用户名: 密码: 验证码:
土建筑遗址表部干缩开裂机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文物保护工程是21世纪岩土工程领域重要的发展和研究方向之一。生体建筑遗址作为我国文物的重要组成部分,是研究我国历代政治、经济、艺术、建筑、科技诸方面极为重要的形象资料。这些文物古迹不仅是中华民族五千年文明史的实物见证,也是全人类共有的珍贵宝藏。我国西北地区由于气候干旱少雨,数量众多的土建筑遗址得以保存至今,如古丝绸之路上的秦汉长城、烽燧、楼兰遗址、交河故城、高昌故城等,构成了“丝绸之路跨国联合申遗计划”中我国境内文化遗产的重要组成部分。近年来,中国国家文物局会同科技部组织并实施了一系列丝路沿线重大文物保护工程的科研立项和研究,为即将开展的大规模加固和保护工程提供重要的科学理论依据。
     大体量不可移动文物处于天然开放的环境中,会在自然营力的作用下经历一系列的物理、化学变化,材料的性能和功能不断退化。文物保护的实质就是延缓文物材料的老化进程。因此,文物保护加固,必须首先对文物本体风化机理以及相关影响因素的作用机制进行科学的认识,才能对不同文物、不同类型病害采取针对性的措施,真正达到对文物进行科学保护的目的。
     本研究得到国家科技支撑计划“土遗址保护关键技术研究”课题的资助(N2006BAK30B02)。本论文主要通过现场调查和室内试验相结合的手段,以交河故城土遗址表部干缩开裂以及结皮层的剥离脱落为研究着眼点,运用岩土工程学的理论和方法,对西北干旱地区土遗址雨蚀病害相关的风化机理进行定量化和系统化研究。首先,测得了交河故城遗址土的收缩特征曲线和土水特征曲线,从土水相互作用的物理力学机理出发,分析和阐明了遗址土的干缩开裂现象,并通过室内试验进行了模拟和验证,同时,利用连续监测和数字化图像处理等手段,确定了表面裂隙结构形态各关键影响因子间的量化关系,首次揭示了土遗址表部结皮层的形成以及剥离机制。研究结果为后续的风化病害机理研究提供了全新的理论研究方向,并为即将开展的大规模土遗址保护和加固工程提供科学理论依据。
     本文的主要研究内容及取得的研究成果包括:
     1.土作为可变形的多相孔隙介质,其失水开裂是由一系列变化过程组合而成的,包括失水干燥、体积收缩以及开裂等。研究表明,失水干燥过程中土中水的迁移方式主要分为两种,一种是由边界表面处的蒸发引起的液态水迁移,另一种是由土内孔隙中液态水的蒸发和扩散引起的水分迁移。随着水分的蒸发,土颗粒间液态水表面的水蒸气气压降低,由于土颗粒的亲水特性和其本身的几何特性,气液间压力差逐渐增大,导致颗粒间的相互吸引,土的基质经历一个持续增强的内部压缩过程,进而引起体积的收缩。
     2.试验结果对比以及模型拟合相关性表明,与卡尺直接测量法相比,液体石蜡法测量土的收缩曲线精度大为提高,而且试验操作简便易行。试验发现,初始饱和度较大的糊状重塑土试样,其收缩过程由初始以重力主要控制的一维竖向收缩逐渐向三维收缩发展。利用改进的测量方法,测得了三种类型土的收缩曲线,结果表明,由于土中封闭不连续的微孔中空气的存在,使得收缩曲线发生一定程度的水平偏移。土中粘粒含量以及粘土矿物类型也对收缩曲线产生一定影响,随着粘粒和膨胀性粘土矿物含量的增大,土的体积收缩率增大,而达到最终稳定状态时的孔隙比则减小。砂粒含量对土的缩限具有重要影响,试验表明,缩限随着砂粒含量的增大而降低。蒸发速率控制着收缩历时的长短,同时对孔隙比和饱和度的变化率产生重要影响,但蒸发速率并不影响土的最终体积收缩量、缩限以及缩限孔隙比。
     3.室内模拟试验表明,干燥过程中的边界约束是裂隙产生的必要条件。边界约束条件主要归结为三种类型的力所引发:(1)由材料边界摩擦力(或其他牵引力)或位移的产生而导致的约束条件。(2)由材料自身内部平衡应力(又称为特征应力)的集中效应所产生的约束条件。(3)由材料自身特性而产生的约束条件。对于张应力状态下裂隙的初始扩展状态,应用Griffith判别准则可以较好地对其进行模拟,在裂隙的数量、形状、分布方向等不随试样尺寸的变化而变化条件下,该准则适用于对内部裂隙随机分布条件下材料的破坏行为进行判别和分析。土的抗拉强度与吸力和饱和度之间也存在着密切的联系,同时也与Griffith判据中所涉及的临界裂隙状态相关,论文从微观的角度强调了土的结构(内部缺陷的存在)、饱和度和吸力在土的抗拉强度方面所发挥的重要作用。
     4.利用数字化图像处理技术,对试样表面裂隙的结构形态和分布规律进行了定量分析和研究,引入裂隙节点、区块面积、裂隙率等概念和参数,并利用统计学相关理论和方法对裂隙的有关规律进行了讨论。试验结果表明,随着试样厚度的增加,裂隙间距和裂隙条数减小,裂隙的长度和宽度则出现增大趋势。温度对干缩裂缝的形态结构同样具有重要影响,随着温度的升高,裂隙切割形成的区块数量呈减少趋势,区块的平均面积则随着温度的升高而增大,相应的裂隙长度和宽度也随之增大,但裂隙率则呈现相反的变化趋势。此外,不同的土质成分对裂隙的表面形态也具有一定的影响。
     5.土的质地是影响表土结皮形成的最重要因素。团聚体稳定性、表面粗糙度、矿物质和交换性离子浓度、降雨历时、降雨强度、前期含水量、湿润速度等因素同样对结皮的形成具有重要影响。土中粘粒含量为20-30%时,极易形成结皮,当粘粒含量超过40%时,团聚体变得较为稳定,结皮形成受到一定抑制。前期含水量和湿润速度对结皮形成也同样具有重要影响。粘粒含量较高的试样在较低的前期含水量情况下更容易形成结皮。湿润速度对表土结皮的影响作用随着粘粒含量的增加而增大,但在土的结构不稳定条件下,其影响作用受到很大限制。
     6.通过现场调查、取样和室内试验,研究了土建筑表面结皮的物理化学性质,提出了土质墙体表面结皮的形成与剥离机制。粒度分析、粉晶X射线衍射分析、易溶盐离子色谱分析表明,结皮层与下伏母墙相比,粒度偏细,易溶盐含量偏低;红外摄像测温发现,结皮层升温、降温幅度更大。研究认为,土建筑遗址结皮层的形成是墙面土体局部饱和崩解、泥浆蠕移干燥的结果,其形成初期对抵抗土遗址风化起到一定的保护作用;但随后在剧烈的热胀冷缩作用及风蚀作用影响下发生剥离和脱落,反而加速土遗址的劣化进程。111
Geotechnical engineering in the 21st century is characterized by a new trend, the research on consolidation and preservation techniques for conserving the cultural relics built with geometrials. As an important component part of cultural relics, the ancient earthen architecture provides very precious information for politics, economy, art, architecture, science and technology in ancient China. The earthen architectural heritage is not only the witness for the bright history of China with a civilization five thousand years old, but also the precious heritage of the world. In northwest China, there are a large number of ancient earthen architectures left along the Silk Road, such as the Great Wall, Beacons built in Qin or Han dynasty, and the Ancient City of Loulan, Jiaohe and Gaochang, which is included in the "Transnational Joint Application Plan For Cultural Heritage in Silk Road" in China. In the last years, the State Administration of Cultural Heritage and Ministry of Science and Technology of China jointly organized and implemented a series of key scientific research projects on earthen heritage conservation for the practical consolidation and protection of the ancient earthen architectures.
     Exposed in the open environment, the cultural relics suffered a series of physical and chemical weathering induced by natural agency, and underwent a degradation in properties and function of construction materials. To understand the degradation process, the process of degenerate, which is the essence of the cultural relics protection, the weathering mechanism of construction materials should be firstly studied. Based on the scientific understanding for the weathering mechanism, corresponding measures can be draw up and implemented to protect different types of cultural relics.
     This work is part of National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (NO.2006BAK30B02). This thesis focused on the shrinkage and cracking mechanism of surface soils in the ancient city of Jiaohe, involved in the rain erosion by field investigation and laboratory test from the geotechnical engineering viewpoint. Soil shrinkage and water retention curves of earthen materials in ancient city of Jiaohe were tested, and the desiccation cracking phenomena was discussed based on the physics theories soil water interaction mechanism. Continuous monitoring system and digital image processing methods were used in laboratory test and verified so to establish a quantitative relationship between the surface cracks'pattern and their influencing factors. The generation and detachment mechanism of surface crust on ancient earthen architectures was firstly revealed. These results provide new research direction for study of weathering mechanism, and establish a theoretical basis for the large-scale protection and reinforcement projects on earthen heritage.
     The main contents included in this thesis are as follows:
     1. Soil is a deformable multiphase porous medium. The desiccation of soil is a set of processes that include drying, shrinkage and cracking. Research indicated that there were two modes of liquid transfer at the boundary of the soil sample and inside the porous space during desiccation of soil. One was purely liquid transfer induced by boundary evaporation, and the other one was liquid transfer induced by evaporation inside the body and vapor diffusion through the body. The basic process behind the shrinkage of a soil was a decrease in liquid pressure and more generally an increase in suction, caused by the evaporation at the level of menisci, generating an additional attractive force between the components of the matrix. Therefore, an increasing internal compression and the matrix shrink of the sample occurred.
     2. An improved method for volume measurement, determining soil shrinkage characteristic curves (SSCC), was proposed. Through comparison of test and model fitting results, the paraffin oil method, tending to narrow the measurement error, is a better alternative to describe the SSCC of structure-less clay paste than the caliper method. The observation of geometry factor indicated that, at the beginning of desiccation, the clay paste was controlled only by a vertical downward movement of soil particles due to gravity. With further drying, the soil became stable and the horizontal shrinkage component increases, resulting in a three dimensional shrinkage. Using the improved volume measurement, the soil shrinkage characteristic curves of different soils were measured and determined. The results showed that, due to the presence of some non-connected pores which were not filled by free water, a shift of the shrinkage curve was found. Results of the investigation also indicated that the different soil samples showed different shrinkage properties according to clay type and clay content. The shrinking capacity of the specimen volume increased with the content of clay, but there was an inverse proportionality between the clay content and the void ratio at shrinkage limit. Test results also indicated that the shrinkage limits decreased with the content of sand in soils, and that the rates of changes in void ratio and degree of saturation of the soils were highly affected by the evaporation rates. However, the shrinkage curves of the soils, was not affected by the drying rates. An identical shrinkage curve was obtained for the same soil under different drying rates. Similarly, the relationship between void ratio and matrix suction for the same soil under different drying rates was also identical.
     3. Experimental model of cracking showed that desiccation macro-cracks in soil were the consequence of constrained drying shrinkage and tensile stress generation that exceeds soil tensile strength. Typically, three kinds of constraints responsible for the desiccation can be identified:(1) a frictional or any other traction or displacement boundary conditions; (2) any eigen-stress concentrations within the soil sample; (3) intrinsic factors, such as soil texture and soil structure. Research indicated that the Griffith's criterion (defined in terms of macroscopic tensile strength) was useful for modelling the strength of a volume of an elementary representative of soil submitted to tensile states. Griffith's criterion provided a fundamental basis for such a sample that has randomly distributed flaws in case that considering the hypothesis that the number, shape, and orientation of flaws should not change with the sample size. Tensile strength, depended on the degree of saturation and on suction, was also related to the most critical flaw in the Griffith sense. Besides, from a microscopic point of view, the study emphasized the important role of soil structure (such as the presence of defects), degree of saturation and suction.
     4. The computer image processing technique was applied to quantitatively analyze and describe the structure and geometric characteristics of crack. Some factors influencing the shrinkage, such as temperature, sample thickness and composition of soil, were taken into account. The test results showed that with the increase of sample thickness, the space between soil cracks were reduced, while the length and width of cracks were increased. The crack length, width, aggregate area and their most probable value were related to the probability density functions, which tend to increase with temperature increase. With a thicker soil layer, the average crack length, width, aggregate area and crack intensity factor increased. It was also observed that the effect of soil types on the crack pattern should not be neglected. In addition, it was observed that cracking occurred at three stages and the water loss rate increased after the shrinkage cracks had appeared on the surface of soil samples.
     5. The formation of soil surface crust mainly depends on soil permanent properties, such as soil texture, mineralogy, organic and inorganic polymers, composition of exchangeable cations, aggregate stability, antecedent water content and wetting rate. The aggregate stability and clay content have substantial effects on formation of surface crust. Research shows that soils with 20-30% clay were the most susceptible to crust formation. With clay content above 40%, soil structure became more stable, and crust formation was restrained. In addition, smectite soils, low levels of exchangeable sodium percentage and electrolyte concentration were all beneficial to the formation of soil surface crust. Wetting rate, antecedent moisture content, also significantly affect soil susceptibility to crusting, but this was often neglected by many researchers. Fast wetting of dry soil caused aggregate slaking and crusting whereas high antecedent moisture content decreased aggregate disintegration.
     6. Field survey, systematic sampling and laboratory tests were conducted to study the weathering mechanism of earthen architecture taking the Jiaohe Relics site, Xinjiang, China as an example. Particle size analysis, X-ray diffraction and chemical analysis of soluble salts illustrate that surface crusts are characterized by finer particles and lower soluble salts contents compared with the host soil. Temperature monitoring by IR thermography camera and thermal sensors shows that thin crusted layers response greatly and quickly to the environmental temperature change. It is concluded that the local saturation and slurry film generation due to rainfall are mainly responsible for the formation of surface crusts; and the crust will be subsequently detached by wind erosion and expansion-contraction induced by the change of temperature. Surface crusted layer prevents the wall from weathering to some degree at its earlier formation stage but tend to accelerate the deterioration of the earthen architectures in the long term considering that Jiaohe site suffer from strong sandstorm and strict weather condition.
引文
[1]Cooling, L.F., Marsland, A. Soil mechanics of failures in the sea defence banks of Essexand Kent[C]//ICE Conference on the North Sea Floods of 31 January,1953.
    [2]Konrad, J.M., and Ayad, R. An idealized framework for the analysis of cohesive soils undergoing desiccation[J]. Canadian Geotechnical Journal,1997,34:477-488.
    [3]Dyer, M. Further tests on the fissuring of Thorngumbald flood embankment[C]. Proceedings of the International Symposium-Advanced Experimental Unsaturated Soil Mechanics-Experus 05, Trento, Tarantino et al. eds., Balkema,2005, pp.501-504.
    [4]Yesiller, N., Miller, C.J., Inci, G. Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology,2000,57:105-121.
    [5]Morris, P.H., Graham, J., Williams, D.J. Cracking in drying soils[J]. Canadian Geotechnical Journal,1992,29:262-277.
    [6]Mayers, R.A. Encyclopedia of Physical Sciences and Technology[J]. Academic Press, San Diego,1992.
    [7]Albrecht, B.A, and Benson, C.H. Effect of desiccation on compacted natural clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(1):67-75.
    [8]李最雄,王旭东,孙满利.交河故城保护加固技术研究[M].北京:科学出版社,2008.
    [9]严耿升,张虎元,王旭东等.古代生土建筑风蚀的主要影响因素分析[J].敦煌研究.2007,5:78-82.
    [10]屈建军,王家澄,程国栋等.西北地区古代生土建筑物冻融风蚀机理的实验研究[J].冰川冻土,2002,24(1):51-56.
    [11]李最雄.丝绸之路古遗址保护[M].北京:科学出版社,2008.
    [1]E. Buckingham. Studies of the movement of soil moisture[M]. U. S. D. A. Bur. of Soils, Bulletin,1907.
    [2]W. Gardner, J. A. Widtsoe. The movement of soil moisture[J]. Soil Sci.,1921,11:215-232.
    [3]L. A. Richards. The usefulness of capillary potential to soil moisture and plant investigators [J]. J. Agric. Res.,1928,37:719-742.
    [4]G H. Bolt, R. D. Miller. Calculation of total and component potentials of water in soil[J]. Amer. Geophys. Union Transportation,1958,39:917-928.
    [5]A. T. Corey, W. D. Kemper. Concept of total potential in water and its limitations [J]. Soil Sci., 1961,91(5):299-305.
    [6]A. T. Corey, R. O. Slayter, W. D. Kemper. Comparative terminologies for water in the soil-plant-atmosphere system[C]//Irrigation in Agricultural Soils, R. M. Hagan et al., Eds-, Amer. Soc. Agron., Mono,1967.
    [7]D. Croney, J. D. Coleman. Soil thermodynamics applied to the movement of moisture in road foundations[C]. Proc.7~(th) Int. Cong. Appl. Mech.,1948,3:163-177.
    [8]D.Croney, J. D. Coleman, W. A. Lewis. Calculation of the moisture distribution beneath structures [J]. Cov. Eng. L.,1950,45:pp524.
    [9]Or, D., Tuller, M., and Wraith, J.M. Water potential[A]. In Encyclopedia of Soils in the Environment, Hillel ed., Elsevier Science,2005, pp.270-277.
    [10]G D. Aitchison, Ed.. Moisture equilibria and moisture changes in soils beneath covered areas[A]. A Symp. In Print, G D. Aitchison. Ed.,1965.
    [11]B. G Richards. Measurement of the free energy of soil moisture by the psychrometric technique using thermistors [A]. Moisture equilibria and moisture changes in soils beneath covered areas, A Aymp. In Print, Australia:Butterworths,1965.
    [12]D. G Fredlund, H. Rahardjo. Soil mechanics for unsaturated soils[M]. John Wiley&Sons, NewYork,1993.
    [13]Boutonnier, Luc. Comportement hydromecanique des sols fins proches de la saturation-Casdes ouvrages en terre:coefficient B, deformations instantanees et differees, retrait/gonflement[D]. Institut National Polytechnique de Grenoble, France,2007.
    [14]Bear, J. Dynamics of Fluids in Porous Media[A]. American Elsevier Environmental Sciences Series, New-York,1972.
    [15]Zerhouni, M.I. Role de la pression interstitielle negative dans le comportement des sols-Application au calcul des routes[D]. Ecole Centrale de Paris, France,1991.
    [16]Brooks, R.H., Corey, A.T. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division,1966,92:61-88.
    [17]Kowalski, S.J. Thermomechanics of Drying Processes[M]. Springer Verlag, Berlin,2003.
    [18]Hueckel, T. Water-mineral interaction in hygromechanics of clays exposed to environmental loads:a mixture-theory approach[J]. Canadian Geotechnical Journal,1992a,29:1071-1086.
    [19]Philip, J.R., and de Vries, D.A. Moisture movement in porous materials under temperature gradients[J]. Transactions of the American Geophysical Union,1957,38:222-232.
    [20]Lewis, R.W., and Schrefler, B.A. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M], Second Edition. John Wiley & Sons, 1998.
    [21]Romero, E. Characterisation and Thermo-Hydro-Mechanical Behaviour of Unsaturated Boom Clay:an Experimental Study[D]. Universitat Politecnica de Catalunya, Barcelona, Spain, 1999.
    [22]Augier, F., Coumans, W.J., Hugget, A., Kaaschieter, E.F. On the risk of cracking in clay drying[J]. Chemical Engineering Journal,2002,86:133-138.
    [23]Itaya, Y, Taniguchi, S., and Hasatani, M. A numerical study of transient deformation and stress behaviour of a clay slab during drying[J]. Drying Technology,1997,15(1):1-21.
    [24]Doll, P. Desiccation of mineral liners below landfills with heat generation [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(11):1001-1009.
    [25]Coussy, O., Eymard, R., and Lassabatere, T. Constitutive modelling of unsaturated drying deformable media[J]. Journal of Engineering Mechanics,1998,124(6):658-667.
    [26]Thomas, H.R., He, Y., and Onofrei, C. An examination of the validation of a model of the hydro/thermo/mechanical behaviour of engineered clay barriers [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1998,22:49-71.
    [27]Zhou, Y, and Rowe, R.K. Development of a technique for modelling clay liner desiccation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2003,27: 473-493.
    [28]Kowalski, S.J. Thermomechanics of Drying Processes[M]. Springer Verlag, Berlin,2003.
    [29]Platten, J.K. The Soret effect:a review of recent experimental results [J]. Journal of Applied Mechanics,2006,73:5-15.
    [30]Baggio, P., Bonacina, C, and Schrefler, B.A. Some considerations on modelling heat and mass transfer in porous media[J]. Transport in Porous Media,1997,8:233-251.
    [31]Mainguy, M., Coussy, O., and Baroghel-Bouny, V. Role of air pressure in drying of weakly permeable materials[J]. Journal of Engineering Mechanics,2001,127(6):582-592.
    [32]Coussy, O.2004. Poromechanics[M]. John Wiley & Sons.
    [33]Herve Peron. Desiccation Cracking of Soils[D]. Ingenieur diplome de l'Ecole Nationale Superieure de Geologie, Nancy, France,2008.
    [34]陈仲颐,张在明,陈愈炯等译.非饱和土力学[M].北京:中国建筑工业出版社,1997.
    [35]de Gennes, P.G, Brochard-Wyart, M., and Quere, D. Gouttes, bulles, perles et ondes. Belin, 2002.
    [36]Fisher, R.A. On the capillary forces in an ideal soil:Correction of the formulae given by WB. Haines[J]. Journal of Agricultural Science,1926,16:492-503.
    [37]Cho, B.G, and Santamarina, J.C. Unsaturated particulate materials-particle level studies[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(1):84-96.
    [38]Vervey, E.J., and Overbeek, J.T.G Theory of the Stability of Lyophobic Colloids[M]. Elsevier, Amsterdam,1948.
    [39]Gaombalet, J. Le gonflement des argiles et ses effets sur les ouvrages souterrains de stockage[D]. Doctoral Thesis, Ecole Polytechnique, France,2004.
    [40]Fang, Y.H. Introduction to Environmental Geotechnology. CRC Press,1997.
    [41]Hueckel, T. Water-mineral interaction in hygromechanics of clays exposed to environmental loads:a mixture-theory approach [J]. Canadian Geotechnical Journal,1992a,29:1071-1086.
    [42]Israelachvili, J. Intermolecular and Surface Forces, Second Edition. Academic Press, San Diego,1997.
    [43]Butt, H.J., Farshchi, M., and Kappl, M. Using capillary forces to determine the geometry of nanocontacts[J]. Journal of Applied Physics,2006,100:024312.
    [44]Mitchell, J.K., and Soga, K. Fundamentals of Soil Behavior[M]. John Wiley & Sons,2005.
    [45]Griffith, A.A. Theory of rupture[C]. In Proceedings of the First International Conference on Applied Mechanics, Delft, Holland,1924, pp.55-63.
    [46]沈明荣,陈建峰等.岩体力学[M],同济大学出版社,2006年7月.
    [47]Bishop, A.W., and Garga, V.K. Drained tension tests on London Clay[M]. Geotechnique,1969, 19:309-313.
    [48]Frydman, S. Triaxial and tensile strength tests on stabilized soil[C]. In Proceedings of the Third Asian Regional Conference on Soil Mechanics and Foundation Engineering, Haifa, 1967, pp.269-275.
    [49]Morris, PH., Graham, J., and Williams, D.J. Cracking in drying soils[J]. Canadian Geotechnical Journal,1992,29:262-277.
    [50]潘岳,李爱武,戚云松.圆巷开挖围岩偏应力应变能生成的分析解与图解[J].岩土工程学报,2007,29(12):1780-1786.
    [51]Irwin, GR. Onset of fast crack propagation in high strength steel and aluminium alloys [R]. Naval Research Laboratory, Washington, D.C.,1956.
    [52]Bazant, Z.P., and Cedolin, L. Stability of Structures-Elastic, Inelastic, Fracture, and Damage Theories[M]. Oxford University Press,1991.
    [53]Anderson, T.L. Fracture Mechanics, Fundamentals and Applications[M], Second Edition. CRC Press,1995.
    [54]Lachenbruch, A.H. Depth and spacing of tension cracks [J]. Journal of Geophysical Research, 1961,66(12):4273-4292.
    [55]Lee, F.H., Lo, K.W., and Lee, S.L. Tension crack development in soils [J]. Journal of Geotechnical Engineering,1988,114(8):915-929.
    [56]Konrad, J.M., and Ayad, R. An idealized framework for the analysis of cohesive soils undergoing desiccation[J]. Canadian Geotechnical Journal,1997,34:477-488.
    [57]Sture, S., Alqasabi, A., and Ayari, M. Fracture and size effect characters of cemented sand[J]. International Journal of Fracture,1999,95:405-433.
    [58]Avila, G, Ledesma, A., and Lloret, A. Measurement of fracture mechanics parameters for the analysis of cracking in clayey soils[J]. In Unsaturated Soils, Juca de Campos and Marinho eds., Balkema,2002,2:547-552.
    [59]Aluko, O.B., and Chandler, H.W. Characterization and modelling of brittle fracture in twodimensional soil cutting[J]. Biosystems Engineering,2004,88(3):369-381.
    [60]Saada, A.S., Chudnovsky, A., and Kennedy M.R. A fracture mechanics study of stiff clays[C]. In Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco,1985,2:637-640.
    [61]Hallett, P.D., Dexter, A.R., and Seville, J.P.K. The application of fracture mechanics to crack propagation in dry soil[J]. European Journal of Soil Science,1995,46:591-599.
    [62]Irwin, GR. Fracture dynamics. In Fracturing of Metals [J], American Society for Metals, Cleveland,1948, pp.147-166.
    [63]Dugdale, D. S. Yielding of steel sheets containing slits [J]. Journal of the Mechanics and Physics of Solids,1960,8:100-104.
    [1]李最雄,王旭东,孙满利.交河故城保护加固技术研究[M].北京:科学出版社,2008.
    [2]李最雄.丝绸之路古遗址保护[M].北京:科学出版社,2008.
    [3]张虎元,赵天宇,王旭东.中国古代土工建造技法[J].敦煌研究,2008,5:81-90.
    [4]解耀华.交河故城保护与研究[M].乌鲁木齐:新疆人民出版社,1999.
    [5]敦煌研究院,兰州大学文物保护研究中心.交河故城抢险加固工程勘察报告[R].兰州,2005.
    [6]郑乐娟,张志军,张慧琴,等.吐鲁番盆地近30年沙尘天气分布特征[J].新疆气象,2003,26(2):12-1.
    [7]敦煌研究院,兰州大学文物保护研究中心.交河故城抢险加固工程勘察报告[R].兰州,2005.
    [1]李最雄,王旭东,孙满利.交河故城保护加固技术研究[M].北京:科学出版社,2008.
    [2]张虎元,刘平,王锦芳等.土建筑遗址表部结皮形成与剥离机制试验研究[J].岩土力学,2009,30(7):1183-1891.
    [3]Corte, A. and Higashi, A. Experimental Research on Desiccation Cracks in Soil[R]. Research Report 66:U.S. Army Snow Ice and Permafrost Research Establishment, Wilmette, Illinois, 1960.
    [4]W.M. Cornelis, J. Corluy, H. Medina, et al. Measuring and modelling the soil shrinkage characteristic curve[J]. Geoderma,2006 (137):179-191.
    [5]Chertkov, V.Y. Modelling the shrinkage curve of soil clay pastes[J], Geoderma,2003,112: 71-95.
    [6]Braudeau, E., Costantini, J.M., Bellier, G, Colleuille, H.. New device and method for soil shrinkage curve measurement and characterization [J]. Soil Sci. Soc. Am. J.,1999,63: 525-535.
    [7]Bruand, A., Prost, R.. Effect of water content on the fabric of a soil material:an experimental approach[J]. J. Soil Sci.,1987,38:461-472.
    [8]Braudeau, E., Boivin, P. Transient determination of shrinkage curve for undisturbed soil samples:a standardized experimental method[C]. In:Baveye, P., McBride, M.B. (Eds.), Clay Swelling and Expansive Soils. Kluwer Academic, Norwell, MA,1995.
    [9]Geiser, F. "Comportement mecanique d'un limon non sature:etude experimentale et modeliation constitutive,"[D]. Thesis, Ecole Polytechnique Federate de Lausanne, EPFL, Switzerland,1999.
    [10]Head, K. H. Manual of Soil Laboratory Testing[M]. Volume 1:Soil Classification and Compaction Tests, Pentech Press, London,1980.
    [11]解耀华.交河故城保护与研究[M].乌鲁木齐:新疆人民出版社,1999.
    [12]Herve Peron, Tomasz Huecke and Lyesse Laloui. An Improved Volume Measurement for Determining Soil Water Retention Curves[J]. Geotechnical Testing Journal,2006,30, No.1
    [13]Pascal Boivin, Patricia Gamier, and Daniel Tessier. Relationship between Clay Content, Clay Type, and Shrinkage Properties of Soil Samples[J]. Soil Sci. Soc. Am. J.2004(68):1145-1153.
    [14]Kim, D.J., Vereecken, H., Feyen, J., Boels, D., Bronswijk, J.J.B. On the characterization of properties of an unripe marine clay soil.1. Shrinkage processes of an unripe marine clay soil in relation to physical ripening[J]. Soil Sci.,1992,153:471-481.
    [15]W.M. Cornelis, J. Corluy, H. Medina, et al. Measuring and modelling the soil shrinkage characteristic curve[J]. Geoderma,2006,137:179-191.
    [16]Sposito, G, Giraldez, J.V.. Thermodynamic stability and law of corresponding states in swelling soils[J]. Soil Sci. Soc. Am. J.,1976,40:352-358.
    [17]Giraldez, J.V., Sposito, G, Delgado, C. A general soil volume change equation:I. The two-parameter model[J]. Soil Sci. Soc. Am. J.,1983,47:419-22.
    [18]Giraldez, J.V., Sposito, G. A general soil volume change equation:II. Effect of load pressure[J]. Soil Sci. Soc. Am. J.,1983,47:422-425.
    [19]McGarry, D., Malafant, K.W.J. The analysis of volume change in unconfined units of soil[J]. Soil Sci. Soc. Am. J.,1987,51:290-297.
    [20]Kim, D.J., Vereecken, H., Feyen, J., Boels, D., Bronswijk, J.J.B. On the characterization of properties of an unripe marine clay soil.1. Shrinkage processes of an unripe marine clay soil in relation to physical ripening[J]. Soil Sci.,1992,153:471-481.
    [21]Tariq, A., Durnford, D.S. Analytical volume change model for swelling clay soils[J]. Soil Sci. Soc. Am. J.,1993b,57:1183-1187.
    [22]Philip, J.R. Hydrostatics and hydrodynamics in swelling soils[M]. Water Resour. Res.,1969, 5:1070-1077.
    [23]Sposito, G. Volume changes in swelling clays[J]. Soil Sci.,1973,115:315-320.
    [24]Olsen, P.A., Haugen, L.E. New model of the shrinkage characteristic applied to some Norwegian soils[J]. Geoderma,1998,83:67-81.
    [25]Braudeau, E., Costantini, J.M., Bellier, G, Colleuille, H. New device and method for soil shrinkage curve measurement and characterization[J]. Soil Sci. Soc. Am. J.,1999,63: 525-535.
    [26]Chertkov, V.Y. Modeling the pore structure and shrinkage curve of soil clay matrix[J], Geoderma,2000,95:215-246.
    [27]Chertkov, V.Y. Modelling the shrinkage curve of soil clay pastes [J]. Geoderma,2003,112: 71-95.
    [28]Groenevelt, P.H., Grant, C.D. Re-evaluation of the structural properties of some British swelling soils[J]. Eur. J. Soil Sci.,2001,52:469-477.
    [29]Groenevelt, PH., Grant, C.D. Curvature of shrinkage lines in relation to the consistency and structure of a Norwegian clay soil[J]. Geoderma,2002,106:235-245.
    [30]Cornelis, W.M., Corluy, J., Medina, H., Hartmann, R., Van Meirvenne, M., Ruiz, M.E. A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J], Eur. J. Soil Sci.,2006,57:258-268.
    [31]McGarry, D., Malafant, K.W.J. The analysis of volume change in unconfined units of soil[J]. Soil Sci. Soc. Am. J.,1987,51:290-297.
    [32]Cornelis, W.M., Corluy, J., Medina, H., Hartmann, R., Van Meirvenne, M., Ruiz, M.E. A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J]. Eur. J. Soil Sci.,2006,57:258-268.
    [33]Braudeau, E., J.M. Costantini, G Bellier, and H. Colleuille. New device and method for soil shrinkage curve measurement and characterization[J]. Soil Sci. Soc. Am. J.,1999,63: 525-535.
    [34]栾茂田,汪东林,杨庆,李培勇.非饱和重塑土的干燥收缩试验研究[J].岩土工程学报,2008(30):118-122.
    [35]I.GB. Indrawan, H. Rahardjo, E.C. Leong. Effects of coarse-grained materials on properties of residual soil[J]. Engineering Geology.2006,82:154-164
    [36]Boivin, P., Gamier, P., Tessier, D. Relationship between clay content, clay type, and shrinkage properties of soil samples [J]. Soil Science Society of America Journal,2004,68:1145-1153.
    [37]Henry Krisdani, Harianto Rahardjo, Eng-Choon Leong. Effects of different drying rates on shrinkage characteristics of a residual soil and soil mixtures [J]. Engineering Geology,2008, 7:1-7.
    [38]Shridaran, A., Prakash, K. Shrinkage limit of soil mixtures [J]. Geotechnical Testing Journal, 2000,23:(1),3-8.
    [39]Haines, W. B. The volume change associated with variations of water content in soils[J]. J. Agric. Sci.,1923,13:296-311.
    [40]Stirk, G B. Some aspects of soil shrinkage and the effect of cracking upon air entry into the soil[J]. Aust. J. Soil Res,1954,5:279-290.
    [41]Pascal Boivin, Patricia Gamier, Daniel Tessier. Relationship between clay content, clay type, and shrinkage properties of soil samples [J]. Soil Sci. Soc. Am. J.,2004,68:1145-1153.
    [42]Tessier, D. Sur la signification de la limite de retrait des argiles[M]. (In French.) C.R. Acad. Sci. Paris,1980,291D:377-380.
    [43]Fredlund, D.G, Rahardjo, H. Soil Mechanics for Unsaturated Soils[M]. John Wiley & Sons Inc,New York,1993.
    [44]Fredlund, D.G, Xing, A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31:521-532.
    [45]Fredlund, M.D., Wilson, GW., Fredlund, D.G. Representation and estimation of the shrinkage curve. Proceedings of the Third International Conference on Unsaturated Soils, UNSAT 2002, Brazil,2002,145-149.
    [46]Rao, S. N. The influence of fabric on the shrinkage limit of clay[J]. Geotech. Eng.,1979,19(2): 243-251.
    [47]Scheffer, F., Schachtschabel, P. lebrbuch der Bodenkunde[M],5~(th) ed. Stuttgart,1959.
    [48]Vees, E. and Witerkom, H. F. Engineering properties of several pure clays as functions of mineral type exchange ions and phase composition[J]. HRR,1967,209:55-65.
    [49]Hsai-Yang Fang. Introduction to environmental geotechnology[M]. Boca Raton New York: CRC Press,1997.
    [50]Fang, H. Y. Particle energy field theory:a unified approach for analyzing soil behavior. Proc. 2nd int. Symp. Environ. Geotechnol.,1989,1:167-194.
    [51]Winterkorn, H. F. and Fang, H. Y. Soil technology and engineering properties of soils [C]// Foundation Engineering Handbook[M], Van Nostrand Reinhold Co., NY,1975,88-143.
    [1]Corte, A., and Higashi, A.. Experimental Research on Desiccation Cracks in Soil[R]. Research report 66, U.S. Army Snow and Ice and Permafrost Research Establishment,1960.
    [2]Lachenbruch, A.H. Depth and spacing of tension cracks[J]. Journal of Geophysical Research, 1961,66(12):4273-4292.
    [3]Groisman, A., and Kaplan, E. An experimental study of cracking induced by desiccation[J]. Europhysics Letters,1994,25(6):415-420.
    [4]Lloret, A., Ledesma, A., Rodriguez, R, et al. Crack initiation in drying soils[C]. In Unsaturated Soils, Beijing, International Academic Publishers,1998, pp.497-502.
    [5]Hueckel, T. Water-mineral interaction in hygromechanics of clays exposed to environmental loads:a mixture-theory approach[J]. Canadian Geotechnical Journal,1992a,29:1071-1086.
    [6]Colina, H., and Roux, S. Experimental of cracking induced by drying shrinkage [J]. European Physical Journal E,2000,1:189-194.
    [7]Konrad, J.M., and Ayad, R. An idealized framework for the analysis of cohesive soils undergoing desiccation[J]. Canadian Geotechnical Journal,1997,34:477-488.
    [8]Bazant, Z.P., and Wittmann, F.H. Creep and Shrinkage in Concrete Structures[M]. John Wiley & Sons,1983.
    [9]Towner, GD. The influence of sand-and silt-size particles on the cracking during drying of small clay-dominated aggregates [J], Journal of Soil Science,1988,39:347-356.
    [10]Murray, R.S., and Quirk, J.P. Intrinsic failure and cracking of clay[J]. Soil Science Society of America Journal,1990,54(4):1179-1184.
    [11]Scherer, GW. Stress from re-immersion of partially dried gel[J]. Journal of Non-Crystalline Solids,1997,212:268-280.
    [12]Lachenbruch, A.H. Depth and spacing of tension cracks[J]. Journal of Geophysical Research, 1961,66(12):4273-4292.
    [13]Fang, Y.H. Introduction to Environmental Geotechnology[M]. CRC Press,1997.
    [14]Alvaredo, A.M. Drying Shrinkage and Crack Formation[D]. Swiss Federal Institute of Technology, Zurich, Switzerland,1994.
    [15]Bazant, Z.P., and Wittmann, F.H. Creep and Shrinkage in Concrete Structures[M]. John Wiley & Sons,1983.
    [16]Itaya, Y., Taniguchi, S., and Hasatani, M. A numerical study of transient deformation and stress behaviour of a clay slab during drying[J]. Drying Technology,1997,15(1):1-21.
    [17]Kowalski, S.J. Thermomechanics of Drying Processes[M]. Springer Verlag, Berlin,2003.
    [18]Saada, A.S., Chudnovsky, A., and Kennedy M.R. A fracture mechanics study of stiff clays[C]. In Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco,1985,2, pp.637-640.
    [19]Hallett, P.D., Dexter, A.R., and Seville, J.P.K. The application of fracture mechanics to crack propagation in dry soil[J]. European Journal of Soil Science,1995,46:591-599.
    [20]Schubert, K. Kapillaritat in porosen Feststoffsystemen[M]. Springer Verlag, Berlin,1982.
    [21]Heibrock, G, Zeh, R., and Witt, K.J. Tensile strength of compacted clays [C]. In Proceedings of the International Conference-From Experimental Evidence towards Numerical Modelling of Unsaturated Soils, Weimar, Germany, Schanz ed.,2003, vol.1, pp.395-412.
    [22]Kim, T., and Hwang, C. Modelling of tensile strength on moist granular earth material at low water content[J]. Engineering Geology,2003,69:233-244.
    [23]Snyder, V.A., and Miller, R.D. Tensile strength of unsaturated soils [J]. Soil Science Society of America Journal,1985,49:58-65.
    [24]Jennings, J.E.B., and Burland, J.B. Limitations to the use of effective stresses in partly saturated soils[J]. Geotechnique,1962,12:125-144.
    [25]Kodikara, J., Barbour, S.L. and Fredlund, D.G Changes in clay structure and behavior due to wetting and drying[C]. Proceedings of the eighth Australia New Zealand Conference on Geomechanics, Hobart,1999,1,179-185.
    [26]Nahlawi, H., and Kodikara, J. Experimental observations on curling of desiccating clay[C]. In Unsaturated Soils-Proceedings of the 3rd International Conference, UNSAT2002, Recife, Brazil,10-13 Mar.2002. Edited by J.F.T. Juca, T.M.P. de Campos, andF.A.M. Marinho. A.A. Balkema, Rotterdam, The Netherlands.2002, Vol.2, pp.553-556.
    [27]Lytton, R.L., Boggess, R.L., and Spotts, J.W. Characteristics of expansive clay roughness of pavements[R]. Transport Research Record 568, Tranportation Research Board, Washington, D.C.1976, pp.9-23.
    [28]Standards Australia. Determination of the linear shrinkage of a soil (AS 1289.3.4.1). Standards Australia, Sydney, Australia,1995.
    [29]Liang, R.Y., and Niu, Y.-Z. Temperature and curling stress in concrete pavements:analytical solutions[J]. Journal of Transportation Engineering, ASCE,1998,124(1):91-100.
    [30]Janoo, V., Korhonen, C, and Hovan, M. Measurement of water content in Portland cement concrete[J]. Journal of Transportation Engineering, ASCE,1999,125(3):245-249.
    [31]J.K. Kodikara, H. Nahlawi, and A. Bouazza. Modelling of curling in desiccating clay[J]. Can. Geotech. J.2004,41:560-566.
    [32]Ayad R., Konrad, J.M., and Soulie, M. Desiccation of a sensitive clay:application of the model CRACK[J]. Canadian Geotechnical Journal,1997,34:942-951.
    [33]Nahlawi, H. Behaviour of a reactive soil during desiccation[D]. Monash University, Clayton, Australia,2004.
    [34]Avila, GE. Estudio de la retraccion y el agritamiento de arcillas. Aplicacion a la arcilla de Bogota[D]. Universitat Politecnica de Catalunya, Barcelona, Spain,2004.
    [35]Rodriguez, R., Sanchez, M., Ledesma, A., and Lloret, A. Experimental and numerical analysis of desiccation of a mining waste[J]. Canadian Geotechnical Journal,2007,44:644-658.
    [36]Dwivedi, K. Drying behavior of alumina gels[J]. Journal of Material Science Letters,1986,5: 373-76.
    [37]Anderson, P., and Klein, L.C. Shrinkage of Lithium aluminosilicate gels during drying[J]. Journal of Non-Crystalline Solids,1987,93:415-22.
    [38]Simpkins, G, Johnson, Jr., D.W., and Fleming, D.A. Drying behavior of colloidal silica gels[J]. Journal of the American Ceramic Society,1989,72(10):1816-1821.
    [39]Scherer, G.W. Theory of drying[J]. Journal of the American Ceramic Society,1990,73(1): 3-14.
    [40]Scherer, G.W., and Smith, D.M. Cavitation during drying of a gel[J]. Journal of Non-Crystalline Solids,1995,189:197-211.
    [1]Kodikara, J.K., Nahlawi, H. and Bouazza, A. Modelling of curling in desiccating clay[J]. Canadian Geotechnical Journal,2004,41(3):560-566.
    [2]Corte, A. and Higashi, A. Experimental research on desiccation cracks in soil[R]. U.S. Army Snow Ice and Permafrost Research Establishment,1960, Illinois, USA.
    [3]Wilson, GW., Fredlund, D.G. and Barbour, S.L. Coupled soil-atmosphere modeling for soil evaporation[J]. Canadian Geotechnical Journal,1990,31(2):151-161.
    [4]H. Nahlawi and J.K. Kodikara. Laboratory experiments on desiccation cracking of thin soil layers[J]. Geotechnical and Geological Engineering,2006,24:1641-1664
    [5]Nadai, A. Theory of Flow and Fracture of Solids[M]. McGraw-Hill Book Co., Inc., New York, 1950.
    [6]George, K.P. Shrinkage cracking of soil-cement base:theoretical and model studies[R]. Highway Research Record,1970,351,115-133.
    [7]Harison, J.A., Hardin, B.O. and Mahboub, K. Fracture toughness of compacted cohesive soils using ring test[J]. Journal of Geotechnical Engineering,1994,120(5):872-821.
    [8]唐朝生,施斌,刘春等.黏性土在不同温度下干缩裂缝的发展规律及形态学定量分析[J].岩土工程学报,2007,29(5):743-749.
    [9]Chertkov, V.Y. Ravina, I.,. Networks originating from the multiple cracking of different scales in rocks and swelling soils[J]. Int. J. Fract.2004,128,263-270.
    [10]Chertkov, V.Y. Mathematical simulation of soil cloddiness[J]. Int. Agrophys.1995,9, 197-200.
    [11]Chertkov, V.Y. Intersecting-surfaces approach to soil structure[J]. Int. Agrophys.2005,19, 109-118.
    [12]Chertkov, V.Y, Ravina, I. Modelling the crack network of swelling clay soils[J]. Soil Sci. Soc. Am. J.,1998,62,1162-1171.
    [13]Chaosheng Tang, Bin Shi, Chun Liu, et al. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils [J]. Engineering Geology,2008.
    [14]唐朝生,施斌,刘春,王宝军.影响黏性土表面干缩裂缝结构形态的因素及定量分析[J].水利学报.2007,38(10):1186-1193.
    [15]Prat, P.C., Ledesma, A., Lakshmikantha, M.R.. Size effect in the cracking of drying soil[C]. In: Gdoutos, E.E. (Ed.), Proceedings of the 16th European Conference of Fracture. Springer, 2006.
    [16]Lau, L.T.K.. Desiccation crack of clay soils[D]. Department of Civil Engineering, University of Saskatchewan, Canada,1987.
    [17]Nahlawi, H., Kodikara, J.H.. Laboratory experiments on desiccation cracking of thin soil layers [J]. Geotechnical and Geological Engineering,2006,24,1641-1664.
    [18]Chertkov, V.Y, Ravina, I.. Analysis of the geometrical characteristics of vertical and horizontal shrinkage cracks[J]. J. agric. Eng. Res.,1999,74,13-19.
    [19]Karneta, W., Mendiratta, S.K, Menteiro, J.. Topological and geometrical properties of crack patterns produced by the thermal shock in ceramics[J]. Physical Review E,1998,57 (3): 3142-3152.
    [20]Morris, P.H., Graham, J., Williams, D.J.. Cracking in dry soils[J]. Can. Geotech. J.,1992,29, 263-277.
    [21]Kayyal, M.K.. Effect of the moisture evaporative stages on the development of shrinkage cracks in soil[C]. Proc. First International Conference on Unsaturated Soils,1995, pp. 373-379.
    [22]Fang, H. Y. Introduction to environmental geotechnology[M]. New York, Boca Raton,1997.
    [23]Campanella, R.G, Mitchell, J.K.. Influence of temperature variations on soil behavior[J]. J. Soil Mech. Found. Div., ASCE,1968,94,709-734.
    [24]Kanno, T., Kato, K., Yamagate, J.. Moisture movement under a temperature gradient in highly compacted bentonite[J]. Eng. Geol.,1996,41,287-300.
    [25]Sultan, N., Delage, P., Cui, Y.J.. Temperature effects on the volume change behavior of Boom clay[J]. Eng. Geol.,2002,64,135-145.
    [26]Tang, A.M., Cui, Y.J.. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay[J]. Can. Geotech. J,2005,42,1-10.
    [1]张虎元,赵天宇,王旭东.中国古代土工建造技法[J].敦煌研究,2008,5:81-90.
    [2]严耿升,张虎元,王旭东,等.古代生土建筑风蚀的主要影响因素分析[J].敦煌研究,2007,5:78-82.
    [3]李最雄.丝绸之路古遗址保护[M].北京:科学出版社,2008.
    [4]周环,张秉坚,陈港泉,等.潮湿环境下古代土遗址的原位保护加固研究[J].岩土力学,2008,29(4):954-962.
    [5]李最雄,王旭东,孙满利.交河故城保护加固技术研究[M].北京:科学出版社,2008.
    [6]Lewin S Z. The mechanism of masonry decay through crystallization[J]. Conservation of Historic Stones Buildings and Monuments,1982,120-144.
    [7]Rossi Manaresi R. Scientific investigation in relation to the conservation of stone[J]. Science and Technology in the Service of Conservation,1982,39-45.
    [8]Rossi Manaresi R, Tucci A. Pore structure and the disruptive or cementing effect of salt crystallization in various types of stone[J]. Studies in Conservation,1991, (36):53-58.
    [9]Hall K. The role of thermal stress fatigue in the breakdown of rocks in cold regions [J]. Geomorphology,1999,31:47-63.
    [10]Yatsu E. The nature of rock weathering[M]. Sozosha:Tokyo,1988.
    [11]Stephane H. Rock temperatures as an indicator of weathering processes affecting rock art[J]. Earth Surface Processes and Landforms,2006, (31):383-389.
    [12]Onofiok O, Singer M J. Scanning electron microscope studies of surface crusts formed by simulated rainfall[J]. Soil Sci. Soc. Am. J.,1984,48:1138-1143.
    [13]朱远达,蔡强国,胡霞,等.土壤理化性质对结皮形成的影响[J].土壤学报,2004,41(1):13-19.
    [14]李晓丽,申向东.结皮土壤的抗风蚀性分析[J]干旱区资源与环境,2006,20(2):203-206.
    [15]吴发启,范文波.坡耕地黄墡土结皮的理化性质分析[J].水土保持通报,2001,21(4):22-24.
    [16]McIntyre D S. Permeability measurements of soil crusts formed from raindrop impacts. Soil Sci.,1958,85:185-189.
    [17]McIntyre D S. Soil splash and the formation of water drops and raindrops [J].Trans Am.Geophys,1958, b,22:709-721.
    [18]Onofiok O, Singer MJ. Scanning electron microscope studies of surface crusts formed by simulated rainfall[J].Soil Sci. Soc. Am. J.,1984,48:1137-1143.
    [19]West N E. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J]. Advances in Ecological Research,1990,20:179-223.
    [20]凌裕泉,屈建军,胡玟.沙面结皮形成与微环境变化[J].应用生态学报,1993,4(4)393-398.
    [21]梁少民,吴楠,王红玲等.干扰对生物土壤结皮及其理化性质的影响[J].干旱区地理, 2005,28 (6):818-822.
    [22]Belnap J, Harper K T, Warren S D. Surface disturbance of cryptobiotic soil crusts:nitrogenase activity, chlorophyll content and chlorophyll degradation[J]. Arid Soil Research and Rehabilitation,1994,8:1-8.
    [23]Singer, M. J. Physical properties of arid region soils. In:Skujins J. ed. Semiarid lands and deserts:soils resource and reclamation [M], New York:Marcel Dekker,1991:81-109.
    [24]宋阳,刘连友,严平等.土壤可蚀性研究述评[J].干旱区地理,2006,29(1):124-131.
    [25]MualemJ, Assouline S, Rohaenburc H. Rainfall induced soil seal (A):Acritical review of observations and models. Catena,1990,17:185-205.
    [26]Kemper W D, Miller D E. Management of crusting soil:some practical possibilities[C].In: Cary J W, Evans D D (Eds), Soil Crusts. Technical Bulletin 214. Agricultural Experimental Station. University of Arizona,1974,1-6.
    [27]程琴娟,蔡强国,李家永.表土结皮发育过程及其侵蚀响应研究进展[J].地理科学进展,2005,24(4):114-122.
    [28]Kazman Z, Shainberg I, Gal M. Effect of low levels of exchangeable Na and applied phosphogypsum on the infiltration rates of various soils[J].Soil Science,1983,135:184-192.
    [29]Fox, DM, Le Bissonnais Y. Process-based analysis of aggregate stability effects on sealing, infiltration, and interrill erosion[J].Soil Science Society of America Journal,1998,62: 717-724.
    [30]Ben-Hur M, Shainberg I, Bakker D, Keren R. Effect of soil texture and CaCO_3 content on water infiltration in crusted soil[J].Irrigation Science,1985,6:281-294.
    [31]唐泽军,左海萍,于键等.ESP值和黏粒含量对土壤表面封闭作用的影响[J].农业工程学报,2007,23(5):51-55.
    [32]朱远达,蔡强国,胡霞等.土壤理化性质对结皮形成的影响[J].土壤学报,2004,41(1):13-19.
    [33]Singer, A. Clay mineralogy as affecting dispersivity and crust formation in Aridisols[C]. In J. D. Etchevers (ed.) Transactions of the 15th World Congress of Soil Science. Acapulco, Mexico.1994,8a:37-46.
    [34]Stern R, Ben Hur M, Shainberg I. Clay mineralogy effect on rain infiltration, seal formation and soil losses [J]. Soil Science,1991,152:455-462.
    [35]Frenkel H, Goertzen JO, Rhoades JD. Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity[J].Soil Science Society of America Journal,1978,42:32-39.
    [36]Levy, G J., and H. v. H. van der Watt. Effect of clay mineralogy and soil sodicity on soil infiltration rate[J]. S. Afr. J. Plant Soil,1988,5:92-96.
    [37]Agassi M, Shainberg I, Morin J. Effect of electrolyte concentration and soil sodicity on the infiltration rate and crust formation[J].Soil Science Society of America Journal,1981,45: 848-851.
    [38]Gal M, Arkan L, Shainberg I, Keren R. The effect of exchangeable Na and phosphogypsum on the structure of soil crust-SEM observation[J].Soil Science Society of America Journal, 1984,48:872-878.
    [39]Le Bissonnais Y, Singer MJ. Seal formation, runoff, and interrill erosion from seventeen California soils[J]. Soil Science Society of America Journal,1993,57:224-229.
    [40]Kay BD, Angers DA. Soil structure. In Handbook of Soil Science, Sumner ME (ed.). CRC Press:Boca Raton, FL; 1999, A229-A276.
    [41]史志华,闫峰陵,李朝霞等.红壤表土团聚体破碎方式对坡面产流过程的影响[J].自然科学进展,2007,(17)2:217-224.
    [42]范云涛,雷廷武,蔡强国.湿润速度对土壤表面强度和土壤团聚体结构的影响[J].农业工程学报,2008,24(5):46-50.
    [43]Michael J. Singer, Isaac Shainberg. Mineral soil surface crusts and wind and water erosion[J].Earth Surface Processes and Landforms,2004,29:1065-1075.
    [44]De Ploey J. Crusting and time-dependent rainwash mechanisms on loamy soil. In Soil Conservation Problems and Perspectives, Morgan RPC (ed.). J. Wiley and Sons:New York, 1981,139-152.
    [45]Loch RJ. Structure breakdown on wetting. In:Sealing, Crusting and Hardsetting Soils, Productivity and Conservation, So HB, Smith GD, Raine SR, Schafer BM, Loch RJ (eds). Australian Society of Soil Science:Brisbane,1994,113-132.
    [46]Levy GJ, Levin J, Shainberg I. Prewetting rate and aging effects on seal formation and interrill soil erosion[J].Soil Science,1997,162:131-139.
    [47]Quirk JP, Panabokke CR. Incipient failure of soil aggregates [J]. Journal of Soil Science,1962, 13:60-69.
    [48]Mamedov AI, Levy GJ, Shainberg I, Letey J. Wetting rate, sodicity and soil texture effects on infiltration rate and runoff[J]. Australian Journal of Soil Research,2001,39:1293-1305.
    [49]Shainberg I, Mamedov AI, Levy GJ. Role of wetting rate and rain energy in seal formation anderosion[J].Soil Science,2003,168(1):54-62.
    [50]Le Bissonnais Y. Experimental study and modeling of soil surface crusting processes In Soil Erosion-Experiments and Models, Bryan RB (ed.). Catena Supplement 17. Catena Verlag: Cremlingen-Destedt, W. Germany,1990,13-28.
    [51]Le Bissonnais Y. Bruand A. Jamagne M. Laboratory Experimental study of soil crusting: relation between aggregate breakdown mechanisms and crust structure[J]. Catena,1989,16: 377-392.
    [52]Le Bissonnais Y, Singer MJ. Crusting, runoff, and erosion response to soil water content and successive rainfalls [J]. Soil Science Society of America Journal,1992,56:1898-1903.
    [53]赵晓光,石辉.水蚀作用下土壤抗蚀能力的表征[J].干旱区地理,2003,26(1):12-16.
    [54]Blake GR, Gilman RD. Thixotropic changes with aging of synthetic soil aggregates [J].Soil Science Society of America Proceedings,1970,34:561-564.
    [55]Shainberg I, Goldstein D, Levy GJ. Rill erosion dependence on soil moisture content, aging duration and temperature[J].Soil Science Society of America Journal,1996.59:916-922.
    [56]Kemper WD, Rosenau RC, Dexter AR. Cohesion development in disrupted soils as affected by clay and organic matter content and temperature [J]. Soil Science Society of America Journal,1987,51:860-867.
    [57]Singer MJ, Southard RJ, Warrington DN, Janitzky P. Stability of synthetic sand-clay aggregates after wetting and drying cycles [J].Soil Science Society of America Journal,1992, 56:1843-1848.
    [58]解耀华.交河故城保护与研究[M].乌鲁木齐:新疆人民出版社,1999.
    [59]GB/T50123-1999土工试验方法标准[S].
    [60]李最雄,王旭东,孙满利.交河故城保护加固技术研究[M].北京:科学出版社,2008.
    [61]Zhang Hu-yuan, Yan Ling, Wang Jin-fang. Salt hazard of earthen monuments induced by capillary rise[C]//Proceedings of International Symposium Conservation of Ancient Sites 2008&ISRM-Sponsored Regional Symposium. Dunhuang:The Dunhuang Academy,2008, 118-12.
    [62]Hinrich L B, Brian L M, George A. O'Connor. soil chemistry (3rd Edition)[M]. John Wiley & Sons,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700