用户名: 密码: 验证码:
随钻地震波场数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随钻地震(Seismic While Drilling)技术是勘探地球物理与石油工程相结合的产物,是一项学科交叉的技术。它以钻头破岩产生的地震波为震源,采集从地层传播上来的振动信号,获得钻头前方地层的反射波信息,用于评价待钻地层、预测超压层、地层界面和地层特性,以降低钻井风险、提高钻井质量。
     因钻头振动能量弱、井场噪音能量强以及随机连续振动造成的不同时刻、不同震相的波相互叠加,使SWD信噪比很低,波场非常复杂,数据处理难度大。现场实验周期长、费用高、地下结构等未知因素多,不利于开展SWD研究。而数值模拟具有在控制条件下开展研究的优势,是一种高效、廉价的数值实验方法。本文在SEISMOD地震波场模拟软件和MATLAB信号分析软件的基础上,针对随钻地震低信噪比、连续随机震源信号的特点,以粘弹性介质地震波动方程、交错网格高阶有限差分数值解法和互相关信号分析为核心,建立了SWD数值实验平台,算例验证了模拟平台的可靠性。同时利用该平台对SWD波场传播、直达波与反射波时距曲线特征、数据处理方法等进行了数值实验,深化了对SWD波场传播规律和SWD处理方法的认识,为随钻地震技术研究提供了一种高效的研究手段。
Seismic while drilling (SWD) is a combination of exploration geophysics and petroleum engineering. It takes the working drill-bit vibration as seismic source, acquiring the reflected wave propagating through the formation. It is useful to evaluate the formation ahead of the drill-bit, predict abnormal pressure and formation interface, and reduce the drilling risk.
     Because of the low energy of drill-bit vibration and the high energy of rig noise, as well as the superposition of different time and different phasic wave that induce the SWD signal to noise ratio(S/N) much low, make the wave-field much complex, so data processing is very difficult, and that locale experiment present many unknown factors, such as long period, high expenses, unknown geological structure underground, that is disadvantage for developing SWD research .But numerical simulation have the advantage of develop research in control, that is high-efficiency and low-expense numerical experiment technique. This article is based on seismic wave-field simulation software SEISMOD and signal processing software MATLAB, for SWD low signal to noise ratio and continue random seismic-source signal, taking seismic wave equations in sticky and elastic media and the staggered grid high-level finite-difference numerical solution and the signal processing method of the cross-correlation as the central part, makes a SWD numerical simulation experiment solution, the example validate the solution correct. Utilizing this solution to do some numerical experiments, such as SWD wave-field propagation, the time-distance curve character of direct wave and reflect wave, data processing method, deepen the apprehension to SWD wave-field propagation rule and processing method, for SWD technique research offers a efficient research method.
引文
鲍洪志.应用随钻地震技术认识钻井地层环境因素.石油钻探技术,2001,29(2):32-33
    陈元庆,邓富求.1993.VSP模型正演的应用效果.石油物探.32(1)
    董良国.1999.弹性波数值模拟中的吸收边界条件.石油地球物理勘探.34(1)
    高岩.1998.三牙轮钻头条件下钻柱轴向振动波谱分析研究[博士学位论文].石油大学(北京)
    苟量,杨举勇,罗斌,等.2005.随钻VSP技术研究及初步应用效果.石油地球物理勘探,40(2):183~189
    桂志先.2005.2n阶有限差分的计算与复杂介质波场数值模拟.石油天然气学报.27(3)
    郭爱香,林怀存,姜久坤,刘连柱.鲁西地区的Q值分布.四川地震,1988年2期.
    符力耘,牟永光.1994.弹性波边界元法正演模拟.地球物理学报.37(4)
    何樵登,张中杰,编著.横向各向同性介质中地震波及其数值模拟[M].长春:吉林大学出版社,1996.
    JIANL IN ZHU,(杨宜春译).2000.弹性波数值模拟的透明边界技术.国外油气勘探.358
    季玉新,韩文功,沈财余,王成礼.2006.胜利油田典型地质模型的地震正演.石油地球物理勘探.41(5)
    孔庆丰.2006.井间地震波场数值模拟技术研究与应用.勘探地球物理进展.29(5)
    李景叶,陈小宏.2006.TI介质地震波场数值模拟边界条件处理,西安石油大学学报(自然科学版),21(4)
    李庆春,邵广周,李斌.2005.弹性波数值模拟的混合边界与频散抑制.煤田地质与勘探.33(4)
    李振春,张军华.2000.地震数据处理讲义.中国石油大学(华东)
    罗斌,王宝彬.2005.随钻地震波场空间传播特征研究及应用.石油地球物理勘探,40(1):58~64
    刘军迎,雍学善,高建虎,余建平,方乐华.2005.波动方程模型正演岩性油气藏波场研究.石油物探.44(1)
    裴正林.2005.地震波标量方程的小波自适应网格有限差分法数值模拟.石油地球 物理勘探.40(3)
    裴正林,牟永光.2004.地震波传播数值模拟.地球物理学进展.19(4):933~941R.E.谢里夫,L.P.吉尔达特.1999.勘探地震学.北京:石油工业出版社
    孙建国.2005.大尺度强变速地震波场数值模拟与偏移成像的有限积分变换方案.石油地球物理勘探.40(1)
    田小波,吴庆举,曾融生.2004.弹性波数值模拟的延迟边界方法.CHINESE JOURNAL 0F GEOPHYSICS,47(1)
    吴清岭,张平,马振轶.1998.弹性波方程的VSP合成记录.大庆石油地质与开发.14(4)
    王成礼,韩文功,王延光,董良国.2006.VSP弹性波方程正演模拟与波场分析.油气地球物理.4(4)
    武晔,李小凡,赵玉莲,李信富.2006.2.5维各向异性介质中地震波场数值模拟.物探化探计算技术.8(4)1001—1749(2006)04—0289—05
    杨伟林,杨柏坡.2005.爆破地震动效应的数值模拟分析.地震工程与工程振动.25(1)
    杨微.2007.随钻地震检测方法研究[硕士学位论文].中国地震局地球物理所.
    杨微,葛洪魁,宁靖,林建民.2007.流动地震仪检测钻头振动信号的现场试验.地球物理学进展.22(2):622~628
    张永刚.2003.地震波场数值模拟方法.石油物探.42(2)
    张剑锋.弹性波数值模拟的非规则网格差分法[J].地球物理学报(增刊),1998,41:357~366.
    赵志新,徐纪人,堀内茂木.2003.错格实数傅里叶变换微分算子及其在非均匀介质波动传播研究中的应用.地球物理学报.46(2)
    祝靓谊.2003.油气勘探综合地球物理研究方法综述.地球物理学进展.18(1):19~23
    朱金明.1990.垂直地震剖面的波动方程有限差分模拟与偏移.石油物探.29(2)
    朱光明.1998.垂直地震剖面方法.石油工业出版社
    佘德平.2003.数值模拟技术的发展现状.勘探地球物理进展.26(5~6)
    佘德平.2004.波长数值模拟技术.勘探地球物理进展.27(1)
    Alermen Z S.Loewenthal D.Seismic wave in a quarter and three quarter plane[J].Geophysics J Roy Astr Soc,1970.20(1):101~ 126
    Alford R M . Kelly K R. Boore D M. Accuracy of finite difference modeling of the acoustic wave equation [J]. Geophysics. 1974, 39(6): 834-842
    
    A. Anchliya. A Review of Seismic-While-Drilling (SWD) techniques: A Journey from 1986-2005. Vienna, Austria. SPE Europec/EAGE Conference and Exhibition. 12-15 June 2006.
    
    Bayliss A, Jordan K E, Le Mesurier B J, Turkel E. A fourth-order accurate finite-difference scheme for the computation of elastic waves[J]. Bull Seism Soc Am, 1 986, 76:1115-1132.
    
    Carcione J M, Kosloff D. Kosloff R. Viscoacoustic wave propagation simulation in the earth [J]. Geophysics. 1 988, 53(4): 769-777.
    
    Carcione J M . HeHe H B. Numerical solution of the porovis coelastic wave equation on a staggered mesh[J], J Comput Phys, 1999, 15:520-527.
    
    Carcione J M, Quiroga-Goode G. Some aspects of the physics and numerical modeling of Biot compressional waves [J]. JComput Acous, 1996, 3:261-280.
    
    Dablain M A. The application of high-order differencing to scalar wave equation[J]. Geophysics, 1986, 51(1): 54-66.
    
    Dai N. Vafidis A. Kanasewich E R. Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method[J]. Geophysics, 1995, 60(2): 327 - 340.
    
    Drumhelle D. S. , 1992. Extensional stress wave in one-dimensional elastic waveguides. J. Acoust. Soc. Am., 92, 3389-3402
    
    Flavio Poletto, Francesco Miranda, 2004. Seismic while drilling fundamentals of drill-bit seismic for exploration. Handbook of Geophysical exploration, Vol. 35.
    
    Flavio Poletto, Trieste and Milano, 1998. Seismic while drilling use of pilot signals with downhole motor drilling. SEG Expanded Abstracts, Vol. 17:147-150
    
    Graves R W. Simulating seismic wave propagation in 3-D elastic media using staggered grid finite difference[J]. Bull Seism Soc AIn. 1996,86:1091 - 1106.
    
    Hestholm S O, Ruud B O. 2D finite difference elastic wave modeling including surfacetopography [J]. Geophysical Prospecting. 1994. 42:371-390.
    
    Igel H, Mora P, Riollet B. Anisotropic wave propagation through finite difference gridsEJ]. Geophysics, 1 995, 60(4): 1203-1216.
    
    J. Carcione, L. Petronio, F. Poletto, G. Seriani, F. Miranda. 2001. A 3D elastic modelling code for seismic wave propagation and 3d SWD surveys. Science and supercomputing at CINECA.
    
    Jastram C, Tessmer E. Elastic modeling on a grid with vertically varying spacing[J]. Geophys Prosp. 1994. 42: 357-370
    
    Kelly K R, Ward R W. Treitel S, el al. Synthetic seismograms, a finite difference approach [J]. Geophysics. 1976. 41 (1): 2-27.
    
    Lanbo Liu,Steve A. Arcone. 2003. Numerical Simulation of the Wave-Guide Effect of the Near-Surface Thin Layer. Journal of Environmental and Engineering Geophysics. 53-61
    
    Levander A R. Fourth-order finite difference P-SV seismograms [J]. Geophysics, 1988.53(11): 1425-1436.
    
    Marfurt K J. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[J]. Geo-physics, 1984, 49(3): 533-549.
    
    Nordstrom J, Carpenter M H. High-order finite differenc methods, multidimensional linear problems and curxrilinearcoordinates[J] , J Comput Phys. 2001. 173: 149-174.
    
    Rector James W., 1990. Method for reducing noise in drill string signals. United States Patent: 4954998
    
    Robertsson J O. Blanch J O, Symes W W. Viscoelastic finite-difference model ing[J]. Geophysics, 1994, 59(9): 1444-1456.
    
    Tal-Ezer H, Carcione J M, Kosloff D. An accurate and efficient scheme for wave propagation in linear viscoelastic media[J]. Geophysics, 1 990, 55(8): 1366-1379.
    
    Ozdenvar T. McMechan G. Algorithms for staggered grid computations for poroelastic, elastic. Acoustic and scalar wave equation[J]. Geophys Prosp, 1997, 45:403-420.
    Oprsal I, Zahradnik J. Elastic finite difference method for irregular grids [J]. Geophysics. 1999, 64(1): 240-250.
    
    Vladimir E. Ostashev, D. Keith Wilson, Lanbo Liu, David F. Aldridge, Neill P. Symons, David Marlin. 2005. Equations for finite-difference, time-domain simulationof sound propagation in moving inhomogeneous media. Acoustical Society of America. 503-517
    
    Pitarka A. 3 D elastic finite difference modeling of seismic motion using staggered grids with nonuniform spacing[J]. Bull Seism Soc Am. 1 999, 89(1): 54-68.
    
    Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method (shear waves) [J]. Geophysics, 1986, 51(4): 889- 901
    
    Zhang Jianfeng . Non-orthogonal grid finite-difference method for numerical simulation of elastic wave propagation [J]. Chinese J Geophys (in Chinese) 1998, 41: 411-419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700