用户名: 密码: 验证码:
直升机时间域电磁法数据收录与现场处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直升机时间域航空电磁法以直升飞机作为载体,在飞行过程中,通过吊舱上发射线圈所产生的大发射磁矩,激发大地产生二次感应场,由电磁场理论解释该响应信号,从而获得地下几百米深度以内的电导率结构信息。该方法具有快速、高效并在工作时不受地形影响等特点,越来越受物探领域的发达国家重视。经过世界上近十年直升机时间域航空电磁法的飞速发展,国外仪器系统已趋于成熟,而国内仪器系统的研究尚处于空白状态。在国家高科技研究发展计划支持下,本文针对仪器系统开发过程中所遇到的数据收录系统研制、系统校准、数据现场处理及地面模拟仿真和实验等方面进行了详细研究。
     数据收录系统侧重研究了基于PXI总线技术的全波多通道数据采集、基于时间流基准方式的多种数据信息组织收录和信号动态范围的提高方法。在海量数据收录的过程中,研究了如何保证数据稳定和减小误差的方法。在信号动态范围研究中,采用补偿环和低噪声双通道采集相结合方法提高信号动态范围。系统校准侧重研究了同心补偿式吊舱装置的发射磁场空间分布及其对接收线圈的影响,补偿线圈空间位置和半径大小对于补偿效果的理论分析。针对采集的海量数据,现场数据处理对基于时间流基准方式的信息组织、多核并行大内存处理、定位信息校正、测线信息分割及去除高空背景测线信息等方面进行了研究。基于吊车摆动方式对地面环线的剖面异常检测实验,侧重研究了在不同高度下的不同半径异常环响应模拟,实验结果与仿真效果一致。吊舱校准装置的剖面异常检测实验,模拟了飞行中仪器扣除高空背景场的处理方法,也验证了吊舱校准装置在高空校准的可行性。通过本文的研究,为我国直升机时间域电磁法探测系统的研制工作,在数据收录和现场处理方法提供参考,促进我国在该领域的进一步发展。
Helicopter-borne Time-domain Electromagnetic Method (HTEM) has rapid large-scale electromagnetic geophysical advantages and it is used for metal ore exploration, geological mapping, hydro geological surveys and environmental monitoring. After 2000, five aspects abroad has rapidly developed, such as airborne electromagnetic forward and inversion methods, the special data processing methods, helicopter electromagnetic instruments, instrument calibration methods and application. The 1D, 2D and 3D forward, invention model simulation, and conductivity depth imaging problems have been studied. Special data processing studies include the impact of the flight program of exploration, the influence of the bird posture change, data leveling and the good conductor detection. The most advanced HTEM systems are developed to wider frequency band, high-power transmitter and multi-component receiver. From the three calibration methods about the known loop detection method, the contrast correction method of the actual conductor and the performance of the system itself, this thesis is chose artificially controlled loop detection method. HTEM’s applications have become more and more widespread throughout continents, such as inland surface and groundwater exploration, shallow sea and salt water intrusion investigation, sea and ice depth detection, mineral exploration, natural disasters exploration about volcanoes, the falling rock and tunnels, underground exploration, pollutants investigation, coal, oil and gas exploration, unexploded ordnance detection, and vegetation cover survey.
     Because there is no airborne electromagnetic system equipment inboard, Chinese researchers just do studies about the theory and model simulation. Considering the mountainous terrain in China and HTEM detecting deep advantage, this subject is supported by the national eleventh five-year 863 plan. The target is to develop a practical HTEM system.
     Innovations of this thesis include that a bird calibration device of HTEM with concentric bucking loop, combination of two methods about bucking loop and lower-noise dual-channel sampling program is improved the dynamic range of the HTEM signal, multi-information fusion based on Time-flow FID method is achieved, and single-file storage method can avoid the system crashing because of the competition of a hard disk written, which is described four chapters.
     (1) The real-time full-wave method of huge data recording provides more information for helicopter-borne time-domain electromagnetic instrument with respect to deep exploration and spatial discrimination. Considering the lack of compatibility between large magnetic moment and full-wave recording approach in the coaxial coplanar coils’device, this thesis uses bucking coil to weaken the primary magnetic field, and applies the key technology of state-machines, the design of multi-tasking mode, information stored method and data fusion of time-based stream on the base of continuous sampling characteristics of high-precision and long time. Combination of two methods about bucking loop and lower-noise dual-channel sampling program is improved the dynamic range of the HTEM signal. Finally, the full-wave recording system with the core of PXI is developed. A series of experiments show that the system is stable and reliable, and provides application platform for method research and reference for the design of electromagnetic instruments on unmanned aerial vehicles and semi-airborne.
     (2) The multiple instrument calibrations of flying helicopter-borne time-domain electromagnetic method can eliminate the environmental time-varying effect on the system during the process of flying. Using the bird calibration device to solve the problem that the wire-loop method can’t achieve, this thesis considers the bird model of HTEM with the concentric bucking loop, bringing forward the bird device space models and the coil circuit models, and analyzing the transmitter magnetic field distribution, the bucking loop’s effect and the relationship between it and the receiving coil, the space information of the calibration device and its signal detected method. Conclusions are as follows: (a) The bucking loop that loses 0.89% of the transmitting area can increase 44.5dB of the signal dynamic range. (b) The calibration device is levelly placed between the bucking loop and the transmitting coils. If it has more turns, greater radius and is closer to the bucking loop, its signal response becomes stronger. (c) If the inductance of calibration coil becomes greater with less resistance, its exponential decay becomes more slowly. The signal detection time-point is directly decided by damping character of receiver coil, which has matching resistance. This thesis is based on experiments about the calibration curve characters and the device coil displacement. The relative error about the time constant of the device characteristics is less than 1.3%, which proves the validity of the coil circuit models and device space models. The proposed models and approaches are also the same as the bird calibration device research about HTEM with the eccentric bucking loop and the known wire-loop static testing on the high resistance ground.
     (3) The key technologies of on-site rapid processing of large amounts of data are the measured information management, the separation of information, the main sampling waveform processing, the information fusion of time-based stream, and large memory multi-core parallel processing method. The functions of the test profiles’software are time adjustment, survey line information division, survey lines of removal high-altitude background information and generating function of the standard profile file.
     (4) In order to verify the overall performance of the instrument and the initial flight data processing, this thesis designs the experiments that the crane swings the bird to detect the ground loop anomaly. Based on the ground loop detection theory, the mobile loop anomaly is simulated by different parameters. The measured profile curve information demonstrates the feasibility of the instrument movement measuring. The loop processing of the onboard calibration profile can simulate the real flight data processing.
     In this thesis, the system has done many ground experiments Geological Palace, Big Goose Island, Karen Lake and Shaoguo town in Changchun, and it is successfully used to find water resource combined with NMR in Yunnan and Guizhou province in 2010. However, the bird framework is broken in the helicopter experiment. Further research should be emphasized on the weight reducing of the system and the the interference removing of the current modulated signal.
引文
[1] Fountain D .K. Airborne electromagnetic systems - 50 years of development [J]. Exploration Geophysics, 1998, 29(1&2): 1-11.
    [2] Fountain D .K. 60 Years of Airborne EM-Focus on the Last Decade [C]. AEM5th International Conference on Airborne Electromagnetic, Haikko Manor of Finland, 2008.
    [3] Leggatt Peter B., Klinkert Philip S., Hage Teo B. The spectrem airborne electromagnetic system; further developments [J]. GEOPHYSICS, 2000, 65(6): 1976-1982.
    [4] Witherly Ken, Shuchman Robert A., Josberger Edward G., et al. The quest for the Holy Grail in mining geophysics: A review of the development and application of airborne EM systems over the last 50 years [J]. The Leading Edge, 2000, 19(3): 270-274.
    [5] Farquhar-Smith David B. Airborne EM, alternative methods and new modelling; recent advances [J]. Bulletin - Australian Institute of Geoscientists, 2001, 33: 33-36.
    [6] Doll W.E., Gamey T. J., Beard L. P., et al. Recent advances in airborne survey technology yield performance approaching ground-based surveys [J]. The Leading Edge, 2003, 22(5): 420-425.
    [7] Nabighian Misac N., Macnae James C. Electrical and EM methods, 1980-2005 [J]. The Leading Edge, 2005, 24(Supplement): S42-45.
    [8] Macnae J., Anonymous. Developments in broadband airborne electromagnetics in the past decade [J]. Exploration 07; exploration in the new millennium; conference program; fifth decennial international conference on Mineral exploration, 2007, 24.
    [9]薛国强,李貅,底青云.瞬变电磁法正反演问题研究进展[J].地球物理学进展, 2008, (04): 1165-1172.
    [10] Sattel Daniel. An overview of helicopter time-domain EM systems [J]. Preview, 2009, 138: 59.
    [11] Annetts David, Sugeng Fred, Macnae James, et al. Modelling the airborne electromagnetic response of a vertical contact [J]. Exploration Geophysics (Melbourne), 2000, 31(1-2): 115-125.
    [12] Chen Jiuping, Raiche Art, Macnae James, et al. Inversion of airborne EM data using thin-plate models [C]. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies, Tulsa, OK, 2000, 355-358.
    [13] Huang Haoping, Won I. J. Conductivity and susceptibility mapping using broadband electromagnetic sensors [J]. Journal of Environmental & Engineering Geophysics, 2000, 5(4): 31-41.
    [14] Smith Richard S. The realizable resistive limit; a new concept for mapping geological features spanning a broad range of conductances [J]. GEOPHYSICS, 2000, 65(4): 1124-1127.
    [15] Tartaras Efthimios, Zhdanov Michael S., Wada Kazushige, et al. Fast Imaging of TDEM data based on S-inversion [J]. Journal of Applied Geophysics, 2000, 43(1): 15-32.
    [16] Vrbancich Julian, Fullagar Peter K., Macnae James, et al. Airborne bathymetry via inversion of electromagnetic frequency soundings and conductivity depth imaging using "EM Flow" [J]. Preview, 2000, 84: 85.
    [17] Siemon B. Improved and new resistivity-depth profiles for helicopter electromagnetic data [J]. Journal of Applied Geophysics, 2001, 46(1): 65-76.
    [18] Chernyavskiy Alexey, Zhdanov Michael S., Anonymous. Three-dimensional inversion of helicopter-borne electromagnetic data using the spectral Lanczos decomposition method [C]. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies, Tulsa, OK, 2002, 26-29.
    [19] Huang Haoping, Won I. J., Anonymous. Identification of mineral deposits using airborne electromagnetic spectra [C]. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies, Tulsa, OK, 2002, 5-8.
    [20] Huang Haoping, Fraser Douglas C. Dielectric permittivity and resistivity mapping using high-frequency, helicopter-borne EM data [J]. GEOPHYSICS, 2002, 67(3): 727-738.
    [21] Smith Richard S., Lee Terry J. Using the moments of a thick layer to map conductance and conductivity from airborne electromagnetic data [J]. Journal of Applied Geophysics, 2002, 49(3): 173-183.
    [22] Zhdanov Michael S., Pavlov Dmitriy A., Ellis Robert G. Localized S-inversion of time-domain electromagnetic data [J]. GEOPHYSICS, 2002, 67(4): 1115-1125.
    [23] Hodges Greg, Anonymous. Practical inversions for helicopter electromagnetic data [J]. Proceedings of SAGEEP, 2003, 2003: 45-58.
    [24] Farquharson Colin G. Simultaneous 1D inversion of loop–loop electromagnetic data for magnetic susceptibility and electrical conductivity [J]. GEOPHYSICS, 2003, 68(6): 1857–1869.
    [25] Huang Haoping, Fraser Douglas C. Inversion of helicopter electromagnetic data to a magnetic conductive layered earth [J]. GEOPHYSICS, 2003, 68(4): 1211-1223.
    [26] Yin C., Anonymous. The effect of electrical anisotropy on the response of airborne electromagnetic systems [C]. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies, Tulsa, OK, 2001, 1536-1539.
    [27] Yin Changchun, Hodges Greg, Anonymous. Identification of electrical anisotropy from helicopter EM data [J]. Proceedings of SAGEEP, 2003, 2003: 419-431.
    [28]罗延钟,张胜业,王卫平.时间域航空电磁法一维正演研究[J].地球物理学报, 2003, 05): 719-724.
    [29]李貅,全红娟,许阿祥, et al.瞬变电磁测深的微分电导成像[J].煤田地质与勘探, 2003, 03): 59-61.
    [30]白登海.时间域瞬变电磁法中心方式全程视电阻率的数值计算[J].地球物理学报, 2003, 46(5): 698-704.
    [31] Sattel Daniel. Inverting airborne electromagnetic (AEM) data with Zohdy's method [J]. GEOPHYSICS, 2005, 70(4): G77-G85.
    [32] Smith Richard S., Lee Terry J., Annan A. Peter, et al. Approximate apparent conductance (or conductivity) from the realizable moments of the impulse response [J]. GEOPHYSICS, 2005, 70(1): G29-G32.
    [33] Brodie, Ross, Sambridge, et al. A holistic approach to inversion of frequency-domain airborne EM data [M]. Tulsa, OK, ETATS-UNIS: Society of Exploration Geophysicists, 2006.
    [34] Ebner Nicholas, Macnae J. C. Inversion of airborne electromagnetic responses using a ribbon shaped model [J]. Abstracts - Geological Society of Australia, 2006, 82.
    [35] Tolboll Juhl, Christensen Boie. Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data [J]. GEOPHYSICS, 2006, 71(2): G53-G62.
    [36] Wilson G. A., Raiche A. P., Sugeng F., et al. 2.5 D inversion of airborne electromagnetic data [J]. Exploration Geophysics (Melbourne), 2006, 37(4): 363-371.
    [37] Wilson Glenn, Raiche Art, Sugeng Fred. Practical 3D AEM inversion using 2.5D modelling [J]. ASEG Extended Abstracts, 2006, 2006(1).
    [38]熊彬.关于瞬变电磁法2.5维正演中的几个问题[J].物探化探计算技术, 2006, (02): 124-128.
    [39] Viezzoli Andrea, Christiansen Anders V., Auken Esben, et al. Spatially constrained inversion for quasi 3-D modelling of AEM data [M]. Canning Bridge, West. Aust.: Promaco Conventions, 2007.
    [40] Yin Changchun, Hodges Greg. 3D animated visualization of EM diffusion for a frequency domain helicopter EM system [J]. GEOPHYSICS, 2007, 72(1): F1-F7.
    [41] Yin Changchun, Hodges Greg. Simulated annealing for airborne EM inversion [J]. GEOPHYSICS, 2007, 72(4): F189-F195.
    [42] Huang Haoping, Rudd Jonathan. Conductivity-depth imaging of helicopter-borne TEM data based on a pseudolayer half-space model [J]. GEOPHYSICS, 2008, 73(3): F115-F120.
    [43]刘桂芬.回线源层状大地航空瞬变电磁场的理论计算[D].吉林大学, 2008.
    [44] Viezzoli Andrea, Auken Esben, Christiansen Anders Vest. Constrained inversion of AEM data for mapping of bathymetry, seabed sediments and aquifers [J]. Preview, 2009, 138: 80.
    [45] Connors Jessica. Interpretation of airborne electromagnetic data using 1-D inversion [J]. Atlantic Geology, 2009, 45: 147.
    [46] Christensen Niels B., Reid James, Halkjaer Max. Fast approximate inversion of SkyTEM airborne electromagnetic data [J]. Preview, 2009, 138: 69-70.
    [47] Christensen Niels B., Munday Tim, Fitzpatrick Andrew. Fast approximate inversion of FDHEM data [J]. Preview, 2009, 138: 70.
    [48] Macnae James, Springall Ryan. Dispersion relations and the Hilbert transform for EM system response; an update [J]. Preview, 2009, 138: 69.
    [49] Siemon Bernhard, Auken Esben, Christiansen Anders Vest. Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data [J]. Journal of Applied Geophysics, 2009, 67(3): 259-268.
    [50]李永兴.航空瞬变电磁法一维正反演研究[J].地球物理学报, 2010, 53(3): 751-759.
    [51]朱凯光,林君,韩悦慧, et al.基于神经网络的时间域直升机电磁数据电导率深度成像[J].地球物理学报, 2010, 53(3): 743-750.
    [52] Beamish David. Airborne EM skin depths [J]. Geophysical Prospecting, 2004, 52(5): 439-449.
    [53] Smith Richard S., Chouteau Michel C. Combining airborne electromagnetic data from alternating flight directions to form a virtual symmetric array [J]. GEOPHYSICS, 2006, 71(2): G35-G41.
    [54] Reid James E., Pfaffling Andreas, Vrbancich Julian. Airborne electromagnetic footprints in 1D earths [J]. GEOPHYSICS, 2006, 71(2): G63-G72.
    [55] Yin Changchun, Fraser Douglas C. Attitude corrections of helicopter EM data using a superposed dipole model [J]. GEOPHYSICS, 2004, 69(2): 431-439.
    [56] Fitterman David V., Yin Changchun. Effect of bird maneuver on frequency-domain helicopter EM response [J]. GEOPHYSICS, 2004, 69(5): 1203-1215.
    [57] Davis A.C., Macnae J., Robb T. Pendulum motion in airborne HEM systems [J]. Exploration Geophysics, 2006, 37(4): 355-362.
    [58] Munkholm Mette S. Motion-induced noise from vibration of a moving TEM detector coil: characterization and suppression [J]. Journal of Applied Geophysics, 1997, 37(1): 21-29.
    [59] Davis Aaron, Macnae James, Hodges Greg. Predictions of bird swing from GPS coordinates [J]. GEOPHYSICS, 2009, 74(6): F119-F126.
    [60]嵇艳鞠,林君,关珊珊, et al.直升机航空TEM中心回线线圈姿态校正的理论研究[J].地球物理学报, 2010, 53(1): 171-176.
    [61] Green Andy, Anonymous. Correcting drift errors in HEM data [J]. Preview, 2003, 102: 84.
    [62] Wilson I. J., Reid J. E., Anonymous. Simple levelling of frequency-domain helicopter electromagnetic data using ground-truth measurements [J]. Preview, 2004, 112: 16.
    [63] Sasaki Yutaka, Nakazato Hiroomi. Inversion of airborne EM data accounting for terrain and inaccurate flight height [J]. SEG Technical Program Expanded Abstracts, 2004, 23(1): 648-651.
    [64] Mauring Eirik, Kihle Ola. Leveling aerogeophysical data using a moving differential median filter [J]. GEOPHYSICS, 2006, 71(1): L5-L11.
    [65] Huang Haoping. Airborne geophysical data leveling based on line-to-line correlations [J]. GEOPHYSICS, 2008, 73(3): F83-F89.
    [66] Siemon Bernhard. Levelling of helicopter-borne frequency-domain electromagnetic data [J]. Journal of Applied Geophysics, 2009, 67(3): 206-218.
    [67] Beiki Majid, Bastani Mehrdad, Pedersen Laust B. Leveling HEM and aeromagnetic data using differential polynomial fitting [J]. GEOPHYSICS, 2010, 75(1): L13-L23.
    [68] Smith Richard S., Annan A. Peter. Using an induction coil sensor to indirectly measurement the B-field response in the bandwidth of the transient electromagnetic method [J]. GEOPHYSICS, 2000, 65(5): 1489-1494.
    [69] Beamish, David. The canopy effect in airborne EM [M]. Tulsa, OK, ETATS-UNIS: Society of Exploration Geophysicists, 2002.
    [70] Yin Changchun, Hodges Greg. Influence of displacement currents on the response of helicopter electromagnetic systems [J]. GEOPHYSICS, 2005, 70(4): G95-G100.
    [71] Walker Sean E., Rudd Jonathan. Extracting more information from on-time data [J]. Preview, 2009, 138: 64.
    [72] Witherly Ken, Irvine Richard, Morrison Edward. The Geotech VTEM time domain helicopter EM system [M]. 2004.
    [73] Cunion Ed. Comparison of ground TEM and VTEM responses over kimberlites in the Kalahari of Botswana [J]. Preview, 2009, 138: 84.
    [74] Aeroquest. Report [R]. Aeroquest, 2005.
    [75] Smith R.S. Tracking the transmitting-receiving offset in fixed-wing transient EM systems: methodology and application [J]. Exploration Geophysics, 2001, 32(1): 14-19.
    [76] Boyko W., Paterson N. R., Kwan K., et al. AeroTEM characteristics and field results Airborne-EM hydrocarbon mapping in Mozambique [J]. The Leading Edge, 2001, 20(10): 1130-1138.
    [77] Balch S. J., Boyko W. P., Black G., et al. Mineral exploration with the AeroTEM system [C]. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies, 2002, 9-12.
    [78] Balch S. J., Boyko W. P., Paterson N. R. The AeroTEM airborne electromagnetic system [J]. The Leading Edge, 2003, 22(6): 562-566.
    [79] Fountain David K., Smith R. S., Wolfgram P. A. HeliGEOTEM, helicopter time-domain EM; system and data [J]. Abstracts - Geological Society of Australia, 2006, 82.
    [80] Smith Richard S., Lemieux Jean, Hodges Greg. Case histories illustrating the characteristics of the HeliGEOTEM system [J]. Preview, 2009, 138: 85.
    [81] Boyd G. W., Anonymous. HoistEM; a new airborne electromagnetic system [J]. Publication Series - Australasian Institute of Mining and Metallurgy, 2004, 5:211-218.
    [82] Vrbancich Julian, Fullagar Peter. Seawater depth determination using the helicopter HoisTEM system [C]. 17th ASEG-PESA geophysical conference and exhibition; extended abstracts, 2004.
    [83] Eaton Perry, Anderson Bob, Nilsson Bruno, et al. NEWTEM; a novel time-domain helicopter electromagnetic system for resistivity mapping [C]. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies, Tulsa, OK, 2002, 1-4.
    [84] Sorensen Kurt I., Auken Esben. SkyTEM; a new high-resolution helicopter transient electromagnetic system [J]. Exploration Geophysics (Melbourne), 2004, 35(3): 194-202.
    [85] Auken Esben, Foged Nikolaj, Christiansen Anders V., et al. Enhancing the resolution of the subsurface by joint inversion of x- and z- component SkyTEM data [M]. Canning Bridge, West. Aust.: Promaco Conventions, 2007.
    [86] Holladay J. Scott, Doll William E., Beard Les P., et al. UXO Time-Constant Estimation from Helicopter-Borne TEM Data Regolith mapping in hypersaline environments; a comparison of SAM with helicopter TEM [J]. Journal of Environmental & Engineering Geophysics, 2006, 11(1): 43-52.
    [87] Kratzer T., Vrbancich J. Real-time kinematic tracking of towed AEM birds [J]. Exploration Geophysics, 2007, 38(2): 132-143.
    [88] Smith Richard S., Annan A. Peter, Mcgowan Patrick D. A comparison of data from airborne, semi-airborne, and ground electromagnetic systems [J]. GEOPHYSICS, 2001, 66(5): 1379-1385.
    [89] Scrivens Sean. A Comparison between Helicopter and Fixed-Wing Time-Domain Electromagnetic Systems [D]. Ottawa: Carleton University, 2005: 94.
    [90] Macnae James. Comparing airborne electromagnetic systems [J]. Preview, 2008, 133: 24-29.
    [91] Steuer Annika, Siemon Bernhard, Auken Esben. A comparison of helicopter-borne electromagnetics in frequency- and time-domain at the Cuxhaven Valley in northern Germany [J]. Journal of Applied Geophysics, 2009, 67(3): 194-205.
    [92] Fitterman D.V. Sources of calibration errors in helicopter EM data [J]. Exploration Geophysics, 1998, 29(2): 65-70.
    [93] Davis Aaron C., Macnae J. C. Ground loop calibrations for frequency domain airborne EM surveys [J]. Abstracts - Geological Society of Australia, 2006, 82.
    [94] Davis Aaron C., Macnae James. Measuring the waveform of time domain AEM systems using a ground loop [M]. Canning Bridge, West. Aust.: Promaco Conventions, 2007.
    [95] Davis Aaron, Macnae James. Measuring AEM waveforms with a ground loop [J]. GEOPHYSICS, 2008, 73(6): F213-F222.
    [96] Davis Aaron C., Macnae James. Calibration of time domain AEM systems using a ground loop [M]. Canning Bridge, West. Aust.: Promaco Conventions, 2007.
    [97] Davis Aaron C., Macnae James. Quantifying AEM system characteristics using a ground loop [J]. GEOPHYSICS, 2008, 73(4): F179-F188.
    [98] Macnae James, Ley-Cooper Yusen, Davis Aaron. HEM calibration and bird-swing correction: an insular example [C]. SEG Las Vegas 2008 Annual Meeting, 2008, 1318-1322.
    [99] Yin Changchun, Hodges Greg. Wire-loop surface conductor for airborne EM system testing [J]. GEOPHYSICS, 2009, 74(1): F1-F8.
    [100] Raiche Art. Choosing an AEM system to look for kimberlites; a modelling study [J]. Exploration Geophysics (Melbourne), 2001, 32(1): 1-8.
    [101] Vrbancich Julian, Fullagar Peter K. Improved seawater depth determination using corrected helicopter time-domain electromagnetic data [J]. Geophysical Prospecting, 2007, 55(3): 407-420.
    [102] Ley Cooper Yusen, Macnae James. Amplitude and phase correction of helicopter EM data [J]. GEOPHYSICS, 2007, 72(3): F119-F126.
    [103] Pfaffling Andreas, Reid James E. Sea ice as an evaluation target for HEM modelling and inversion [J]. Journal of Applied Geophysics, 2009, 67(3): 242-249.
    [104] Smith Richard S., Balch S. J. Robust estimation of the band-limited inductive-limit response from impulse-response TEM measurements taken during the transmitter switch-off and the transmitter off-time; theory and an example from Voisey's Bay, Labrador, Canada [J]. GEOPHYSICS, 2000, 65(2): 476-481.
    [105] Hefford S.W. , Smith R.S., Samson C. Quantifying the Effects That Changes in Transmitter-Receiver Geometry Have on the Capability of an Airborne Electromagnetic Survey System to Detect Good Conductors [J]. Exploration and Mining Geology, 2006, 15(1-2): 43-52.
    [106] Huang Haoping, Cogbill Allen. Repeatability study of helicopter-borne electromagnetic data [J]. GEOPHYSICS, 2006, 71(6): G285-G290.
    [107] Ley Cooper Yusen, Macnae James, Robb Terry, et al. Identification of calibration errors in helicopter electromagnetic (HEM) data through transform to the altitude-corrected phase-amplitude domain [J]. GEOPHYSICS, 2006, 71(2): G27-G34.
    [108] Christiansen Anders Vest, Auken Esben, Viezzoli Andrea. Quantification of modeling errors in airborne TEM caused by inaccurate system description [J]. GEOPHYSICS, 2011, 76(1): F43-52.
    [109] Hallett Michael, Speed Russell J., Anonymous. Utilising the DIGHEM helicopter-borne EM/magnetic/radiometric system for salinity and water resource mapping in the Chapman Valley, WA [J]. Preview, 2000, 84: 84.
    [110] Fitterman David V., Deszcz-Pan Maryla, Anonymous. Using airborne and ground electromagnetic data to map hydrologic features in Everglades National Park[J]. Proceedings of SAGEEP, 2001, 2001.
    [111] Dumont Regis, Maurice Yvon, Anonymous. Groundwater mapping using a multi-frequency electromagnetic-magnetic helicopter system in semi-arid northeast Brazil [J]. Proceedings of SAGEEP, 2003, 2003: 1180-1183.
    [112] Fitterman David V., Deszcz-Pan Maria. Estimating water quality along the southwest Florida coast for hydrologic models using helicopter electromagnetic surveys [J]. Open-File Report - U S Geological Survey, 2003, 88-89.
    [113] Cahill Kevin, Fitzpatrick Andrew, Lawrie Ken. Frequency domain helicopter electromagnetics; reducing the costs of acquisition for salinity and groundwater mapping [M]. Bentley, West. Aust.: Cooperative Research Centre for Landscape Environments and Mineral Exploration, 2004.
    [114] Hammack Richard W., Veloski Garret A., Ackman Terry E., et al. Using helicopter electromagnetic surveys to determine the fate of water co-produced with coalbed natural gas in the Powder River basin of Wyoming [J]. Annual Meeting Expanded Abstracts - American Association of Petroleum Geologists, 2004, 13: 57.
    [115] Hammack Richard, Witherly Ken, Zellman Mark, et al. Using helicopter TDEM surveys to identify flooded workings in underground coal mines; the first attempt [J]. Proceedings of SAGEEP, 2004, 2004: 128-139.
    [116] Macnae James. Improving the accuracy of shallow depth determinations in AEM sounding [J]. Exploration Geophysics (Melbourne), 2004, 35(3): 203-207.
    [117] Smith Bruce, Mcdougal Robert, Mccafferty Anne, et al. Helicopter electromagnetic and magnetic survey of the upper Animas River watershed; application to abandoned mine land studies [J]. Proceedings of SAGEEP, 2004, 2004: 140-155.
    [118] Smith Bruce D., Mcdougal Robert R., Yager Douglas B., et al. Airborne and ground geophysical surveys of the upper Animas River watershed; application to abandoned mine land studies [J]. Abstracts with Programs - Geological Society of America, 2004, 36(5): 582.
    [119] Tan Kok, Munday Tim, Gibson David, et al. The relationships amongst moisture content, pore water salinity, texture and apparent electrical conductivity; evidence from the Riverland and Tintinara airborne EM projects [M]. Bentley, West. Aust.: Cooperative Research Centre for Landscape Environments and Mineral Exploration, 2004.
    [120] Tan Kok, Munday Tim, Leaney Fred, et al. Some observations on the sedimentary framework of the Ngarkat region, South Australia, as defined by airborne electromagnetic data, with implications for informing groundwater recharge models [J]. Abstracts - Geological Society of Australia, 2004, 73: 43.
    [121] Smith Bruce D., Smith David V., Paine Jeffrey G., et al. Report [R]. Reston, VA: Smith Bruce D., Smith David V., Paine Jeffrey G., et al., 2005: 43.
    [122] Ley Cooper Yusen, Macnae J. C., Tweed S. Estimating maximum porosityand salt load from airborne EM and borehole EC data [J]. Abstracts - Geological Society of Australia, 2006, 82.
    [123] Reid James, Viezzoli Andrea. High-resolution near surface airborne electromagnetics; SkyTEM survey for uranium exploration at Pells Range, WA [M]. Canning Bridge, West. Aust.: Promaco Conventions, 2007.
    [124] Auken Esben, Anonymous. Airborne electromagnetic applied for groundwater mapping [C]. International Geological Congress, Abstracts = Congres Geologique International, Resumes, 2008.
    [125] Steuer Annika, Siemon Bernhard, Eberle Detlef, et al. Airborne and Ground-based Electromagnetic Investigations of the Freshwater Potential in the Tsunami-hit Area Sigli, Northern Sumatra [J]. Journal of Environmental & Engineering Geophysics, 2008, 13(1): 39-48.
    [126] Christensen Niels B., Halkjaer Max, Sorensen Kurt I. Mineral and groundwater exploration with the SkyTEM system [J]. Preview, 2009, 138: 79-80.
    [127] Divine Dana, Steele Gregory V., Smith Bruce D., et al. Preliminary results from helicopter electromagnetic surveys over a paleovalley aquifer in eastern Nebraska [J]. Abstracts with Programs - Geological Society of America, 2009, 41(7): 286.
    [128] Vallee Marc A., Smith Richard S., Hodges Greg, et al. Application of Occam's inversion to airborne time-domain electromagnetics Case histories illustrating the characteristics of the HeliGEOTEM system [J]. The Leading Edge, 2009, 28(3): 284-287.
    [129] Viezzoli A., Auken E., Munday T. Spatially constrained inversion for quasi 3D modelling of airborne electromagnetic data– an application for environmental assessment in the Lower Murray Region of South Australia [J]. Exploration Geophysics, 2009, 40(2): 173-183.
    [130] De Souza Filho Oderson Antonio, Silva Adalene Moreira, Remacre Armando Zaupa, et al. Using helicopter electromagnetic data to predict groundwater quality in fractured crystalline bedrock in a semi-arid region, northeast Brazil [J]. Hydrogeology Journal, 2010, 18(4): 905-916.
    [131] Smith Bruce D., Abraham Jared D., Cannia James C., et al. Report [R]. Smith Bruce D., Abraham Jared D., Cannia James C., et al., 2011.
    [132] Kirkegaard Casper, Sonnenborg Torben O., Auken Esben, et al. Salinity Distribution in Heterogeneous Coastal Aquifers Mapped by Airborne Electromagnetics [J]. Vadose Zone Journal, 2011, 10(1): 125-135.
    [133] Vrbancich J., Hallett M., Hodges G. Airborne electromagnetic bathymetry of Sydney Harbour [J]. Exploration Geophysics, 2000, 31(2): 179-186.
    [134] Vrbancich J., Fullagar P.K., Macnae J. Bathymetry and seafloor mapping via one dimensional inversion and conductivity depth imaging of AEM [J]. Exploration Geophysics, 2000, 31(4): 603-610.
    [135] Vrbancich J., Annetts D. W., Macnae J., et al. Time domain airborne electromagnetic reconnaissance for seadepth measurement and shipwreck localisation [J]. Preview, 2001, 93: 97.
    [136] Eberle Detlef G., Siemon Bernhard, Anonymous. Identification of saltwater intrusions and coastal aquifers using the BGR helicopter-borne geophysical system [J]. Proceedings of SAGEEP, 2001, 2001.
    [137] Macnae James, Robb Terry, Vrbancich Julian, et al. Rapid estimation of shallow seawater depth from airborne electromagnetics [J]. Exploration Geophysics (Melbourne), 2004, 35(4): 288-291.
    [138] Vrbancich Julian. Airborne electromagnetic bathymetry methods for mapping shallow water sea depths [J]. International Hydrographic Review, 2004, 5(3): 59-84.
    [139] Fitterman D. V., Deszcz-Pan M. Characterization of saltwater intrusion in south florida using electromagnetic geophysical methods [M]. Madrid: Instituto Geologico Y Minero De Espana, 2005.
    [140] Vrbancich Julian, Macnae James, Sattel Daniel, et al. A case study of AEM bathymetry in Geographe Bay and over Cape Naturaliste, Western Australia; Part 2, 25 and 12.5 Hz GEOTEM [J]. Exploration Geophysics (Melbourne), 2005, 36(4): 381-392.
    [141] Vrbancich Julian. Bathymetry and sediment depth investigation in Broken Bay using a prototype AEM time domain system (SeaTEM) [M]. Canning Bridge, West. Aust.: Promaco Conventions, 2007.
    [142] Reid James E., Bishop John R., Richardson R., et al. Western Tasmanian regional minerals program; Part 2, Airborne electromagnetic data; quality control and interpretation [J]. Preview, 2003, 102: 91.
    [143] Pfaffling A., Haas C., Meilaender-Larsen M., et al. Review of electromagnetic methods to investigate Arctic and Antarctic sea ice and snow [J]. Eos, Transactions, American Geophysical Union, 2007, 88(52, Suppl.).
    [144] Pfaffling Andreas, Haas Christian, Reid James E. Direct helicopter EM; sea-ice thickness inversion assessed with synthetic and field data [J]. GEOPHYSICS, 2007, 72(4): F127-F137.
    [145] Haas Christian, Lobach John, Hendricks Stefan, et al. Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system [J]. Journal of Applied Geophysics, 2009, 67(3): 234-241.
    [146] Chung Chang-Jo, Keating Pierre B. Mineral potential evaluation based on airborne geophysical data [J]. Exploration Geophysics (Melbourne), 2002, 33(1): 28-34.
    [147] Keating P., Thomas M. D., Kiss F. Significance of a high-resolution magnetic and electromagnetic survey for exploration and geologic investigations, Bathurst mining camp [J]. Economic Geology Monographs, 2003, 11: 783-798.
    [148] Macnae James, Grant Ashley, Lane Richard, et al. An assessment of theaccuracy of boundaries picked by AEM sounding, with application to mineral exploration and salinity mapping [J]. Exploration Geophysics (Melbourne), 2003, 34(1-2): 41-45.
    [149] Meyers Jayson. Discovering manganese ore under cover using "HoistEM" [J]. LEMEnews, 2003, 23: 17.
    [150] Hashemi A., Meyers J. HoistEM data processing for discovery of high-grade manganese ore under regolith cover [J]. Exploration Geophysics, 2004, 35(4): 272-276.
    [151] Love Erica, Hammack Richard, Harbert William, et al. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania [J]. GEOPHYSICS, 2005, 70(6): B73-B81.
    [152] Stolz Edward M. G. Regolith mapping in hypersaline environments; a comparison of SAM with helicopter TEM [J]. Exploration Geophysics (Melbourne), 2005, 36(2): 157-162.
    [153] Fountain David, Smith Richard, Payne Tom, et al. A helicopter time-domain EM system applied to mineral exploration; system and data [J]. First Break, 2005, 23(November): 73-78.
    [154] Cheng L.Z., Smith R.S., Allard M., et al. Geophysical Case Study of the Iso and New Insco Deposits, Quebec, Canada, Part I: Data Comparison and Analysis HeliGEOTEM, helicopter time-domain EM; system and data [J]. Exploration and Mining Geology, 2006, 15(1-2): 53-63.
    [155] Cheng L.Z., Smith R.S., Allard M., et al. Geophysical Case Study of the Gallen Deposit, Quebec, Canada Airborne geophysics - evolution and revolution [J]. Exploration and Mining Geology, 2007, 16(1-2): 67-81.
    [156] Witherly Ken, Irvine Richard. Mapping targets of high conductance with VTEM airborne EM system [M]. Canning Bridge, West. Aust.: Promaco Conventions, 2007.
    [157] Smith Bruce D., Mcdougal Robert R., Deszcz-Pan Maryla, et al. Helicopter electromagnetic and magnetic surveys [J]. U S Geological Survey Professional Paper, 2008, 231-254.
    [158] Combrinck Magdel, Mortimer Russell, Peters Bill. Base metal discoveries in Africa and Australia from VTEM data [J]. Preview, 2009, 138: 84-85.
    [159] Costelloe Marina, Sorensen Camilla, English Pauline. Pine Creek airborne electromagnetic survey, Onshore Energy and Minerals, Geoscience Australia [J]. Preview, 2009, 138: 100.
    [160] Pittard Karen, Bourne Barry. VTEM response of the Tusker gold deposit, Tanzania [J]. Preview, 2009, 138: 88.
    [161] Vallee Marc A., Smith Richard S., Keating Pierre. Case history of combined airborne time-domain electromagnetics and power-line field survey in Chibougamau,Canada [J]. GEOPHYSICS, 2010, 75(2): B67-B72.
    [162] Hwang Shyh-Lung, Yui Tzen-Fu, Chu Hao-Tsu, et al. An AEM study of garnet clinopyroxenite from the Sulu ultrahigh pressure terrane; formation mechanisms of oriented ilmenite, spinel, magnetite, amphibole and garnet inclusions in clinopyroxene [J]. Contributions to Mineralogy and Petrology, 2011, 161(6): 901-920.
    [163] Ahl Andreas, Seiberl Wolfgang. Detection of AEM anomalies corresponding to dike structures [J]. Handbook of Geophysical Exploration Section 1, Seismic Exploration, 2001, 30: 234-256.
    [164] Finn Carol A., Deszcz-Pan Maria, Anderson Eric D., et al. Aerogeophysical measurements of hydrothermally altered zones at Mount Adams, Washington [J]. Abstracts with Programs - Geological Society of America, 2003, 35(6): 553.
    [165] Won I. J., Huang Haoping, Okubo Ayako, et al. Magnetometers and electromagnetomenters [J]. The Leading Edge, 2004, 23(5): 448-451.
    [166] Ito H., Kaieda H., Kusunoki K., et al. Application of integrated airborne geophysical survey system using helicopter; results of Aso and Bandai Volcanoes [J]. Eos, Transactions, American Geophysical Union, 2005, 86(52, Suppl.).
    [167] Smith Bruce D., Gamey T. Jeffrey, Hodges Greg. Review of airborne electromagnetic geophysical surveys over karst terrains [J]. Scientific Investigations Report, 2005, 17-19.
    [168] Deszcz-Pan Maria, Anderson E., Anonymous. Helicopter electromagnetic and magnetic surveys over volcanoes; resolution analysis [J]. Eos, Transactions, American Geophysical Union, 2007, 88(52, Suppl.).
    [169] Finn C. A., Deszcz-Pan Maria, Horton R., et al. Airborne magnetic and electromagnetic data map rock alteration and water content at Mount Adams, Mount Baker and Mount Rainier, Washington; implications for lahar hazards and hydrothermal systems [J]. Eos, Transactions, American Geophysical Union, 2007, 88(52, Suppl.).
    [170] Pfaffhuber A. A., Grimstad E., Domaas U., et al. Airborne EM mapping of rockslides and tunneling hazards [J]. The Leading Edge, 2010, 29(8): 956-959.
    [171] Hodges Greg, Rudd Jonathan, Boitier Dominique. Mapping conductivity with helicopter electromagnetic surveys as an aid to planning and monitoring pipeline construction [J]. Proceedings of SAGEEP, 2000, 2000: 47-56.
    [172] Hammack R. W., Veloski G. A., Ackman T. E., et al. The use of HEM to delimit the area extent of contaminated aquifers at surface and underground coal mines [J]. Proceedings of SAGEEP, 2003, 2003: 887-897.
    [173] Lipinski Brian A., Sams James I., Smith Bruce D., et al. Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River basin, Wyoming [J]. GEOPHYSICS, 2008, 73(3): B77-B84.
    [174] Pellerin Louise, Beard Les P., Mandell Wayne, et al. Mapping Structures thatControl Contaminant Migration using Helicopter Transient Electromagnetic Data Integrated planning of hydrogeophysical data on a national scale; from processing, interpretation and storage to visualisation [J]. Journal of Environmental & Engineering Geophysics, 2010, 15(2): 65-75.
    [175] Best Melvyn E., Levson Victor M., Ferbey Travis, et al. Airborne Electromagnetic Mapping for Buried Quaternary Sands and Gravels in Northeast British Columbia, Canada [J]. Journal of Environmental & Engineering Geophysics, 2006, 11(1): 17-26.
    [176] Billingsley Patricia, Smith Bruce D., Anonymous. Using stream sampling and a helicopter electromagnetic survey to locate oil field brine sources affecting streams [J]. Environmental Geosciences, 2009, 16(2): 90.
    [177] Pfaffling Andreas, Monstad Stale, Groom Ross W., et al. Airborne-EM hydrocarbon mapping in Mozambique [J]. Preview, 2009, 138: 73.
    [178] Siemon Bernhard, Stuntebeck Christiane, Sengpiel Klaus-Peter, et al. Investigation of hazardous waste sites and their environment using the BGR helicopter-borne geophysical system [J]. Journal of Environmental & Engineering Geophysics, 2002, 7(4): 169-181.
    [179] Beard Les P., Doll William E., Holladay J. Scott, et al. Field tests of an experimental helicopter time-domain electromagnetic system for unexploded ordnance detection [J]. GEOPHYSICS, 2004, 69(3): 664-673.
    [180] Huang Haoping, Sanfilipo Bill, Won I. J. Optimizing decision threshold and weighting parameter for UXO discrimination [J]. GEOPHYSICS, 2006, 71(6): G313-G320.
    [181] Doll William E., Gamey T. Jeffrey, Beard Les P., et al. Advances in airborne geophysical systems for ordnance mapping and detection [J]. The Leading Edge, 2008, 27(11): 1463-1469.
    [182] Beard Les P., Doll William E., Gamey T. Jeffrey, et al. Comparison of Performance of Airborne Magnetic and Transient Electromagnetic Systems for Ordnance Detection and Mapping Detection of kimberlite pipes in the Lac de Gras area with helicopter-borne electromagnetics and magnetics [J]. Journal of Environmental & Engineering Geophysics, 2008, 13(3): 291-305.
    [183] Pasion Leonard R., Billings Stephen D., Kingdon Kevin A., et al. Cooperative Inversion of Time Domain Electromagnetic and Magnetometer Data for The Discrimination of Unexploded Ordnance [J]. Journal of Environmental & Engineering Geophysics, 2008, 13(3): 193-210.
    [184] Brodie R., Lane R. The importance of accurate altimetry in AEM surveys for land management [J]. Exploration Geophysics, 2003, 34(2): 77-81.
    [185] Green Andy, Brodie Ross C., Munday Tim J. Constrained inversion of helicopter AEM data for managing irrigation salinity [J]. Proceedings of SAGEEP, 2004, 2004: 900-911.
    [186] Nabighian Misac N. Electromagnetic Methods in Applied Geophysics-Theory Volume 1 [M]. 1987.
    [187] Davis Aaron. Quantitative characterization of airborne electromagnetic systems [D]. Melbourne: Royal Melbourne Institute of Technology University, 2007: 3-57.
    [188]王世隆,林君,王言章, et al.直升机式航空时间域电磁法全波收录[J].吉林大学学报(工学版), 2011, 41(3): 776-781.
    [189] Witherly Ken, Irvine R. J. The VTEM heli-time domain EM system; four case studies [C]. ASEG18th international geophysical conference and exhibition, Melbourne of Australia, 2006.
    [190] Halkjaer M., Sorensen Kurt I., Christense Niels Boie. SkyTEM: status and development [J]. Preview, 2006, 123: 29-31.
    [191] Yangyi Sui, Shilong Wang, Hui Meng, et al. An Analysis and Elimination of Zero Drift in Magnetic Gradient Tensor Exploration System [C]. 3rd International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2011, Shanghai, 2011, 371-374.
    [192]张昌达.航空时间域电磁法测量系统:回顾与前瞻[J].工程地球物理学报, 2006, 3(4): 265~273.
    [193] Macnae James, Davis Aaron. Surface Loop Monitoring of Airborne Electromagnetic Systems. [C]. SEG Int'l Exposition and 74th Annual Meeting, Denver, Colorado, 2004.
    [194] Svilans M. Quantitative Interpretation of Responses of Helicopter-borne Concentric Loop EM Geophysical Survey Systems [D]. Ottawa, Ontario: Carleton University, 2006.
    [195]滕吉文.强化第二深度空间金属矿产资源探查,加速发展地球物理勘探新技术与仪器设备的研制及产业化[J].地球物理学进展, 2010, 25(3): 729-748.
    [196]王世隆,王言章,随阳轶, et al.同心补偿式直升机时间域航空电磁法吊舱校准装置研究[J].地球物理学报, 2011, 54(9): 2397-2406.
    [197] Haoping Huang. Locating good conductors by using the B-field integrated from partial dB/dt waveforms of time domain EM systems [C]. SEG/San Antonio 2007 Annual Meeting, 2007, 688-692.
    [198] Liu G. Effect of transmitter current waveform on airborne TEM response [J]. Exploration Geophysics, 1998, 29(2): 35-41.
    [199] Yin Changchun, Smith R S, Hodges G. Modeling results of on- and off-time B and dB/dt for time-domain airborne EM systems [C]. 70th Annual Conference and Exhibition, EAGE, 2008, 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700