用户名: 密码: 验证码:
烧结综合料场作业管理与优化系统设计及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧结综合料场是存放钢铁企业原料的场地,综合料场占地面积较大,存储的原材料是企业正常生产的前提。综合料场生产工序复杂,生产成本大,建立高效的烧结综合料场作业管理与优化系统对于钢铁企业节约生产成本具有重要意义。目前,烧结综合料场的作业过程并未得到充分优化,在料场储位配置方面,存在存储混乱,料场利用率及原料稳定性不高的问题;在库存量管理方面,存在原料库存量采购不合理,导致库存过多或过少的问题;在料场管理方面,存在堆取料机作业易失误,料场信息不准确等问题。针对上述问题,本文围绕烧结综合料场作业管理与优化方法展开研究,主要的研究工作与创新点如下:
     (1)基于层次分析法的料场储位模糊多准则优化方法
     由于钢铁企业原料来源广泛、品种繁多、数量庞大、外在影响因素比较严重等特点,所以原料在综合料场中的各个存储方案的评价是一个定性和定量相结合的多目标优化问题。一般的优化算法不能从根本上解决料场利用率和原料成分稳定性的问题。本文通过分析料场的原料存储情况,以料场利用率和原料场成分稳定性为目标建立储位优化模型。首先根据储位配置的主要影响因素建立七个优化准则,然后应用层次分析法确定各个准则的权重值,解决准则难以量化的问题;最后采用三角模糊数的方法表示权重值和期望值,提高优化结果的合理性。现场运行结果表明,采用该方法建立的系统可以达到预期优化目标,大大降低企业管理的成本。
     (2)基于多模型集成的原料库存量预测方法
     原料由于价格、产地及品味的不同在重要程度上存在差异,但是,在形成中和粉的过程中,不同重要程度的原料所占比例是大致不变的,所以原料总量的库存量变化存在一定的规律性,不同重要程度的原料变化也是具有一定规律性的。本文通过深入分析原料的库存量变化特点及影响因素,提出一种基于灰色系统模型与时间序列模型的预测方法来预测原料库存量。首先利用灰色系统可以反映数据序列整体发展趋势的优点,通过对库存量历史数据的滤波、统计、累加或累减生成,建立库存量灰色预测模型,然后利用时间序列模型可以反映数据序列细节波动的优点,对数据序列进行时序分析,建立时间序列自回归积分移动平均模型;最后,建立基于信息熵的原料库存量集成预测模型,该集成模型可以充分集合不同类型模型的优点,准确预测原料库存量,为后续的原料库存量优化提供可靠的依据。
     (3)基于GA-PAO算法的烧结料场原料库存量优化
     料场库存量预测的目的是为了防止断料现象的发生,保证生产的连续性,而库存量优化的则是为了最大程度地优化采购库存成本,二者共同构成了料场的原料库存量优化管理。原料采购库存成本的约束是钢铁企业流动资金的制约瓶颈。本文针对钢铁企业烧结料场原料采购与消耗的特点,以企业原料库存费用最小为目标建立烧结综合料场原料库存量优化模型,构建了详细的模型目标函数及约束条件;提出基于标准PSO算法的适应度函数,将GA算法用于PSO算法的改进,设计详细的算法参数,并对GA-PSO算法与标准的PSO算法进行寻优结果对比。同时,应用某钢铁企业烧结生产线的综合料场实际生产数据进行仿真,结果表明,该库存量优化模型结合GA-PAO算法实现了原料库存成本的优化,为钢铁企业采购计划的制定提供决策支持。
     (4)烧结综合料场作业管理与优化系统的设计及其工业应用
     结合工业现场实际,根据某钢铁企业360m2烧结生产线对系统的软件、硬件结构进行分析,建立烧结综合料场作业管理与优化系统,并阐述了系统的应用软件模块、优化控制算法的实现流程以及数据通信技术。通过对系统的实际运行结果进行分析,发现该系统可以实现企业兼顾采购成本与保证原料供应稳定性的综合优化,同时实现料场储位的优化配置,提高料场利用率及原料稳定性,取得明显的经济效益。
In iron and steel enterprises, sintering comprehensive stockyard is used to store raw materials, and normally cover large area, in order to guarantee routine large-scale production. Because the production process is complicated, and the production cost is large, it is of great significance to establish an efficient sintering comprehensive stockyard operation management and optimization system for production cost savings. Currently, the operating procedure of sintering comprehensive stockyard has not been fully optimized. In the aspect of storage configuration, there exist problems such as confusion storage mode, low utilization rate of stockyard and low stability of raw materials. In the aspect of inventory management, the procurement of raw materials is unreasonable, which results in too much or too little inventory. In the aspect of stockyard management, there exist mistakes of stacker reclaimers'job, inaccurate information of stockyard and other problems. In response to these issues, this paper conducts research on job management and optimization of sintering comprehensive stockyard, the main research work and innovations are as follows:
     (1) Fuzzy multiple criteria optimization method based on analytic hierarchy process for storage location choice
     The supply of raw materials in iron and steel enterprises always shows its complexity because of large variety of sources and composition, large purchase quantity, and serious impacts coming from production. So it is a combination of qualitative and quantitative multi-objective optimization problem for the evaluation of raw materials storage solutions. Conventional optimization algorithms can hardly improve the stockyard utilization and the materials ingredients stability fundamentally. Based on the analysis on the situation of raw materials storage, this paper establishes a storage locations optimization model, which aims at stockyard utilization and materials ingredients stability. Firstly, seven optimization criterions are established based on the main factors affecting storage locations configuration. Secondly, the weight values of various criteria are determined by using analytic hierarchy process method. Finally, the method with triangular fuzzy numbers is used to represent the weight values and the desired values, in order to improve the reasonability of optimization results. The running results show that, the system established can achieve the desired optimization goal, and reduce the cost of enterprise management greatly.
     (2) Prediction method based on multi-model integration for iron mine powders inventories
     Due to the difference of origin and grade, raw materials have different price, show importance in different degrees in batching process. However, in the formation process of powder, the proportions of different kinds of raw materials are nearly unchanged. Hence there is certain regularity about the changes of the total raw materials inventory, as well as the changes of the special kinds of raw materials with different importance. This paper proposes a prediction method based on gray system model and time series model to predict raw materials inventory. Firstly, as gray system can reflect the overall trend of the data sequence, gray prediction model for inventory is established by filtering, statistics, cumulation, or regression based on historical inventory data. Secondly, because of the advantage in reflecting fluctuations of the data sequence, according to the timing analysis of the data sequence, the time series model is applied. Finally, the integrated prediction model is established based on information entropy for raw materials inventory. This integrated model can fully reflect the advantages of different types of models, predict the raw material inventory accurately, and provide a reliable basis for the following optimization of raw materials inventory.
     (3) Raw material inventory optimization algorithm for sinter material plant based on GA-PSO
     The goal of stockyard inventory prediction is to prevent the occurrence of the raw materials shortage, so as to ensure the continuity of production. At the same time, inventory optimization aims to reduce the cost of purchasing inventory. The two aspects constitute the raw materials inventory optimization management for stockyard. The constraints of raw materials inventory and procurement cost are the bottleneck of liquidity in iron and steel enterprises. According to the characteristics of procurement and consumption of raw materials in sintering comprehensive stockyard, this paper establishes an optimization model for raw materials inventory, which targets on minimum inventory costs, and builds the detailed model of the objective function and the constraints. Firstly, a standard PSO algorithm is proposed based on fitness function. Secondly, GA algorithm is applied to improved PSO algorithm and the detailed algorithm parameters are designed. Lastly, the optimization results of GA-PSO algorithm and standard PSO algorithm are compared. Further more, the actual production data of sintering comprehensive stockyard in a steel enterprise are used for simulation, and the results show that this inventory optimization model combined with GA-PSO algorithm has achieved the optimization of raw materials inventory costs, which provides decision support for the procurement plan in iron and steel enterprises.
     (4) The design and industrial applications of the job management and optimization system for sintering comprehensive stockyard
     Based on the analysis of system software and hardware structure of a360m2sintering production line, and the actual situation of the industrial field, the job management and optimization system for sintering comprehensive stockyard is established. What's more, the implementation process of application software modules, the optimization control algorithm and the data communication technology of this system are introduced. After the analysis of the actual operation of the system results, it is found that this system can realize the comprehensive optimization of procurement costs and stability of raw materials supply, and achieve the goal of optimization configuration of the stockyard storage locations, improve the stockyard utilization and raw materials stability. That makes significant economic benefits.
引文
[1]蒋大军.炼铁精料技术进步及冶炼实践[J].钢铁,2009,34(2):13-16.
    [2]刘军,靳淑韵.中国铁矿资源的现状与对策[J].中国矿业,2009,18(12):1-4.
    [3]李韶华,唐立新.大型钢铁企业原料场存储分配问题的研究[J].控制与决策,2006,21(6):656-660.
    [4]于原浩,冯根生,苏东学.改善烧结矿质量降低高炉炼铁燃耗[J].钢铁,2008,43(12):99-102.
    [5]徐匡迪.中国钢铁工业的发展和技术创新[J].钢铁,2008,43(2):1-12.
    [6]罗治洪,唐立新,张悟移.钢铁原料物流计划问题的建模与求解[J].系统工程理论与实践,2008,(5):77-82.
    [7]W. L. Wang, J. Xu, J. Y. Wang. Model of iron & steel enterprises group raw material requirement planning based on consumer chain[J]. Computer Integrated Manufacturing Systems,2010,16 (5):1074-1081.
    [8]时越.唐钢二炼铁厂原料管理及技术进步[J].烧结球团,2002,27(3):48-50.
    [9]陆克从,严文格.马钢现代化料场的原料管理[J].炼铁,1999,18(4):33-35.
    [10]吴康.马钢原料场提高混匀矿质量的措施[J].炼铁,1995,14(4):15-18.
    [11]张望兴,谭平,丁明星.武钢原料场提高混匀矿质量的实践[J].烧结球团,2004,29(6):52-55.
    [12]时越.唐钢炼铁厂提高烧结矿质量的技术进步[J].河北冶金,2008,(6):31-33.
    [13]T. Sato, T. Takehara, Y. Sato, et al. Development of slipring-less signal transmitter system by optical-fiber at raw material yard machine[J]. Transactions of the Iron and Steel Institute of Japan,1983,24 (5):137.
    [14]M. Wakabayashi, K. Hamada, Y. Nakagawa, et al. Control system of raw material and sintering process[J]. Sumitomo Metals,1986,38 (4):5-12.
    [15]罗首章,丁守虎.系统模拟在料场智能化管理系统中的应用[J].宝钢技术,2002,(4):11-15.
    [16]Z. B. Yao, W. Wu, G. Wang. Production of blended ore at Wuhan Iron and Steel Co industrial-port[J]. Applied Laser Technology,1998,18 (5):1-5.
    [17]L. X. Tang, G. L. Liu. Raw material inventory solution in iron and steel industry using Lagrangian relaxation[J]. Journal of the Operational Research Society,2008,59(1):44-53.
    [18]刘拥军,陈旋,付朝云.安钢综合原料场混匀料场的设计特点[J].烧结球团,1999,24(3):2-3.
    [19]徐春玲,陈书峰,胡守忠.亓建国.基于格式计算的综合原料场工艺预测模型[J].烧结球团,2008,33(5):21-23.
    [20]杨传举.济钢烧结原料系统的技术进步[J].钢铁研究,2008,36(6):60-62.
    [21]柯畅.钢铁料场输入配置数学模型的研究[J].分析与决策,2007,26(9):74-76.
    [22]P. George, T. D. Banerjee. Simulation model for a raw materialunloading system in a steel plant[J]. Bulk Solids Handling,1995,15 (4):55-58.
    [23]金俊,宋灿阳,舒宏福.提高马钢港务原料厂混匀系统造堆效率的研究[J].钢铁,2002,37(12):1-4.
    [24]祁殿生,冯丽霞,严宗根.邢钢烧结混匀料场改造及生产效果[J].河北冶金,1999,(6):22-24.
    [25]李彦格,李鑫.邢钢烧结厂原料混匀生产实践[J].烧结球团,2002,27(6):39-40.
    [26]李剑.重钢原料混匀工艺特点[J].钢铁,1996,31(6):1-4.
    [27]刘拥军,陈桂玲,陈旋.进一步提高二次料场混匀效果的对策[J].烧结球团,2000,25(4):29-31.
    [28]欧阳爱日.涟钢料场原料混匀生产实践[J].烧结球团,1996,21(4):53-57.
    [29]B, Kim, J. Koo, B. S. Park. A raw material storage yard allocationproblem for a large-scale steelworks[J]. International Journal of Advance Manufacturing Technology,2009,41 (9):880-884.
    [30]M. D. Rossetti, R. R. Hill, B. Johansson, et al. Opertional simulation model of the raw material handling in an integratedsteel making plant[C]. Proceedings of the 2009 Winter Simulation Conference,2009:3055-3064.
    [31]Z. W. Shen, T. J. Huang. Analysis and solution of iron and steel materials plant management[J]. Metallurgical Management,2006, (1):49-52.
    [32]B. I. Kim, J. G. Koo, B. S. Park. A raw material storage yard allocation problem for a large-scale steelworks [J]. International Journal of Advanced Manufacturing Technology,2009,41 (9):880-884.
    [33]Y. C. You. Service of comprehensive raw material yard for ironmaking at Chongqing Iron and Steel Co[J]. Iron and Steel,1993,28 (4):1-4.
    [34]L. M. Sun, Y. M. Chen, Y. L. Yao. Revamping of BF raw material yard at Tangshan Iron and Steel Co[J]. Iron and Steel,2003,38 (5):12-14.
    [35]杨传举,李建沛,樊增彬,张刚刚.济钢一铁厂原料场的综合改造[J].烧结球团,2008,33(6):53-56.
    [36]李伦.韶钢原料场大修改造工程的设计及效果[J].烧结球团,2007,32(5):36-39.
    [37]张彦林,齐淑荣.唐钢二铁厂原料场改造的设计特点[J].烧结球团,2000,25(2):21-22.
    [38]S. Fujii, T. Yamamoto, K. Tsuboi. Computer control system for raw material yards in iron and steel works[J]. Journal of the Society of Instrument and Control Engineers,1978,17 (12):925-933.
    [39]H, Tokuyama, M. Sakurai, H. Watanabe, et al. On-line scheduling for the transporting of raw materials in the yards of an iron works[C]. Operational Research'78, Toronto, USA,1979:336-352.
    [40]T. Sato, T. Takehara, Y. Sato, et al. Development of slipring-less signal transmitter system by optical-fiber at raw material yard machine[J]. Transactions of the Iron and Steel Institute of Japan,1983,24 (5):137.
    [41]M. Wakabayashi, K. Hamada, Y. Nakagawa, et al. Control system of raw material and sintering process[J]. Sumitomo Metals,1986,38 (4):5-12.
    [42]S. Yamana, T. Fukagawa, S. Nigo, et al. Development of ore yard system in total ironmaking system at mizushima works[J]. Kawasaki Steel Technical Report,1985,3(11):13-24.
    [43]T. Inari, K. Takashima, M. Tanaka, et al. Visual sensing system for automatic control fo reclaimer in raw material yard[C]. Conterence Record of the 1982 Workshop on Industrial Application of Machine Vision,1982:217-223.
    [44]Y. Niwa, O. Komatsu, K. Niiya, et al. Integration of operation and labor-saving of raw material yard at Fukuyama Works [J]. Technology and Training(Taiwan), 1997,22(4):117-127.
    [45]A. Takekoshi, M. Inaba, Y. Satoh, et al. Raw material yard expert system at Fukuyama works[C]. Technology and Training(Taiwan),1997,22(4):105-116.
    [46]M. Yoshida, M. Kimura. Depository planning expert system for raw material yard[J]. Hitachi Review,1992,41 (1):39-44.
    [47]K. Shiota, T. Seki, I. Komaki, et al. Planning expert system for optimum operation of coke plant and sintering and ore treating plant[J]. Nippon Steel Technical Report (Japan),1991,(49):1-14.
    [48]K. S. Hong, S. H. Kim, K. I. Lee. Reclaimer control:kinematic analysis, modeling, identification, and a robust Smith redictor[C]. Proceedings of the 14th Word Congress,1999,409-414.
    [49]K. S. Hong, C. Choi. Task-oriented approaches to the inverse kinematics problem for a reclaimer excavation and transporting raw material[J]. Advanced Robotics,2000,14 (3):185-204.
    [50]M. Agou, T. Nishi, M. Konishi, et al. A dynamic optimization model for storage yard logistic systems[C]. Proceedings of the SICE Annual Conference, 2005:3254-3259.
    [51]C. Sorin, G. Anders. The fingerprint approach:Using data generated by a 3D log scanner on debarked logs to accomplish traceability in the sawmill's log yard[J]. Forest Products Journal,2004,54 (12):269-276.
    [52]R. J. Coellho, J. Cuzzuol, M. M. Fioroni, et al. Simulation of raw material yard at CST[J]. Revue de Metallurgie,2006,103 (3):117-120.
    [53]万如铁,王宝.唐钢炼铁新区综合原料场生产实践[J].钢铁,1995,30(9):2-5.
    [54]罗首章,丁守虎,刘永顺等.宝钢料场智能化管理系统的实验[J].宝钢技术,2000,(4):31-36.
    [55]王锦.唐钢二炼铁厂原料场计算机数据库管理系统[J].冶金自动化,1990,14(6):21-23.
    [56]宋萍.重钢原料场混匀计算机控制系统[J].冶金自动化,1995,(2):53-54.
    [57]胡宪中.马钢原料场自动控制系统评价[J].冶金自动化,1997,(3):18-21.
    [58]姚桐,刘拥军,陈旋,吕书刚.安钢铁前精料技术进步[J].钢铁,2003,38(2):1-4.
    [59]傅菁.原料场的计算机过程控制设计[J].中国西部科技,2011,10(22):13-16.
    [60]刘东辉,樊淑环.唐钢原料场自动控制系统[J].烧结球团,2006,31(1):34-36.
    [61]鲍雅萍,宋强,李华.安钢中和原料场集散控制系统[J].电气应用,2007,26(8):81-83.
    [62]范昆,隗洪梅,远程移动通信在济钢原料场二次料场堆取料机的应用[J].冶金自动化,2002,(5):68.
    [63]许海法,张一敏,陈铁军,张望兴,王光.武钢工业港混匀质量数据管理系统的开发[J].矿冶工程,2003,23(4):39-41.
    [64]朱银华,胡乃联,王洪松,韩明明,王浩明.原料场库存量智能管理系统的 开发[J].冶金自动化,2007,(S2):361-364.
    [65]姜云鹤,张旭宁.Netlinx网络架构在京唐原料场系统集成中的应用[J].冶金自动化,2008,(S2):644-646.
    [66]顾奕华.散料场无人化控制工艺的计算机实现[J].冶金自动化,2007,(S2):627-630.
    [67]张骏.机械化混匀料场的优化设计[J].江苏冶金,2004,32(3):31-32.
    [68]任宏.宝钢马迹山港料场智能化配置的技术研究和初步应用[D].上海交通大学,2007.
    [69]张子才,肖苏,吴刚,伍文宇.料场无人化系统的研究和应用[J].宝钢技术,2008,(2):31-34.
    [70]李君峰.料场数字化系统设计与信息处理技术研究[D].上海交通大学,2009.
    [71]江舸.原料场管理计算机系统[J].冶金自动化,2010,(S2):643-646.
    [72]张青,陈明.宝钢原料场混匀堆积技术创新与实践[J].炼铁,2005,24(增刊):117-121.
    [73]石仕平,涂忠东.规范料场管理提高经济效益[J].烧结球团,2000,25(5):46-48.
    [74]张子才.矿石堆取料机的自动堆取作业研究和应用[D].上海交通大学,2008.
    [75]陈益辉.混匀料场堆位配置方案的比较[J].烧结球团,2009,34(1):27-29.
    [76]胡子义,谭水木.模糊环境下的语言决策方法研究[J].软件时空,2006,22(3):215-217.
    [77]李千,牟牧.基于模糊语言变量的航空项目研制风险决策分析[J].科技管理,2009,(11):10-13.
    [78]T. L. Satty. The Analytic Hierarchy Process[M]. New York:McGraw Hill, 1980.
    [79]赵颖,赵庆国.基于层次分析法的中小企业自我评价模型及其应用[J].理论经纬,2009,8(2):3-5.
    [80]T. L. Satty, L. G. Vargas, Models, Methods, Concepts and Applications of the Analytic Hierarchy Process, Boston:Kluwer Academic Publishers,2001.
    [81]M. Goumas, V. Lygerou. An extension of PROMETHEE method for decision making in fuzzy environment:ranking of alternative energy exploitation projects[J], European Journal of Operational Research,2000, (123):606-613.
    [82]罗首章,丁守虎.专家系统在料场智能化管理系统中的应用[J].宝钢技术, 2002,(6):1-4.
    [83]李韶华,唐立新.大型钢铁企业原料场存储分配问题的研究[J].控制与决策,2006,21(6):656-660.
    [84]尤艺,周立新,孙焰.宝钢矿石料场库位分配优化数模研究[J].物流科技,2009,(11):79-81.
    [85]Y. Goldblatt. Optimization tool helps to reduce raw material costs at Arcelormittal Dunkerque[J]. MPT Metallurgical Plant and Technology International,2009,32 (3):26-29.
    [86]沈中卫,黄新庭.钢铁企业散装料场问题分析及解决方案[J].冶金管理,2006,(1):49-52.
    [87]彭婷,姜佩华.层次分析法在环境绩效评估中的应用[J].能源与环境,2007,(1):13-15.
    [88]曾在春.铝箔加工液配方模糊层次分析法优选方案[J].工具技术,2011,45(3):80-82.
    [89]L.A.Zadeh.模糊集合、语言变量及模糊逻辑[M].北京:科学出版社,1982.
    [90]胡子义,谭水木.模糊环境下的语言决策方法研究[J].微计算机信息,2006,(3):215-217.
    [91]曾志斌,李言.基于模糊层次分析的虚拟企业风险评价[J].模糊系统与数学,2006,20(4):134-139.
    [92]L. Tang, G. Liu. Raw material inventory solution in iron and steel industry using Lagrangian relaxation[J]. Journal of the Operational Research Society, 2008,59 (1):44-53.
    [93]刘国莉,唐立新,张明.钢铁原料库存问题研究[J].东北大学学报(自然科学版),2007,28(2):172-175.
    [94]S. Li, L. Tang. Improved tabu search algorithms for storage space allocation in integrated iron and steel plant[C]. ICSC Congress on Computational Intelligence Methods and Applications. Piscataway:IEEE,2005:1-6.
    [95]C. Park, H. Kim, J. Kim. Steel stock management on the stockyard operations in shipbuilding:A case of hyundai heavy industries[J]. Production Planning and Control,2006,17(1):J-12.
    [96]A. Media, A M. Teddy. Analyzing and managing the disturbance in a mining port stockyard system[J]. Industrial Electronics & Applications,2010,3: 323-328.
    [97]J. Xu, X. B. Liu, J. Y. Wang, et al. Raw materials collaborative inventory control model in iron & steel group[J]. Computer Integrated Manufacturing Systems,2009,15(2):292-298.
    [98]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].科学出版社,2004:1-376.
    [99]池雄标.回归预测与灰色预测比较[J].韶关大学学报,1993,14(2):47-51.
    [100]闫建波.基于BP神经网络的灰色预测模型[D].西安理工大学,2009,
    [101]孙永荣,胡应东,陈武,赖际舟.基于GM(1,1)改进模型的建筑物沉降预测[J].南京航空航天大学学报,2009,41(1):107-120.
    [102]崔杰,党耀国,刘思峰.一种新的灰色预测模型及其建模机理[J].控制与决策,2009,24(11):1702-1706.
    [103]蒋大军.运用ARIMA预测烧结矿化学成分[J].烧结球团,2007,32(4):24-30.
    [104]W. LI, Z. G. Zhang. Based on time sequence of ARIMA model in the application of short-term electricity load forecasting[C]. Proceedings of 2009 International Conference on Research Challenges in Computer Science. Piscataway:IEEE,2009:11-14.
    [105]刘峰,王儒敬,李传席.ARIMA模型在农产品价格预测中的应用[J].计算机工程与应用,2009,45(25):238-239.
    [106]易丹辉.数据分析与EVIEWS应用[M].北京:中国统计出版社,2002.
    [107]G. X. Wang, Y. J. Liu. ARIMA time series application to employment forecastiong[C]. Proceedings of 2009 4th International Conference on Computer Science and Education,2009:1124-1127.
    [108]蒋金良,林广明.基于ARIMA模型的自动站风速预测[J].控制理论与应用.2008,25(2):374-376.
    [109]韩超,宋苏,王成红.基于ARIMA模型的短时交通实时自适应预测[J].系统仿真学报,2004,16(7):1530-1535.
    [110]刘士新,宋健海,唐加福,王梦光.MTO管理模式下钢铁企业生产合同计划建模与优化[J].控制与决策,2004,19(4):393-401.
    [111]蔡洋,李铁克.面向订单的钢铁企业生产管理一体化系统[J].北京科技大学学报,2008,30(3):302-306.
    [112]施锦萍.生产管理在国际大型钢铁企业的发展[J].上海交通大学学报,2007,41(增刊):30-32.
    [113]杨春节,何川.基于蚁群算法的供应链滚动优化决策方法[J].计算机集成. 制造系统,2010,16(1):132-139.
    [114]胡琨元,常春光,郑秉霖,汪定伟.钢铁企业中库存匹配与生产计划联合优化模型与算法[J].信息与控制,2004,32(2):177-180.
    [115]K. Barker, J. R. Santos. Measuring the efficacy of inventory with a dynamic input-output model[J]. International Journal of Production Economics,2010, 126 (1):130-43.
    [116]B. Denton, D. Gupta. Strategic inventory deployment in the steel industry[J]. HE Transactions,2004,36 (11):1083-1097.
    [117]Z. Gao, L. X. Tang. Combine column generation with GUB to solve the steel-iron raw materials purchasing lot-sizing-problem[J]. Acta Automatica Sinica,2004,30 (1):20-26.
    [118]白锐,柴天佑.基于PSO算法的生料浆配料过程的优化控制[J].控制工程,2009,16(1):76-79.
    [119]许世杰.基于过程优化的蚁群算法研究与应用[D].山东师范大学,2010,
    [120]张宇林,蒋鼎国,黄翀鹏.基于粒子群算法的多传感器数据融合[J].化工学报,2008,59(7):1703-1706.
    [121]商秀芹,卢建刚,孙优贤.一种基于偏好的多目标遗传算法在动态模型参数辨识中的应用[J].化工学报,2008,59(7):1620-1624.
    [122]袁礼海,宋建社,毕义明,薛文通.混合遗传算法及与标准遗传算法对比研究[J].计算机工程与应用,2003,(12):124-125.
    [123]令狐选霞,徐德民,张宇文.一种新的改进遗传算法-混合式遗传算法[J].系统工程与电子技术,2001,23(7):95-97.
    [124]李季,孙秀霞,李士波,李睿.基于遗传交叉因子的改进粒子群优化算法[J].计算机工程,2008,34(2):181-183.
    [125]刘敏,严隽薇.基于自适应退火遗传算法的车间日作业计划调度方法[J].计算机学报,2007,30(7):1154-1172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700