43. Kearney JB, Kappas NC, Ellerstrom C, et al. The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis. Blood,2004,103(12): 4527-4535.
    44. Wang M, Crisostomo PR, Herring C, et al.Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol, 2006,291(4):880-884.
    45.Zeng Q, Li X, Beck G, et al. Growth and differentiation factor-5 (GDF-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (VEGF) levels in fat-derived stromal cells in vitro. Bone, 2007,40(2):374-381.
    46. Crisostomo PR, Wang M, Herring CM, et al. Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: Role of the 55 kDa TNF receptor (TNFR1).J Mol Cell Cardiol, 2007,42(1):142-149.
    
    47. Kim S, Honmou O, Kato K, et al. Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells.Brain Res,2006 ,1123(1):27-33.
    48. Schmidt A, Ladage D, Schinkothe T, et al. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 2006,24(7): 1750-1758.
    49. Ong SY, Dai H, Leong KW. Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture. Biomaterials, 2006,27(22):4087-4097.
    50. Mayer H, Bertram H, Lindenmaier W, et al. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem, 2005, 95(4):827-839.
    51. Raida M, Heymann AC, Gunther C, et al. Role of bone morphogenetic protein in the crosstalk between endothelial progenitor cells and mesenchymal stem cells. Int J Mol Med, 2006,18(4):735-739.
    52. Okuyama H, Krishnamachary B, Zhou YF, et al. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor. J Biol Chem, 2006,281(22):15554-15563.
    53. Hideshima T, Podar K, Chauhan D, et al. Cytokines and signal transduction. Best Pract Res Clin Haematol, 2005,18(4):509-524.
    54. Jiang W, Ma A, Wang T, et al. Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats. Transpl Int, 2006,19(7):570-580.
    55. Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, 2006,12(4):459-465.
    56. Condon MS. The role of the stromal microenvironment in prostate cancer. Semin Cancer Biol, 2005,15:132-137.
    57. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature, 2004,432: 332-337.
    58. Micke P, Ostman A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer, 2004,45 Suppl 2:S 163-75.
    59. Powell DW, Adegboyega PA, Di Mari JF, et al. Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am J Physiol Gastrointest Liver Physiol, 2005,289:G2-7.
    60. Galie M, Sorrentino C, Montani M, et al. Mammary carcinoma provides highly tumourigenic and invasive reactive stromal cells. Carcinogenesis, 2005, 26:1868-1878.
    61. Lagace R, Grimaud JA, Schurch W, et al. Myofibroblastic stromal reaction in carcinoma of the breast: variations of collagenous matrix and structural glycoproteins. Virchows Arch A Pathol Anat Histopathol, 1985,408: 49-59.
    62. Brown LF, Guidi AJ, Schnitt SJ, et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res, 1999, 5: 1041-1056.
    63. Mackie EJ, Chiquet-Ehrismann R, Pearson CA, et al. Tenascin is a stromal marker for epithelial malignancy in the mammary gland. Proc Natl Acad Sci USA, 1987, 84: 4621-4625.
    64. Hauptmann S, Zardi L, Sin A, et al. Extracellular matrix proteins in colorectal carcinomas. Expression of tenascin and fibronectin isoforms. Lab Investig, 1995, 73: 172-182.
    65. Hanamura N, Yoshida T, Matsumoto E, et al. Expression of fibronectin and tenascin-C mRNA by myofibroblasts, vascular cells, and epithelial cells in human colon adenomas and carcinomas. Int J Cancer, 1997, 73: 10-15.
    66. Nielsen BS, Sehested M, Timshel S, et al. Messenger RNA for urokinase plasminogen activator is expressed in myofibroblasts adjacent to cancer cells in human breast cancer. Lab Investig, 1996, 74: 168-177.
    67. Park JE, Lenter MC, Zimmermann RN, et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem, 1999, 274: 36505-36512.
    68. DeClerck YA. Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer,2000,36:1258-1268.
    69.Frazier KS,Grotendorst GR.Expression of connective tissue growth factor mRNA in the fibrous stroma of mammary tumors.Int J Biochem Cell Biol,1997,29:153-161.
    70.Shimo T,Nakanishi T,Nishida T,et al.Connective tissue growth factor induces the proliferation,migration,and tube formation of vascular endothelial cells in vitro,and angiogenesis in vivo.J Biochem(Tokyo),1999,126:137-145.
    71.Lieubeau B,Heymann MF,Henry F,et al.Immunomodulatory effects of tumor-associated fibroblasts in colorectal-tumor development.Int J Cancer,1999,81:629-636.
    72.Walter-Yohrling J,Pratt BM,Ledbetter S,et al.Myofibroblasts enable invasion of endothelial cells into three-dimensional tumor cell clusters:a novel in vitro tumor model.Cancer Chemother Pharmacol,2003,52(4):263-269.
    73.Orimo A,Gupta PB,Sgroi DC,et al.Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL 12 secretion.Cell,2005,121(3):335-348.
    74.Kojc N,Zidar N,Vodopivec B,et al.Expression of CD34,alpha-smooth muscle actin,and transforming growth factor betal in squamous intraepithelial lesions and squamous cell carcinoma of the larynx and hypopharynx.Hum Pathol,2005,36:16-21.
    75.陈玉龙,李继昌,刘华,等.转化生长因子β1和Smad4在胃癌中的表达.中华消化杂志,2002,22:730-732.
    76.鲍同柱,郑启新,胡长耀.转化生长因子β超家族与肿瘤的研究进展.国外医学:物理医学与康复学分册,2005,25:87-90.
    77.Ji GZ,Wang XH,Miao L,et al.Role of transforming growth factor-betal-smad signal transduction pathway in patients with hepatocellular carcinoma.World J Gastroenterol,2006,12:644-648.
    78.Tuxhorn JA,Ayala GE,Smith MJ,et al.Reactive stroma in human prostate cancer:induction of myofibroblast phenotype and extracellular matrix remodeling.Clin Cancer Res,2002,8:2912-2923.
    79.李泽良,杨野,李振华,等.前列腺癌组织中TGF-β1 mRNA表达及其临床意义.中华男科学,2005,11:511-513.
    80.Li AG,Lu SL,Han G.;et al.Current view of the role of transforming growth factor beta 1 in skin carcinogenesis.J Investig Dermatol Symp Proc,2005,10:110-117.
    81.Studeny M,Marini FC,Champlin RE,et al.Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors.Cancer Res,2002,62(13):3603-3608.
    82.Ronnov-Jessen L,Petersen OW.Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts.Implications for myofibroblast generation in breast neoplasia.Lab Invest,1993,68:696-707.
    83.Ronnov-Jessen L,Petersen OW,Koteliansky VE,et al.The origin of the myofibroblasts in breast cancer.Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells.J Clin Invest,1995,95:859-873.
    84.Abe R,Donnelly SC,Peng T,et al.Peripheral blood fibrocytes:differentiation pathway and migration to wound sites.J Immunol,2001,166:7556-7562.
    85.Kalka C,Masuda H,Takahashi T,et al.Vascular endothelial growth factor(165)gene transfer augments circulating endothelial progenitor cells in human subjects.Circ Res,2000,86:1198-1202.
    86.Yang L,Scott PG,Giuffre J,et al.Peripheral blood fibrocytes from bum patients:identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells.Lab Invest,2002,82:1183-1192.
    87.Alexis D,Christelle G,Giulio G.The stroma reaction myofibroblast:a key player in the control of tumor cell behavior.Int J Dev Biol,2004,48:509-517.
    88.Ishii G,Sangai T,Oda T,et al.Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction.Biochem Biophys Res Commun,2003,309:232-240.
    89.陈军,徐祗顺,赵海峰,董德鑫.骨髓间充质干细胞在兔肿瘤组织中的分布与 分化.中华医学杂志.2007,87:2361-2364.
    90. Ohlsson LB, Varas L, Kjellman C, et al. Mesenchyma progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol,2003,75(3):248-255.
    91. Khakoo AY, Pati S, Anderson SA, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med, 2006,203(5): 1235-1247.
    92. Scadden DT. Cancer stem cells refined. Nat Immunol, 2004,5(7):701-703.
    93. Rubio D, Garcia-Castro J, Martin MC, et al. Spontaneous human adult stem cell transformation. Cancer Res, 2005,65(8):3035-3039.
    94. Miura M, Miura Y, Padilla-Nash HM, et al Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells, 2006,24(4): 1095-1103.
    95. Wang Y, Huso DL, Harrington J, et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy, 2005;7(6):509-519.
    96. Xu W, Qian H, Zhu W, et al. A novel tumor cell line cloned from mutated human embryonic bone marrow mesenchymal stem cells. Oncol Rep, 2004,12(3):501-508.
    97. Serakinci N, Guldberg P, Burns JS, Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene, 2004,23(29):5095-5098.
    98. Burns JS. Abdallah BM, Guldberg P, et al. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures oftelomerase-im mortalized human mesenchymal stem cells. Cancer Res,2005,65(8):3126-3135.
    99. Tsai RY. McKay RD. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev, 2002,16 (23):2991-3003.
    100.Han C, Zhang X, Xu W, et al. Cloning of the nucleostemin gene and its function in transforming human embryonic bone marrow mesenchymal stem cells into F6 tumor cells. Int J Mol Med, 2005,16(2):205-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700