用户名: 密码: 验证码:
基于非均匀格子气模型的人群疏散动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
突发事件下的人群疏散运动是一个非常复杂的过程。由于疏散实验具有一定的人员伤亡风险,很难进行实验,从而导致实际疏散的数据缺失。所以计算机仿真模拟目前是研究突发事件下人群疏散的最主要方法。社会力模型(SF)和元胞自动机模型(CA)是两种比较成熟的用于模拟人群疏散运动的连续模型和离散模型。社会力模型中个体间的相互作用两两进行评价,对于Ⅳ个个体,计算量为O(N2)。对于很大的N,意味着计算负担过大,计算成本昂贵。相比于社会力模型,元胞自动机模型的计算量为O(N),这极大的提高了大规模人群疏散模拟的可行性。另一方面,人群疏散运动中,个体之间的相互作用力是一个基本的要素,对于合理模拟人群疏散起到关键作用。在元胞自动机模型中,通常忽略了这一基本要素。针对以上问题,本文的主要研究内容和取得的成果如下:
     (1)基于元胞自动机模型和移动格子气模型,建立了模拟突发事件下人群疏散动力学的非均匀格子气模型。该模型的更新规则中包含出口信息因子D,它是影响人群疏散过程的关键参数。D随局部人群密度的变化而发生改变,从而体现了非均匀更新。个体之间的相互作用力通过个体之间距离的非线性函数来描述。他们之间的排斥力随他们之间距离的减小而急剧增大。引入了受伤临界力的概念,并分析了它对疏散过程的影响。数值算例表明,非均匀格子气模型可以再现人群疏散的基本特征,如堵塞和拱形现象。该模型是元胞自动机模型和移动格子气模型的扩展,具有更宽的适用范围。
     (2)在非均匀格子气模型中引入高程因素,建立了扩展的非均匀格子气模型。高程因素用来描述元胞格子在疏散空间里的位置高度,并通过二维平面来描述三维空间状态。通过模型模拟和实验,研究了人员从阶梯教室疏散的疏散特征。为了研究火灾下的人群疏散过程,将火灾场与格子气模型进行同步耦合,建立了火灾与人员交互作用的人群疏散仿真模型。借助软件FDS,采用大涡模拟的方法模拟了阶梯教室火灾的发展与烟气蔓延过程。模型中假设个体可能移动方向与周围环境温度相关。个体疏散速度与能见度有关,利用多格子方法来体现速度的变化。分析表明基于扩展的非均匀格子气模型模拟所得结果与实验所得结果有很好的一致性。高程因素对疏散有引导作用,而火灾场明显的改变了行人的疏散路线,造成了频繁的局部拥挤,对疏散过程有明显的阻碍作用。
     (3)基于格子气模型思想,引入高程因素,建立了模拟地铁站人员疏散的扩展非均匀格子气模型。该模型考虑紧急情况下人员的移动特征,引入多格子方法,根据人员实时步长确定人员移动速度。考虑了人员初始分布对疏散过程的影响,同时分析了紧急疏散出口对疏散的作用。地铁站火灾情况下人员疏散的分析结果表明,适度地使用紧急疏散出口能提高疏散效率,高程因素的引入也促进了疏散进程。
Evacuation under emergency is a complex process. Due to the limits of undertaking such dangerous experiments and the absence of data from real evacuation, computer simulation is the main approach for studying emergency evacuation at present. Two kinds of models, i.e. continuous models (the social force model) or discrete models (the cellular automata model) are widely used for simulating pedestrian evacuation. In a social force model, for N pedestrians, the requirement of solving a couple of differential equations for each pedestrian implying that the calculation load is the order O(N2), which is a heavy computation burden for large N. It means that the computational cost is very expensive in general. By contrast, a cellular automata model can greatly improve the computational efficiency in simulating large-scale pedestrian evacuation since the calculation amount is the order O(N). The interaction between pedestrians which is a fundamental element plays a key role for simulating pedestrian evacuation.But in a cellular automata model, the interaction between pedestrians is neglected.
     Aiming at the problems mentioned above, the main contents and achievements in this paper are listed as follows:
     (1) Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes under emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree. The drift D which is one of the key parameters influencing the evacuation process is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has the heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.
     (2) An extended heterogeneous lattice gas (E-HLG) model is developed by introducing an altitude factor into the heterogeneous lattice gas model (HLG model). The altitude factor is used to describe the position height of lattice sites. Evacuation features from a terrace classroom are investigated through both simulations using the model and experiments. To study evacuation processes under fire emergency, an agent-based fire and pedestrian interaction model (FPI model) is proposed. It is supposed that the possible moving directions of a pedestrian depend on the environmental temperature field which is simulated by the software FDS. The walking speed reduction due to the visibility worsening in the FPI model is described by a multi-grid method. It is found that simulation results based on the extended HLG model are in good agreement with the experiments. The altitude factor plays a guidance role to the evacuation, and the fire notably delays the evacuation due to both the harmfulness of the high temperature field and the change of evacuation routes which results in frequent local jamming and clogging.
     (3) An extended heterogeneous lattice gas model is developed by introducing an altitude factor into the heterogeneous lattice gas model for simulating pedestrian evacuation form subway station. Taking into account the mobile characteristics of pedestrians, the multi-grid method is introduced into the model. The walk speed is determined by the real-time moving step sizes of themselves. The influences of the initial distribution of pedestrians on evacuation process are investigated. The role of emergency exits to evacuation is analyzed. Evacuation processes of pedestrians with exit preference and under fire emergency are simulated by using the model mentioned above. Numerical examples show that moderate use of emergency exits can improve the evacuation efficiency and the altitude factor contributes to evacuation process.
引文
[1]新浪博客.2008年春运的广州火车站(转图).(2008-02-19),http://blog.sina.com.cn/s/blog 58117db101008gls.html.
    [2]徐高.人群疏散的仿真研究[硕士学位论文].成都:西南交通大学,2003.
    [3]G Keith Still. Crowd Dynamics[博士学位论文].Warwick:University of Warwick. August 2000.
    [4]中国国际广播电台网站.菲律宾马尼拉发生踩踏事故http://gbl.chinabroadcast.cn/3821/2006/02/04/Zt401@883175.htm.
    [5]Sime J. Research on escape behavior in fires:New Directions. Fire Research News, 1987; 9:3-5.
    [6]Helbing. D. Traffic and related self-driven many-particle systems. Reviews of Modern Physics,2001,73:1067-1141.
    [7]Yang LZ, Zhao DL, Li J, Fang TY. Simulation of the kin behavior in building occupant evacuation based on cellular automaton. Building and Environment,2005; 40:411-5.
    [8]Gwynne S, Galea ER, Owen M, Lawrence PJ, Filippidis L. A review of themethodologies used in the computer simulation of evacuation from the built environment. Building and Environment,1999; 34:741-9.
    [9]Kuligowski ED. Review of 28 egress models. In:Peacock RD, Kuligowski ED, editors. In:Proceedings of the workshop on building occupant movement during fire emergencies,10-11 June 2004. p.68-90.
    [10]Santos G, Aguirre BE. A critical review of emergency evacuation simulation models. In:Peacock RD, Kuligowski ED, editors. Proceedings of the workshop on building occupant movement during fire emergencies,10-11 June 2004.p.27-52.
    [11]沙云飞.人群疏散的微观仿真模型研究[博士学位论文].北京:清华大学.2008
    [12]Zheng Xiaoping, Zhong Tingkuan, Liu Menting. Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment, 2009; 44(3):437-445.
    [13]Neumann J.Von. Theory of Self-Reproducing Automata. Edited by A.W. Burks. Urbana:University of Illinois, 1966
    [14]Gardner M. Mathematical games:The fantastic combinations of John Conway's new solitary game of "life". Sci.Amer, Oct,1970:120-123
    [15]Wolfram S. Statistical mechanics of cellular automata. Rev. Mod. Phys,198355: 601-644
    [16]Wolfram S. Theory and Applications of Cellular Automata. World Scientific, Singapore,1986
    [17]Wolfram S. Cellular automaton fluids I:basic theory, J. Stat. Phys,1986,45: 71-526
    [18]Wolfram S. Cellular automata and complexity. Reading Mass:Addison-Wesley Pub. Co,1994
    [19]Stauffer D. Computer-simulations of cellular automata. J.Phys. A,1991,24: 909-927
    [20]Tajima Y, Nagatani T. Scaling behavior of crowd flow outside a hall. Physica A 2001; 292:545-54.
    [21]Tajima Y, Takimoto K, Nagatani T. Scaling of pedestrian channel flow with a bottleneck. Physica A 2001; 294:257-68.
    [22]Tajima Y, Nagatani T. Clogging transition of pedestrian flow in T-shaped channel. Physica A 2002;303:239-50.
    [23]Nagai R, Fukamachi M, Nagatani T. Experiment and simulation for counterflow of people going on all fours. Physica A 2005;358:516-28.
    [24]Fukamachi M, Nagatani T. Sidle effect on pedestrian counter flow. Physica A 2007;377:269-78.
    [25]Itoh T, Nagatani T. Optimal admission time for shifting the audience. Physica A 2002;313:695-708.
    [26]Takimoto K, Nagatani T. Spatio-temporal distribution of escape time in evacuation process. Physica A 2003;320:611-21.
    [27]Nagai R, Fukamachi M, Nagatani T. Evacuation of crawlers and walkers from corridor through an exit. Physica A 2006;367:449-60.
    [28]Helbing D, Isobe M, Nagatani T, Takimoto K. Lattice gas simulation of experimentally studied evacuation dynamics. Physical Review E 2003; 67:067-101.
    [29]Cremer M, Ludwig J. A fast simulation model for traffic flow on the basis of Boolean operations, J.Math. Comp. Simul,1986,28:297-303
    [30]Nagatani T. Traffic states and fundamental diagram in cellular automaton model of vehicular traffic controlled by signals. Physica A,2009,388:1673-1681
    [31]Chen C, Chen J.Q, Guo X.W. Influences of Overtaking on Two-lane Traffic with Signals. Physica A,2010,389:141-148
    [32]陈晨,陈建桥,郭细伟.基于细胞自动机方法的车行运动模型及信号灯控制策略研究.武汉理工大学学报(交通科学与工程版),2010,34(2):258-261
    [33]M. Schreckenberg, S.D. Sharma (Eds.), Pedestrian and Evacuation Dynamics, Springer, Berlin,2001.
    [34]Jung R. Cellular automata model simulating traffic interactions between on-ramp and main road. Physical Review E,2002,66:036104.
    [35]姜锐,交通流复杂动态特性的微观和宏观模式研究[博士学位论文].中国科技大学,2003.
    [36]Li X B, Wu Q S, Jiang R. Cellular automaton model considering the velocity effect of a car on the successive car. Physical Review E,2001,64:066128.
    [37]Nishinari K, Takahashi D. A new deterministic CA model for traffic flow with multiple states. J. Phys. A:Math. Gen.,1999,32:93-104.
    [38]Nishinari K and Takahashi D. Mufti-value cellular automaton model and metastable states in a congested phase. J. Phys. A:Math. Gen,2000,33:7709-7720.
    [39]Fukui M, Ishibashi Y Traffic flow in 1 D cellular automaton model including cars moving with high speed. J. Phys. Soc. Jpn.,1996,65(6):1868-1870.
    [40]Biham O, Middleton A A, Levine D. Self-organization and dynamical transition in traffic-flow models. Physical Review A,1992,46(10):6124-6127.
    [41]Helbing D, Hubermant B A. Coherent moving states in highway traffic. Nature, 1998,396(24/31):738-740.
    [42]Nagel K and Schreckenberg M. Cellular automaton model for freeway traffic. J Phys. L,1992,2(12):2221-2229.
    [43]Nagatani T. Jamming transition in the traffic-flow model with two-level crossings. Physical Review E,1993,48:32903294.
    [44]Blue V J, Adler J L. Emergent fundamental pedestrian flows from cellular automata microsimulation. Transportation Research Record,1998,1644:29-36.
    [45]Blue V J, Adler J L. Bi-directional emergent fundamental pedestrian flows from cellular automata microsimulation. In:Proceedings of the 14"h International Symposium on Transportation and Traffic Theory, ed. A.Ceder, Pergamon,1999, 235-254.
    [46]Blue V J, Adler J L. Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Forthcoming in Transportation Research B-METH,2001,35(3):293-312.
    [47]Blue V J, Adler J L. Modeling four-directional pedestrian flows. Transportation Research Board, Journal of the Transportation Research Board, Washington D.C 2000.
    [48]Nuria Pelechano, Ali Malkawi. Evacuation simulation models:Challenges in modeling high rise building evacuation with cellular automata approaches. Automation Construction,2008; 17:377-385.
    [49]Hughes R L. The flow of large crowds of pedestrians. Mathematics and Computers in Simulation,2000,53:367370.
    [50]Colin M. Henein, Tony Macroscopic effects of microscopic forces between agents in crowd models. Physica A,2007,373:694-712.
    [51]Zhao DL, Yang LZ, Li J. Exit dynamics of occupant evacuation in an emergency. Physica A 2006; 363:501-11.
    [52]Perez GJ, Tapang G, Lim M, Saloma C. Streaming, disruptive interference and power-law behavior in the exit dynamics of confined pedestrians. Physica A,2002; 312:609-18.
    [53]Varas A, Cornejo MD, Mainemer D, Toledo B, Rogan J, Munoz V, et al. Cellular automaton model for evacuation process with obstacles. Physica A 2007; 382:631-42.
    [54]Yu YF, Song WG. Cellular automaton simulation of pedestrian counter flow considering the surrounding environment. Physical Review E 2007; 75:046112.
    [55]Kirchner A, Nishinari K, Schadschneider A. Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Physical Review E 2003; 67:056-122.
    [56]Kirchner A, Klupfel H, Nishinari K, Schadschneider A, Schreckenberg M. Simulation of competitive egress behavior:comparison with aircraft evacuation data. Physica A 2003; 324:689-97.
    [57]Schultz M, Lehmann S, Fricke H. A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. In:Waldau N, Gattermann P, Knoflacher H, Schreckenber M, editors. Pedestrian and evacuation dynamics 2005. Berlin, Heidelberg:Springer; 2007. p.369-75.
    [58]Fang WF, Yang LZ, Fan WC. Simulation of bi-direction pedestrian movement using a cellular automata model. Physica A 2003;321:633-40.
    [59]Li J, Yang LZ, Zhao DL. Simulation of bi-direction pedestrian movement in corridor. Physica A 2005; 354:619-28.
    [60]Nishinari K, Sugawara K, Kazama T, Schadschneider A, Chowdhury D. Modelling of self-driven particles:foraging ants and pedestrians. Physica A 2006; 372:132-41.
    [61]Georgoudas IG, Sirakoulis GCh, Andreadis ITh. A simulation tool for modelling pedestrian dynamics during evacuation of large areas. In:Maglogiannis I, Karpouzis K, Bramer M, editors. International federation for information processing, artificial intelligence applications and innovations, vol.204. Boston:Springer; p. 618-26.
    [62]Kirchner A, Schadschneider A. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 2002; 312:260-76.
    [63]Weng WG, Chen T, Yuan HY, Fan WC. Cellular automaton simulation of pedestrian counter flow with different walk velocities. Physical Review E 2006; 74:036102.
    [64]Yuan WF, Tan KH. An evacuation model using cellular automata. Physica A 2007; 384:549-66.
    [65]Song WG, Yu YF, Wang BH, Fan WC. Evacuation behaviors at exit in CA model with force essentials:a comparison with social force model. Physica A 2006; 371:658-66.
    [66]Yamamoto K, Kokubo S, Nishinari K. Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Physica A 2007; 379:654-60.
    [67]Fredkin E, Toffoli T. Conservative logic. International Journal of Theoretical Physics 1982; 21(3/4):219-53.
    [68]Wolfram S. Universality and complexity in cellular automata. Physica D 1984; 10:1-35.
    [69]Nagai R, Fukamachi M, Nagatani T. Experiment and simulation for counterflow of people going on all fours. Physica A 2005; 358:516-28.
    [70]Fukamachi M, Nagatani T. Sidle effect on pedestrian counter flow. Physica A 2007; 377:269-78.
    [71]Itoh T, Nagatani T. Optimal admission time for shifting the audience. Physica A 2002; 313:695-708.
    [72]Takimoto K, Nagatani T. Spatio-temporal distribution of escape time in evacuation process. Physica A 2003; 320:611-21.
    [73]Nagai R, Fukamachi M, Nagatani T. Evacuation of crawlers and walkers from corridor through an exit. Physica A 2006; 367:449-60.
    [74]Xiaomeng Li, Tao Chen, Lili Pan, Shifei Shen, Hongyong Yuan. Lattice gas simulation and experiment study of evacuation dynamics. Physica A,2008; 387:5457-5465.
    [75]Nagai R, Nagatani T, Isobe M, Adachi T. Effect of exit configuration on evacuation of a room without visibility. Physica A 2004; 343:712-24.
    [76]Isobe M, Helbing D, Nagatani T. Experiment, theory, and simulation of the evacuation of a room without visibility. Physical Review E 2004; 69:066-132.
    [77]Song WG, Xu X, Wang BH, Ni SJ. Simulation of evacuation processes using a multi-grid model for pedestrian dynamics. Physica A,2006; 363:492-500.
    [78]Xiwei Guo, Jianqiao Chen, Yaochen Zheng, Junhong Wei. A heterogeneous lattice gas model for simulating pedestrian evacuation. Physica A,2012; 391:582-592.
    [79]Xiwei Guo, Jianqiao Chen, Suozhu You, Junhong Wei. Modeling of pedestrian evacuation under fire emergency based on an extended heterogeneous lattice gas model. Physica A,2013; 392:1994-2006.
    [80]Helbing D, Molnar P. Social force model for pedestrian dynamics. Physical Review E 1995; 51(5):4282-6.
    [81]Winnie Daamen. Modelling Passenger Flows in Public Transport Facilities. Delft. Netherlands.2004
    [82]Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature 2000; 407:487-90.
    [83]Zheng MH, Kushimori Y, Kumbura T. A model describing collective behaviors of pedestrians with various personalities in danger situations. In:Wang LP, Rajapakse JC, Fukushima K, Lee SY, Yao X, editors. Proceedings of the 9th international conference on neural information processing (ICONIP'02), vol.4,2002. p.2083-87.
    [84]Seyfried A, Steffen B, Lippert T. Basics of modeling the pedestrian flow. Physica A 2006; 368:232-8.
    [85]Parisi DR, Dorso CO. Microscopic dynamics of pedestrian evacuation. Physica A 2005; 354:606-18.
    [86]Parisi DR, Dorso CO. Morphological and dynamical aspects of the room evacuation process. Physica A 2007; 385:343-55.
    [87]Lin QY, Ji QG, Gong SM. A crowd evacuation system in emergency situation based on dynamics model. In:Zha HB, Pan ZG, Thwaites H, Addison AC, Maurizio F, editors. Lecture notes in computer science, vol.4270. Berlin, Heidelberg:Springer; 2006. p.269-80.
    [88]Guo RY, Huang HJ. A mobile lattice gas model for simulating pedestrian evacuation. Physica A 2008; 387:580-6.
    [89]Henderson LF. The statistics of crowd fluids. Nature 1971;229:381-3.
    [90]Bradley GE. A proposed mathematical model for computer prediction of crowd movements and their associated risks. In:Smith RA, Dickie JF, editors. Engineering for crowd safety. Amsterdam:Elsevier; 1993. p.303-11.
    [91]Helbing D, Farkas IJ, Molnar P, Vicsek T. Simulation of pedestrian crowds in normal and evacuation situations. In:Schreckenberg M, Sharma SD, editors. Pedestrian and evacuation dynamics. Berlin:Springer; 2002. p.21-58.
    [92]Hughes RL. The flow of large crowds of pedestrians. Mathematics and Computers in Simulation 2000; 53:367-70.
    [93]Hughes RL. A continuum theory for the flow of pedestrians. Transportation Research Part B 2002; 36:507-35.
    [94]Hughes RL. The flow of human crowds. Annual Review of Fluid Mechanics 2003; 35:169-82.
    [95]Colombo RM, Rosini MD. Pedestrian flows and non-classical shocks. Mathematical Methods in the Applied Sciences 2005; 28:1553-67.
    [96]Goldstone RL, Janssen MA. Computational models of collective behavior. Trends in Cognitive Sciences 2005; 9(9):424-30.
    [97]Bonabeau E. Agent-based modeling:methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the USA (PNAS) 2002;99(Suppl.3):7280-7.
    [98]Zarboutis N, Marmaras N. Searching efficient plans for emergency rescue through simulation:the case of a metro fire. Cognition, Technology and Work 2004; 6:117-26.
    [99]Braun A, Bodmann BEJ, Musse SR. Simulating virtual crowds in emergency situations. In:Proceedings of the ACM symposium on virtual reality software and technology (VRST'05), Monterey, CA, USA,7-9 November 2005. p.244-52.
    [100]Pelechano N, Allbeck JM, Badler NI. Controlling individual agents in highdensity crowd simulation. In:Metaxas D, Popovic J, editors. Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, San Diego, CA, USA,3-4 August 2007. p.99-108.
    [101]Toyama MC, Bazzan ALC, Da Silva R. An agent-based simulation of pedestrian dynamics:from lane formation to auditorium evacuation. In:Proceedings of the fifth international joint conference on autonomous agents and multiagent systems, Hakodate, Japan,8-12 May 2006. p.108-10.
    [102]Bandini S, Federici ML, Manzoni S, Vizzari G. Towards a methodology for situated cellular agent based crowd simulations. In:Dikenelli O, Gleizes M-P, Ricci A, editors. Lecture notes in computer science, vol.3963. Berlin, Heidelberg:Springer; 2006. p.203-20.
    [103]Henein CM, White T. Information in crowds:the swarm information model. In: Yacoubi El S, Chopard B, Bandini S, editors. Lecture notes in computer science, vol.4173. Berlin, Heidelberg:Springer; 2006. p.703-6.
    [104]Pan XS, Han CS, Dauber K, Law KH. A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations. AI and Society 2007; 22:113-32.
    [105]郭铁男,傅智敏,黄金印.火灾科学与消防工程学发展现状及学科体系构架.消防科学与技术,2003;22(6):430-432.
    [106]邱旭东,高甫生.建筑火灾烟气运动数值模拟方法的回顾与评价.自然灾害学报,2005,14(1):133-138
    [107]V. Babrauskas. The Generation of CO in Bench-Scale Fire Tests and the Prediction for Real-Scale Fires. Fire and Materials.1995,19(5):205-213
    [108]Hall JR Jr, Harwood B. Smoke or Burns:Which is Deadlier. NFPA Journal,1995, 89:38-43
    [109]B. Andersson, F. Markert, G. Holmstedt. Combustion products generated by hetero-organic fuels on four different fire test scales. Fire Safety J.2005,40(5): 439-465
    [110]杨锐,蒋勇,纪杰等.建筑火灾中基于大涡模拟的场区复合数值模型及其应用.自然科学进展.2003,13(6):637-641
    [111]Hartzell G.E., Engineering analysis of hazards to life safety in fires:the fire effluent toxicity component. Safety Science,2001; 38:147-155
    [112]Galea, E.R., Galparsoro P., J.M., A computer-based simulation model for the prediction of evacuation from mass-transport vehicles. Fire Safety Journal,1994; 22(4):341-366
    [113]Chow, W.K.,'Waiting time' for evacuation in crowded areas. Building and Environment,2007; 42 (1):3757-3761
    [114]Chow, W.K., Candy, M.Y. Ng, Waiting time in emergency evacuation of crowded public transport terminals. Safety Science,2008; 46 (5):844-857
    [115]Shi J.Y., Ren A.Z., Chen C., Agent-based evacuation model of large public buildings under fire conditions. Automation in Construction 2009; 18:338-347
    [116]Nilsson D., Johansson A., Social influence during the initial phase of a fire evacuation-Analysis of evacuation experiments in a cinema theatre. Fire Safety Journal,2009; 44:71-79
    [117]Cheng X.D., Zhang H.P., Xie Q.Y., Zhou Y., Zhang H.J., Zhang C.J., Study of announced evacuation drill from a retail store. Building and Environment,2009; 44 (5):864-870
    [118]Shi, C., et al., Modeling and safety strategy of passenger evacuation in a metro station in China. Safety Science. doi:10.1016/j.ssci.2010.07.017
    [119]Jeon G.Y., Kim J.Y., Hong W.H., Augenbroe G, Evacuation performance of individuals in different visibility conditions. Building and Environment,2011; 46:1094-1103
    [120]Yang P.Z., Wang X., Liu T., Agent-based simulation of fire emergency evacuation with fire and human interaction model. Safety Science 2011; 49:1130-1141.
    [121]公安部消防局.中国消防年鉴[M].北京:中国人事出版社,2010.
    [122]郑红梅,陈国良等.火灾风险评估相关概念辨析.中国安全科学学报[J].2008,18(6):75-79.
    [123]陈志芬,陈晋等.大型公共场所火灾风险评价指标体系——火灾事故因果分析[J].自然灾害学报.2006,15(1):79-85.
    [124]Mintz, A. Non-adaptive group behavior. J. Abnormal Normal Social Psychol.1951; 46,150-159.
    [125]Kelley, H. H., Condry, J. C. Jr, Dahlke, A. E. & Hill, A. H. Collective behavior in a simulated panic situation. J. Exp. Social Psychol.1965; 1:20-54.
    [126]Quarantelli, E. The behavior of panic participants. Sociol. Social Res.1957; 41:187-194.
    [127]Brown, R. Social Psychology (Free, New York,1965).
    [128]Masakuni Muramatsu, Takashi Nagatani. Jamming transition in two-dimensional pedestrian traffic [J]. Physica A,2000,275:281-291.
    [129]Nelson.HE, MacLennan.HA. Emergency Movement [M], The SFPE Handbook of Fire Protection Engineering 2nd ed. Quincy. MA:N.FPA,3-286-3-295; 1995
    [130]Frantzich, H., Nilsson, D., Evacuation through Dense Smoke:Behaviour and Movement. Report 3126, Department of Fire Safety Engineering, Lund University, Sweden,75 p (in Swedish),2003
    [131]Sloane C S, Wolff G T. Prediction of ambient light scattering using a physical model responsive to relative humidity validation with measurement from Detroit[J]. Atmospheric Environment,1985,19(4):669-680.
    [132]陈锦昌,詹伟杰,姜立军.基于2.5维元胞自动机的人群疏散模型.工程图学学报,2009;5:170-176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700