用户名: 密码: 验证码:
超声辅助珩齿加工的理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波珩磨内圆已经广泛应用实际生产,但超声波辅助珩齿工艺却还处于实验研究阶段。这种基于超声波理论和应用及传统珩齿工艺和刀具研究的基础上提出来的齿轮精工方法既能提高加工效率,又能把珩轮的精度复制给被加工工件,提高齿轮的形状精度和齿轮表面的轮廓均匀性。
     研究超声辅助珩齿加工效率以及被加工工件的精度一个很重要研究的方面。在前期理论研究的基础上,本课题着重研究超声辅助珩齿加工理论及加工实验。具体内容如下:
     1、理论分析:(a)本文建立了参与交错轴齿轮传动的单个斜齿轮的齿面球面坐标系的方程,并求出了单个齿面的法矢量、曲率参数和主方向。(b)基于一对交错轴齿轮啮合的传动原理,第三章重点研究了超声珩齿过程中刀具珩磨轮与工件齿轮参与啮合的共轭齿面的形成,而共轭齿面上的瞬时啮合线方程是通过求解两啮合齿面∑1和∑2在固定坐标系中的任意一点M的坐标值来完成的。(c)在超声珩齿过程中,刀具珩轮与工件齿轮的啮合属于空间啮合运动,两个啮合齿轮分别位于空间两个不同的坐标系中,必须将它们通过坐标变换转化到同一个固定坐标系中才能讨论它们的相对运动。利用坐标变换法,并结合超声简谐振动方程,对超声辅助珩齿加工进行运动学分析,推导出珩磨轮与工件齿轮在啮合点的相对滑移速度。从啮合中接触线的叠加作用分析了超声珩齿加工提高表面精度的原因;(d)本文建立了变幅杆的纵向振动及弯曲振动方程,按照实际齿轮加工装夹方式确定边界条件,推导出频率方程,求出变幅杆设计参数的数值解,在此基础上,加工出圆锥型变幅杆进行实验研究。(e)加工刀具也是影响整个超声珩齿加工精度及效率的关键,因此刀具的成型工艺及刀具磨粒磨损机理的研究就显得尤为重要。本文分别介绍了激光钎焊和电镀两种珩齿刀上磨粒的固结工艺的原理及工艺流程。研究了刀具上磨粒的磨损状况,并重点讨论了立方氮化硼磨粒的破损机理。
     2、数值模拟:用ANSYS软件对设计的变幅杆进行模态分析,求出了变幅杆的固有频率及变幅杆上沿长度方向的振幅曲线;然后,用阻抗分析仪测试由超声波发生器、换能器、变幅杆组成的系统的谐振频率,并将两种结果进行比较,最终证明了采用软件分析与仪器测定的变幅杆模态结果非常接近,而且与设计频率也一致。
     3、实验研究:(a)在测试实验中,本文得出了系统谐振频率与变幅杆端部的振幅、加速度的变化关系。(b)在加工过程中,分别从引入超声振动系统的超声辅助珩齿加工和无超声振动系统的传统珩齿加工两种方式进行实验,改变主轴转速、切削深度、进给量等切削参数,将加工后的工件进行高倍电子扫描电镜观察显微图像,并用粗糙度仪测定粗糙度值,将两种方式的工件实验结果进行比较。结果表明,超声辅助振动加工后的零件表面明显比传统切削加工过的零件精度高。
Ultrasonic Honing inner circle have been widely used in actual production, but the ultrasonic gear honing process are still at the experimental research stage. The process is a method of gear finishing, which is put forward based on the theoretical application of ultrasonic and the research of conventional honing techniques and tools design, and it can not only improve the efficiency of gear finishing machining, but also be able to reproduce the accuracy of honing wheel to the processed workpiece to improve the shape of precision gears and the uniformity of the gear contours.
     Studying of the processing efficiency of ultrasonic assisted gear honing and the accuracy of the workpiece is a very important research aspect. The paper will selective study the theoretical analysis and experimental research of ultrasonic assisted gear honing machining based on previous theoretical study. The details are as follows:
     1.Theoretical Analysis: (a) In this paper, the gear surface equations of single helical gear which participates the cross-axis meshing motion at the spherical coordinate system is given, and it is obtained the normal vector, the curvature parameter and main direction of single tooth surface. (b) a pair of staggered based on the transmission shaft gear meshing theory, the third chapter focuses on the formation of conjugate surface which the honing wheel and workpiece involved in process of ultrasonic gear honing, while the equation of instantaneous meshing line on the conjugate surface is derived by solving the coordinates value of any pointM on the two mating tooth surfaces∑1 and∑2 in the fixed coordinate system. (c) In the process of ultrasonic gear honing, the meshing motion between the honing wheel and the workpiece is spatial, the two meshing gears are located in two different spatial coordinate system, they must be transformed by coordinate transformation to the same fixed coordinate system to discuss their relative motion. According to coordinate transformation and the equation of ultrasonic harmonic vibration, the paper analyzed the kinematic theory of ultrasonic assisted gear honing machining and deduced the relative slip velocity at the meshing point between honing wheel and the workpiece. Then, the reason that the ultrasonic gear honing can improve the surface accuracy of gear could be analyzed by the additive effect of the contact line in the process of meshing. (d) In this paper, the longitudinal vibration and bending vibration equations of the amplitude transformer is obtained, the frequency equation is established based on the boundary conditions located at actual clamping position, and the arithmetic solution of the conical amplitude transformer have been solved. (e) The cutting tools can affect the accuracy and efficiency of machining gear, thus the forming process of tools and the mechanism of abrasive wear is a particularly important studying aspect. In this paper, the consolidation process of CBN abrasive is introduced, that is the laser soldering and the electroplating. And the damage mechanism of the CBN abrasive is focused on according to the abrasive wear conditions.
     2. Numerical Simulation: The modal analysis of the amplitude transformer is carried out with ANSYS, the amplitude varying curve of the amplitude horn along the length is obtained, and the natural frequency is obtained too. Then, the resonant frequency of ultrasonic vibration system is tested by the impedance analyzer, and the tested results are consistent with that of the software analysis.
     3. Experimental Research: (a) in the testing experiment, the curve that the amplitude and acceleration at the amplitude horn tip vary with the resonant frequency is given. (b) In the machining process, the experiment is respectively carried out in two ways. That is ultrasonic assisted gear honing and traditional gear honing. The machining parameters such as the spindle speed, cutting depth and amount of feed is changed during machining process. Then, the workpiece is observed by high-powered electron microscope and measured by the rough meter. The results showed that the surface accuracy of the parts that is processed by the ultrasonic vibration assisted machining is higher than that of the traditional honing.
引文
[1] V.K.Astashev.etc. Ultrasonic Cutting as a Nonlinear Process [ J ].Ultrasonic, 1988, 36: 89-96.
    [2]王立江.超声波振动车削表面加工硬化的试验研究[J].电加工与模具.1985,05:22-26.
    [3]赵继,王立江.超声振动车削表面的波谱分析[J].电加工与模具.1986,04:6-10.
    [4]马春翔,胡德金.超声波椭圆振动切削技术[J].机械工程学报.2003,12(39):61-70.
    [5]李勋,张德远.超声椭圆振动切削表面形貌形成机理的研究[J].中国机械工程.2009,07(4):807-811.
    [6]马春翔,社本英二,森肋俊道.超声波椭圆振动切削提高加工系统稳定性的研究[J].兵工学报.2004,11(6):752-756.
    [7]高国富,赵波.超声椭圆振动磨削ZTA的表面完整性研究[J].金刚石与磨料磨具工程.2006,6(156):57-60.
    [8] Z.J. Pei , Khana N, Ferria P M. Rotary ultrasonic machining of structural ceramics—A review [J ]. Ceramic Engineering and Science Proceedings, 1995, 16 (1): 259 - 278.
    [9]赵波.硬脆材料超声珩磨系统及延性切削特征研究[D].上海交通大学.1999.
    [10]潘志勇,王全才,赵波.二维超声磨削纳米复相陶瓷的磨削特性研究(1).金刚石与磨料磨具工程,2006,(4):62-64,67.
    [11]吴雁,赵波,朱训生等.超声振动磨削陶瓷材料高效去除机理研究[J].制造技术与机床,2006,(4):59-62.
    [12]曲云霞,关颉文.超声振动磨削对工件表面粗糙度的影响[J].河北工业大学学报.1997,3:99-104.
    [13]张洪丽.超声振动辅助磨削技术及机理研究[D].山东大学.2007
    [14]闫鹏,张洪丽.超声振动辅助磨削-脉冲放电加工表面粗糙度研究[J].中国机械工程.2008,6(12):1462-1465.
    [15]任升峰,胡玉景等.工件作超声振动时的磨削特性研究[J].电加工与模具.2006,3:49-51.
    [16]汪心立,张建华,任升峰等.超声振动辅助端面磨削表面温度场研究[J].武汉理工大学学报.2009,3(33):541-544.
    [17]魏冰阳,方宗德等.超声研齿的材料去除机理与实验研究[J].中国机械工程.2006,10(17):995-999.
    [18]周忆,梁德沛.超声研磨硬脆材料的去除模型研究[J].中国机械工程.2005,8(15):664-666.
    [19] Z.J.Pei,P.M.Ferreira,S.G.Kapoor etc.rotary ultrasonic machining for face milling of ceramics[J].Tools manufact.1995,35(7):1033-1046.
    [20] Z.C.Li, Z.J.Pei,C.Treadwell etc. Rotary ultrasonic machining of ceramic matrix composites:feasibility study and designed experiments[J]. International Journal of Machine Tools & Manufacture.2005,45:1402-1411.
    [21]戴向国,付水根,王先逵等.旋转超声加工智能超声波发生器的研究[J].清华大学学报.2004,02(42):182-184.
    [22]戴向国,付水根,王先逵等.超声加工用厚电极换能器振子的频率方程研究[J].机械工程学报.2004,07(40):71-74.
    [23]戴向国,付水根,王先逵等.旋转超声加工机床的研究[J].中国机械工程. 2003,14(4):289-291.
    [24] D.Kremer, lL.Lebrun, B.Hosari.etc. Effect of Ultrasonic Vibrations on the Performances in EDM[J],Annals of CIRP, 1989,38(1):199-202.
    [25] D.Kremer, C. Lhiaubet, A. Moisan. A Study of the Effect of Synchronizing Ultrasonic Vibrations with Pulses in EDM[J].CIRP Annals - Manufacturing Technology, 1991,1(40): 211-214.
    [26] Z.N. Guo, T.C. Lee, T.M. Yue and W. S. Lau. A Study of Ultrasonic-aided Wire Electrical Discharge Machining[J]. Journal of Materials Processing Technology 1997,63:823-828.
    [27] Gunawan Setia Prihandana, MuslimMahardika, M.Hamdi.Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes—Taguchi approach[J]. International Journal of Machine Tools & Manufacture. 2009, 49:1035–1041.
    [28] Jia Zhixin,Zhang Jianhua etc.Ultrasonic vibration pulse eletro-discharge machining of holes in engineering ceramics[J].Journal of materials processing technology.1995,53:811-816.
    [29] Jia Zhixin,Zhang Jianhua etc.Study on a new kind combined of machining technology of ultrasonic machining and electrical discharge machining[J].Tools Manufact.1997,2(37):193-199.
    [30] Zhao Wansheng,Wang Zhenlong etc.Ultrasonic and electric discharge machining to deep and small holes on titanium alloy[J]. Journal of materials processing technology.2002.120:101-106.
    [31]张春明.关于内啮合珩齿工艺的研究[J].汽车工艺与材料.1995,5:14,20.
    [32]阮光珊,沈立勤.内啮合珩齿工艺的研究和应用[J].工艺与装备.1990,12:29-31.
    [33]郭振光.蜗杆式珩齿的应用及工艺分析[J].制造技术与机床.1981,6:103-136.
    [34]迟洪志,司佑国.蜗杆珩齿工艺上,下[J].机械工艺师.1988,1-2:6-7,7-9.
    [35]朱辉平.硬齿面蜗杆珩磨轮珩齿工艺及其装备[J].机械制造.1995,11:17-18.
    [36]阮光珊,段应麟.m20大模数重载齿轮珩齿工艺及珩轮制造的研究[J].工艺与装备.1987, 2:12-16.
    [37] Dr.Ing.Johannes Becker.采用Spheric Honing TM球面技术的Gleason—HURTH强力珩齿工艺[J]. 2003年中国国际齿轮传动制造及装备技术研讨会论文集.
    [38] Amini,N. Westberg,H. Klocke,F.etc. Experimental study on the effect of power honing on gear surface topography[J].Gear Technology.1999.1(16):1-2.
    [39] Chen Chi-Pin,Liu Jian,Wei Guo-Chan etc.Electro-Chemical Honing of Gears-A New Method of Gear Finishing[J].CIRP Annals-Manufacturing Technology.1981,1:103-106.
    [40] N K Jain,L Ramlal Naik etc.State-of-art-review of electrochemical honing of internal cylinders and gears[J].Engineering Manufacture.2009,223.
    [41] Wei Guo-Qiang,Wang Zhao-Bin and Chen Chi-Pin.Field Controlled Electrochemical Honing of Gear[J].Precision Engineering.1987,4(9):218-221.
    [42]王斌修,周锦进,李淑玉,张学义等. Si3 N 4陶瓷齿轮的电火花珩齿工艺研究[J].大连理工学报.1999,5(39):658-661.
    [43] Fritz Klocke,Christof Gorgels,Vasilios Vasiliou.Analysis of the influnce of geardimensions on cutting speed and contact conditions during the gear honing process[J].Production Process.2009,6:987-991.
    [44] Ling Wen-Feng,Wang Xiao-Chun,Jiang Hong.Research on honing technology for spiral bevel gears and optimal design of honing wheels[J].Journal Beijing jiaotong University.2007,1(37):50-54.
    [45]张振华.超声波珩齿传递系统的振动特性及结构设计[D].太原理工大学.2006.
    [46]徐德红.超声波平行轴硬珩齿工艺进行了基础性研究[D].太原理工大学.2006.
    [47]李玉梅.超声波平行轴硬珩齿微观切削过程的研究及其接触变形分析[D].太原理工大学.2006.
    [48]王时英,吕明,轧刚.超声珩齿指数型变幅器的动力学特性[J].机械工程学报.2007,6(43):190-193.
    [49]王时英,吕明,轧刚.弯曲振动圆盘变幅器的动力学特性研究[J].太原理工大学学报.2008,3(39):253-256.
    [50]王时英,吕明,轧刚.非谐环盘及变幅杆组成的变幅器动力学特性研究[J].声学学报.2008,5(33):462-468.
    [51]吕明,王时英,轧刚.超声珩齿弯曲振动变幅器的位移特性[J].机械工程学报.2008,7(44):106-111.
    [52]张云电.超声加工及其应用[M].北京:国防工业出版社.1995
    [53]林忠茂.超声变幅杆的原理和设计[M].北京:北京科学技术出版社.1987.
    [54]梁国星,孙鹏,吕明.钎焊镀膜CBN外珩齿刀的工艺研究[J].机械工程与自动化.2005,4:87-88,93.
    [55]侯晓晶,牛卫晶,吕明.电镀CBN珩齿刀的工艺研究[J].工艺与工艺装备.2005,2:84-85.
    [56]赵亚平,魏文军,王书茂.交错轴斜齿轮齿面接触区的计算机辅助分析[J].机械工程学报.2004,2(40).
    [57]董学朱.齿轮啮合理论基础[M].北京:机械工业出版社.1989.
    [58]李特文.齿轮啮合原理(第二版)[M].上海:上海科学技术出版社.1984.
    [59]傅则绍.微分几何与齿轮啮合原理[M].东营:石油大学出版社.1999.
    [60]温诗涛,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [61] T?shoff H K,Asche J. Wear of metal-bond diamond tools in the machining of stone [J]. Industrial Diamond Review, 1997, (1):7-13.
    [62] Luo S . Investigation of the worn surfaces of diamond saw blades in sawing granite [J]. Journal of Materials Processing Technology,1997, 70:1-8.
    [63]徐西鹏,沈剑云,黄辉,等.花岗石加工用金刚石-金属复合材料磨损机理研究[J].复合材料学报,1998,15(1):101-107.
    [64]王秀杰.超硬材料刀具PCBN的性能及磨损机理[J].机械与电子.2009,1.
    [65]臼井英治.切削磨削加工学[M].北京:机械工业出版社.1982.
    [66]段进,倪栋,王国业.ANSYS10.0结构分析从入门到精通[M].北京:北京科海电子出版社.2006
    [67]林书玉.超声换能器的原理及设计[M].北京:科学出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700