用户名: 密码: 验证码:
典型含硬玉岩的岩石—矿物—地球化学特征及其宝石学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在世界各地陆续出现了多个硬玉岩产地,目前已经报道的硬玉岩产地已达十余个。随着对硬玉形成地质环境的不断深入研究以及新硬玉成因理论的出现,未来仍有可能发现更多的含硬玉岩产地。珠宝玉石业界认为,硬玉矿物含量达60%以上的含硬玉岩称之为翡翠。硬玉处于板块缝合线附近的实皆走滑断裂带,在低温高压变质作用下形成,即有揭示古板块构造特征的地学意义,同时对于进一步找寻稀有珍贵玉石也具有指示意义,对硬玉矿物的研究具有一定学术价值和商业价值,因此历来为地质学者和宝石学家所关注。
     目前,在我国虽还未发现翡翠矿,但在多处已发现含硬玉的含硬玉岩,本文选取我国大别山、缅甸和危地马拉典型含硬玉岩典型样品,对样品进行手标本及岩石薄片镜下观察,运用全岩分析、电子探针(EMPA)分析、X射线粉晶衍射(X-Ray)分析、红外光谱(反射法)分析、电感耦合等离子体质谱(ICP-MS)以及激光剥蚀电感耦合等离子质谱(LA-ICP-MS)等现代测试手段,首次对国内外典型含硬玉岩石产出的矿床地质特征、矿物学特征、岩石学特征、地球化学特征进行了精确测定和深入系统的研究分析,并进行对比研究,重点探讨了我国含硬玉岩的地质意义及其宝石学意义。
     岩石学特征表明,大别山含硬玉岩中普遍存在冠状体结构。冠状体结构总体可分为内核和反应边两部分。其中,内核为硬玉以残晶形式存在于冠状体结构内部。反应边又可细分为内带和外带,近硬玉一侧的内带为钠长石和绿闪石构成的细晶集合体,钠长石端元组分由里到外依次降低。近石英一侧的外带为亚铁钠闪石构成的退变质反应边。冠状体结构的发育,表明退变质过程中有流体的参与。
     矿物学特征研究表明,大别山含硬玉岩的主要组成矿物为硬玉、石英、石榴石、斜长石、金红石等组成,石英和金红石以包裹体形式赋存于硬玉和石榴石内。与缅甸和危地马拉典型含硬玉岩有较大差异性,大别山硬玉Na、Al含量相对较低,Ca、Mg、Fe含量偏高,硬玉端员分子量为Jd73.46-80.83,辉石三角图中主要投于硬玉区,仅一点投入临近硬玉区的绿辉石边界,总体上仍然属于含Ca、 Mg, Fe偏高的硬玉矿物种。而缅甸硬玉属于Na, Al含量高的较为纯净的硬玉矿物。危地马拉含硬玉岩中一部分较为纯净的硬玉,另一部分Ca含量偏高,属于硬玉化绿辉石。大别山含硬玉岩中的退变质石榴石,化学成分以铁铝榴石为主,其端元组分为Spe为0.20~1.20mol%,Pyr为17.54~27.31mol%,Gro为7.60~8.54mol%,Alm为61.14~72.51mol%。角闪石主要为碱性角闪石中的亚铁钠闪石,其次为钠钙闪石中的铝铁闪石和铁钠透闪石。钠长石端元组分Ab为86.01-100%,An为0-13.73%。
     地球化学特征显示了稀土微量元素分配及赋存的特征。微量元素变化规律显示矿石的成矿物质来源于原岩,表明大别山硬玉形成具有良好的继承性。大别山、缅甸、危地马拉含硬玉岩样品,受原岩化学成分的影响,原岩类型不同,稀土总量也不同。相比之下,大别山稀土总量最高,其配分曲线均呈现轻稀土富集,重稀土亏损的左高右低模式,LREE/HREE>1,但轻稀土富集的程度有所不同,具有典型的沉积岩特点。各产地δEu略有差别,大别山含硬玉岩与硬玉矿物6Eu<1。
     运用单斜辉石-石榴石地质温度计计算大别山含硬玉岩的温度压力为T855-1119。C,P≥2.8GPa。根据温压公式估算大别山含硬玉岩中硬玉矿物形成的温度为T1800℃,压力为P6GPa,而角闪石—斜长石形成的温度为T400-500℃,压力为P>0.2GPa。
     最后通过对国内外典型含碘玉岩样品的岩石学、矿物学及地球化学特征对比研究分析,结合我国成矿地质条件,探讨我国含硬玉岩未能成玉的原因,以宝石学角度分析我国含硬玉岩资源的宝石学意义。
In recent years, jadeitite have been found at more than ten places in the world. As changing geological environment and deepening study, more jadeitite origins will be discovered around the world in the future. Academia considers that jadeite-bearing rocks that contained more than60%jadeitite minerals are being called jade (FeiCui), It is located in the Sagaing strike-slip fault zone, near plate sutures, formed under effects of low temperature, high pressure and metamorphism, which revealed that the geological significance of the ancient plates tectonic characteristics, the indicating significance of further searching the rare and precious jade, the academic and the commercial value of researching the jadeite minerals. Therefore, jadeites always attract the attentions by geological scholars and gemologists.
     So far, in China, the jade deposit has not been found yet, but the jadeitite-bearing rocks appeared in many places. This article took the typical jadeitite-bearing rocks from Dabie mountains, Myanmar and Guatemala as samples to view specimens and observe rock slices under the microscope, through whole rock analysis, electron microprobe analysis (EMPA), X-ray powder diffraction analysis, infrared spectrum (X-Ray) analysis, laser LA-ICP-MS and other modern testing means, precisely measure and systematacially analyze the characteristics of geology, mineralogy, petrology and geochemistry for domestic and foreign typical jadeitite-bearing rock deposits. After comparative researching, the article, for the first time, discussed emphatically the geological significance and the gemological significance of jadeitite-bearing rocks in China.
     The petrology characteristic shows that the samples from Dabie mountains exist prevalently coronal structure. It consists of two parts, the kernel and reaction margin. The kernel is the jadeite's malcrystalline existed inside the coronal structure. Reaction margin can be subdivided into the inner zone and outer zone. The fine-grain of albite and smaragdite is closed to the inner zone. The albite's end-members reduced from the inner zone to the outer zone. The outer zone near the quartz side is the metamorphosed reaction margin of naferon amphibole. The coronal structure indicates that fluid takes part in the process of metamorphisms.
     The researching on mineralogy characteristics shows that the major mineral components for the rocks from Dabie mountains are jadeite, quartz, garnet, plagioclase, rutile, etc. Quartz and rutile occur in the the jadeite and garnet as inclusion forms. The rocks in Dabie mountains are different from those in Burma and Guatemala, contain lower Na, Al, and higher Fe, belong to the high-Fe specie. The molecular weight of jadeite end-member is73.4680.83, mainly project on the jadeite area in the pyroxene triangular diagram, a small amount project on the boundary of omphacite area near the jadeite area. On the whole, the jadeitite-bearing rocks from Dabie mountains are closed to pure jadeites. The chemical composition of metamorphosed pomegranate is almandine mainly, which consists of Spe0.20-1.20, Pyr17.54~27.31, Gro7.60~8.54, and Alm61.14~72.51(mol%). The amphiboles mostly are the naferon amphibole among the alkaline amphibole, the others are the crossite and waldheimite among the calcium sodium amphibole. The albite's end members are Ab86.01-100%and An0-13.73%.
     The geochemical features testify the characteristics of rare-earth trace elements. The jadeitite from Dabie mountains, Guatemala and Myanmar is under the influence of the protolith's chemical composition. The protolith is different, so is REE. By constrast, the total REE of Dabie mountains' is highest than any other else, its distribution curve presents the mode of LREE's concentration (high left) and HREE's loss (low right). LREE/HREE>1. but the enrichment degree of LREE is different. δEu in each origin is slightly different. In the jadeitite-bearing rocks and jadeite mineral from Dabie mountains,δEu>1.
     By using the clinopyxene-johnstonotite geologic thermometer to calculate the temperature and the pressure for the Dabie mountains'jadeitite-bearing rock, you can see the temperature is855-1119℃, the pressure is2.8GPa or higher. According to temperature-pressure formula's estimating, the formation temperature of jadeite minerals in the Dabie mountains jadeitite-bearing rocks is about1800℃, pressure is more than6G Pa. The formation temperature and pressure of amphibole-plagioclase is separately400-500℃and over0.2GPa.
     Finally, under contrastive analyzing and researching on the domestic and foreign typical jadeitite-bearing rocks in the side of petrology, mineralogy and geochemistry characteristics, combined with the metallogenic geological conditions in our country, the article discussed why jades can not be formed in jadeitite-bearing rocks in China, and analyzed the gemological significance of jadeitite-bearing rock resources in China.
引文
Antonio Garcia-Casco,et al. A new jadeitite jade locality (Sierra del Convento, Cuba): first report and some petrological and archeological implications [J]. Contrib Mineral Petrol. 2009,158:1-16
    Hargett. D Jadeite of Guamtemala: a Contemporary View, Gem & Gemlogy.1990 (1).
    Harlow. G E. High-pressure, metasomatic rocks along the motagua fault, Guatemala. 2003,28(2):115-120
    Harlow and Sorensen. Jade:Ocuurrence and metasomatic orgin. Austral. Gem.,2001,21: 7-10
    Harlow G E, Hemming S R. Tow high-pressure-low temperature serpentinite-matrix melange belts, Motagua Fault Zone, Guatemala: A record of Aptian and Maastrichtian collisions, Geology,2004b.32:17-20.
    Harlow G E, Olds E P. Observations on terrestrial ureyite and ureyitic pyroxene. American Mineralogist,1987,72:126-136
    Harlow G E, Price N, Sahm E. Jadeitites from the paired high-pressure belts of the Motagua Gault zone, Guatemala; Implications for different P-T conditions (in Geological Society of America,2004 Annual Meeting, Anonymous) Abstracts with Programs Geological Society of America,2004a.36 (5):454.
    Harlow G E, Sisson V B. High-Pressure, metasomatic rocks along the Motagua Fault Zone, Guatemala. Ofioliti,2003.28 (2):115-120
    Harlow G E, Sorensen S S. Jade(nephrite and jadeitite) and serpentinite:metasomatic connections. International Geology Review,2005.47:128-141
    Harlow G E. Crystal chemistry of barium enrichment in micas from metasomatized inclusions in serpentinite, Motagua fault zone, Guatemala. European Journal of Mineralogy, 1995.7:775-789.
    Harlow G E. Jadeitites, albitites and related rocks from the Motagua fault zone. Guatemala. Journal of Metamorphic Geology,1994.12:49-68
    HteinW, AyeNaing. Studies on kosmochor, jadeite and associated minerals in jade of Myanmar. The Journal of Gemmology,1995, (5):315-320.
    Joesten R. Evolution of mineral assemblage zoning in diffusion metasomatism [J].Geomochimica Acta,1977,41:649-670.
    Johnson and Harlow. Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids deep within a subduction-channel. Geology,1999,27:629-632
    Li Ping, Cui Wen Yuan. Discovery of a new species of jadeite [J]. Acta Sci Nat Uni Pekinensis.2004,40(2):241-246
    Li Zuo-Wei. Physics Experimentation.2002,22(1):3
    Liu J G, Zhang R Y, J ahn Bor-ming, Petrology, geochemistry and isotope data on an ultrahigh-pressure jadeite quartzite from Shuanghe, DabieMountains, East-central China [J]. LITHOS,1997,41:59-67.
    MicBirney, Eclogite and jadeite from the Motagua Fault zone, Guatemala.1967,52: 908-918
    Okay A I and Sengor A M C. Evidence for intracont inental thrust-related exhumation of the ultrahigh-pressure rocks in China. Geology,1992.20:411-414
    Okay A I and Sengor A M C. Tectonics of an ultrahigh-pressure metamorphic terrane: the Dabie Shan/Tongbe Shan orogen, China [J]. Geology,1993,20:411-414.
    Okay A I, Xu Shutong and Sengor A M C. Coesite from the Dabie shan eclogites, central China. Eur. J. Mineral.1989(1):595-598
    Okay A I. Petrology of a diamond and coesite-bearing metamorphic terrane, Dabie Shan, China. Eur. J. Mineral.1993. (5):659-673
    Okay A 1. Paragonite eclogites from Dabie Shan, China, re-equilibration during exhumation. J. Metamorphic Geol..1995. (13):411-414
    Okay A I. Jadeite-K-feldspar rocks and jadeitites from northwest Turkey. Mineralogical Magazine,1997.61:835-843
    Okay A I. Petrology of a diamond and coesite-bearing metamorphic terrane, Dabie Shan, China. Eur. J. Mineral.1993., (5):659-673
    Qiu Zhi Li, Wu Fu yuan. Yang Shu Feng et al. Age and genesis of the Myarunar jadeite: Constraints from U-Pb ages and Hf isotopes of zireon inelusions[J].Chinese Science Bulletin. 2009,54(4):658-668
    Rollinson H. Using geochemical data:evaluation, presentation, interpretation. New York:[S. n],1993.7-8.
    Shi G H, Cui W Y, Cao S M,et al. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite.Journal of Geological Society,London,2008.165:221-234.
    Shi G H, Cui W Y, Liu J, Yu H X.Prtrology of jadeite-bearing serpentinized peridotite and ite country rocks from Northwestern Myanmar(Burma). Acta Petrologica Sinica,2001. 17(3):483-490.
    Shi G H, Cui W Y, Wang C Q.Zhang W H. The fiuld inclusion in jadeitite from Pharkant Area, Myanmar. Chinese Science Bulletin,2000.45:1896-1900.
    Shi G H, Cui W Y, Tropper P, Wang C Q, et al. The petrology of a complex sodic and sodic calcic amphibole association and ite implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma.Contributions to Mineralogy and Petrology,2003,145(3):355-376.
    Shi G H, Stckhert B, Cui W Y. Kosmochlor and chromian jadeite aggregate from Myanmar area. Mineralogical Magazine,2005a,69(6):1059-1075.
    Shi G H, Tropper P, Cui W Y, et al.Methane (CH4)-Bearing fluid inclusions in the Myanmar jadeitite, Geochemical Journal,2005b,39(6):503-516.
    Shi G H, Wang, X, Chu, B B, et al. Jadeite jade from Myanmar: tis texture and gemmological implications. J. Gem.,2009b,31(5-8):185-195
    Shi G H, Jiang, N, Wang, Y W, et al. Ba minerals in clinopyroxene rocks from the Myanmar jadeitite area:implications for Ba recycling in subduction zones. Euro. J. Mineral., 22:199-214
    Sorensen S S, Harlow G E, Rumble ⅢD. The orgin of jadeitite-forming subduction-zone fluids:CL-guided SIMS oxygen-isotope and trace-element evidence.American Mineralgoists, 2006,91:979-996.
    Su Wen, Xu Shutong, Jiang Laili and Liu Y. Coesite from quartz-jadeitite in the Dabie Mountains, Eastern China. Mineral. Mag.1996.60:229-239
    Su Wen, Xu Shutong, Jiang Laili, et al, Coesite from quartz jadeitite in the Dabie Mountains, Eastern China [J]. MineralMag,1996,60:659-662.
    Su Wen, Zhi Ping Ji, Kai Ye, et al. Distribution of hydrous components in jadeite of the Dabie Mountains [J]. Earth and Planetary Science Letters.2004,222:85-100
    T., Morishita, Occurrence and chemical composition of barian feld-spars in a jadeitite from the Itoigawa-Ohmi district in the Renge high-P\T-type metamorphic belt, Japan. Mineralogical Magazine.2005,69 (1):39-51
    Victor L., Vinograd Julian D., Gale Bjorn Winkler. Thermodynamics of mixing in diopside-adeite. CaMgSi2ZO6-NaAlSi2O6, solid solution from static lattice energy calculations [J]. Phys Chem Minerals.2007,34:713-725
    Wang X and Liou J G. Regional ultrahigh-pressure coesite-bearing eclogitic terrane in central China:evidence from country rocks, gneiss, marble and metapelite. Geology,1991. 19:933-936
    Wang X and Liou J G. Ultrahigh-pressure metamorphism of carbonate rocks in the Dabie Mountains, Central China.Journal of Metamorphic Geology,1993.71:575-588
    Wang X, Liou J G. M aruyama S. Coesite-bearing eclogites from the Dabie Mountains, central China:petrology and P-T path. Journal of Geology,1992.100:231-250
    Xu S, Okay A I, Ji S, Sengor A M C, Su W, Liu Y and J iang L. Diamonds from the Dabie Shan metamorphic rocks and it's implication for tectonic setting. Science,1992.256: 80-82
    E.R.基也夫林科等.翡翠[J].国外地质科技,1981(2)
    奥岩,缅甸翡翠原生矿床成因研究.97全国宝石学年会论文汇编,1997:12-29
    奥岩,吴瑞华.翡翠岩石结构类型研究.中国宝石,1997,(4):118-121.
    奥岩.缅甸翡翠原生矿床成因研究(上、下).中国宝玉石,1998,(30);1999,(31).
    曹毅,宋述光.俯冲带榴辉岩的变形作用及其对恢复俯冲-折返过程的意义.地质通报,2008.27(10):1646-1653.
    常丽华等.透明矿物薄片鉴定手册[M].北京:地质出版社.2006
    陈道公,Etinene D,夏群科,等.大别山双河超高压榴辉岩中变质锆石:离子探针和微区结构研究.岩石学报,2002,18(3):369-377
    陈晶,王清晨,瞿明国,等.榴辉岩中石榴石塑性变形特征.中国科学(B),1995,25:1115-1120
    陈晶晶,何明跃,白志民.危地马拉翡翠的宝石矿物学研究.科技通报,2012,第28卷第12期12-14
    陈晶晶,何明跃.翡翠的结构对其质地(透明度)的影响.大家.2012年第17期P69-71
    陈晶.硬玉位错滑移系及流变学特征的研究.岩石学报,1994,10(3)317-322
    陈克樵.翡翠的电子探针分析.1996,15:138-142.
    陈志强,袁奎荣.翡翠岩性论[J].桂林工学院学报.1996,16(1):14-18
    陈志强,袁奎荣.翡翠中的长石及其宝石学意义[J].矿物学报.1997,17(3):352-356
    从柏林,王清晨.大别山—苏鲁超高压变质带研究的最新进展.科学通报,1999,44(11):1127-1141
    崔文元,施光海,林颖.钠铬辉石玉及相关闪石玉(岩)的研究[J].宝石和宝石学杂志.1999,1(4):16-22
    崔文元,施光海,杨富绪等.一种新观点—翡翠新的岩浆成因说[J].宝石和宝石学杂志2000,2(3):16-21
    崔文元,王时麒,杨富绪,王长秋,施光海.缅甸翡翠(辉石玉)的矿物学及其分类的研究.云南地质,1998.17(3,4):356-380.
    崔文元,王时麒,杨富绪等.缅甸翡翠(辉石玉)的矿物学及其分类的研究[J].云南地质.1998,17(3,4):356-380
    董火根,郭震宇.大别山双河超高压变质岩变形构造.中国科学,1996,9:89-96
    樊祺诚,刘若新,张旗,等.大别山超高压变质带镁铁—超镁铁岩的岩石学与高压矿物组合.中国科学(D),1996,26(3):265-270
    范建良,郭守国,刘学良,王以群.天然与处理翡翠的光谱学研究[J].激光与红外.2007,37(8):770-772
    郭可信,叶恒强,吴玉琨.电子衍射图在晶体学中的应用.第一版.科学出版社.1983.226-278
    郭颖,赖兴运.硬玉塑性变形的AFM特征[J].矿物学报.2003,23(2):158-162
    国家珠宝玉石质量监督检测中心.翡翠分级.国家珠宝玉石质量监督检测中心.2009
    何明跃,王春丽.《翡翠鉴赏与评价》中国科技出版社,2008.
    何明跃,王濮.石英的结晶度指数及其标型意义.矿物岩石.1994,14(13):23-27.
    黄凤鸣,古清慧,邹严寒.翡翠的成分和结构特征及其与种或地的关系[J].宝石和宝石学杂志.2000,2(1):7-14
    江来利,徐树桐,刘贻灿,苏文.1995.大别山超高压变质带的构造背景.地质论评,(3)229-236
    江来利,吴维平,范良红,等.安徽省潜山县韩长冲地区的地质构造特征.安徽地质,1998,8(1):1-9
    金振民,章军锋,Green H WH,等.大洋深俯冲带流变性质及其地球动力学意义——来自地慢岩高温高压试验的启示.中国科学(D辑),2001,31(12):969-976
    晋勇,孙小松,薛屺.X射线衍射分析技术[M].北京:国防工业出版社.2008
    郡全树,钟增球,周汉文.大别超高压变质地体的岩石组合及其演化—以皖西南碧溪岭和双河地区为例,地质通报,23(12):1246—1253
    李斌,沈海,高云等.翡翠的结构及成分分析[J].岩矿测试.2000,19(1):51-54
    李德惠.晶体光学[M].上海:华东理工大学出版社,1992
    李林,周剑雄,张家云编.矿物的电子显微镜研究.北京,地质出版社,1984
    梁凤华,苏尚国,游振东,等.中国大陆科学钻探主孔0-2000m榴辉岩的退变质过程.中国地质,2005.32(2):218-229
    刘敦一,简平.大别山双河硬玉石英岩的超高压变质和退变质事件一SHRIMP测年的证据.地质学报,2004,78(2):211-217
    刘晓春,胡克,李学燮,等.大别—苏鲁高压变质带中榴辉岩的多样性及成因.地质论评,1994,40:494-501
    刘贻灿,徐树桐,李曙光,等.大别山北部榴辉岩的退变质特征及其地质意义.矿物岩石地球化学通报,2003a,22(4):299-304
    刘贻灿,徐树桐,李曙光,等。大别山北部鹿吐石铺含石榴子石斜长角闪岩类的变质特征及Rb-Sr同位素年龄.安徽地址,2000b,10(3):194-198
    摩泰.缅甸帕敢硬玉矿床[J].宝石学和宝石学杂志.2002,4(3):3-7
    摩泰.摩泰识翠[J].中国宝玉石.44-45
    欧阳秋眉,翡翠全集[M].香港:天地图书有限公司.2000
    欧阳秋眉,李汉声,郭熙.墨翠—绿辉石玉的矿物学研究[J].宝石和宝石学杂志.2002,4(3):1-4
    欧阳秋眉,李汉声.钠铬辉石质翡翠的主要特征[J].宝石和宝石学杂志.2004,6(1):22-23
    欧阳秋眉.翡翠的结构类型和成因意义.宝石和宝石学杂志.2000,2(2):1-5.
    欧阳秋眉.翡翠的矿物组成.宝石和宝石学杂志.1999,1(1):18-24.
    欧阳口秋眉.翡翠的矿物组成[J].宝石和宝石学杂志.1999,1(1):18-26
    欧阳秋眉.翡翠结构类型及其成因意义[J].宝石和宝石学杂志.2000,2(2):1-5
    潘建强,吴明涵等.翡翠—玉石之冠[M].北京:地质出版社,1999:12-13
    彭文世,刘高愧.矿物红外光谱图集[M].北京:科学出版社,i982:354-417.
    施光海,崔文元,刘晶,于海侠.缅甸含硬玉的蛇纹石化橄榄岩及其围岩的岩石学研究.岩石学报,2001.17(3):483-490.
    施光海,崔文元,刘晶等.缅甸含硬玉的蛇纹石化橄榄岩及其围岩的岩石学研究[J].岩石学报2000,17(3):483-490
    施光海,崔文元,工长秋,张文淮.缅甸帕敢地区硬玉岩中流体包裹体.科学通报,2000.45(13):1433-1438.
    施光海,崔文元.缅甸翡翠中Cr的淡化及其意义.宝石和宝石学杂志,2005.7(4):7-13.
    施光海,崔文元.缅甸硬玉岩的结构与显微构造:硬玉质翡翠的成因意义.宝石和宝石学杂志2004.6(3):10-11.
    施光海,崔文元.缅甸硬玉岩的结构与显微构造:硬玉质翡翠的成因意义[J].宝石和宝石学杂志.2004,6(3):8-11
    施光海,崔文元等.缅甸帕敢地区硬玉岩中流体包裹体.科学通报.2000,45(13):1433-1437.
    宋绵新,潘兆橹.翡翠的漫反射红外光谱特征及其对翡翠鉴定[J].中国矿业.2004,13(12):78-80
    苏文宁.翡翠透射红外光谱解析[J].云南地质.2008,27(3):422-429
    苏文,徐树桐,江来利,刘贻灿.1995.安徽潜山韩长冲-苗竹园一带硬玉石英岩及其伴生榴辉岩特征.安徽地质,(2),7-21
    苏文,徐树桐,吴维平,等.大别山菖蒲硬玉石英岩退变质作用过程中岩石地球化学的变异.矿物岩石,2)以),20(2:)8-13
    苏文,游振东,王汝成,等.大别山北部石榴辉石岩透辉石中石英和单斜顽火辉石的出溶.科学通报,2001b,46(10):550-554
    索书田,钟增球,张宏飞,等.桐柏山高压变质带及其区域构造型式.地球科学—中国地质大学学报,2001,26(6):55-555
    索书田,钟增球,周汉文,等.大别—苏鲁超高压变质带内的块状榴辉岩及其构造意义.地球科学,2003,28(2):111-120
    唐俊,奥岩.翡翠的化学成分和矿物组成特征[J].安徽地质.2000,10(1):67-72
    王德滋,谢磊.光性矿物学[M].北京:科学出版社.2008
    王二七,季建清等.东喜马拉雅构造结新生代地壳缩短量的估算及其地质依据.中国科学D辑.2001.1
    王海云.关于翡翠次生色的研究[D].中国地质大学,2002
    王璐,金振民,刘祥文,等,大别山双河超高压硬玉石英岩显微组构特征及其流变学意义.地球科学,2004.29(3):293-302
    王璐.双河地区超高压榴辉岩和硬玉石英岩的流变学特征和构造演化特征:[博士学位论文].武汉:中国地质大学(武汉),2005
    王培铭,许乾慰等.材料研究方法[M].北京:科学出版社.2005
    王蹼,潘兆鲁,翁玲宝,等编著.系统矿物学,中册.北京,地质出版社,1984,p.176-189.
    王清晨.中国超高压变质岩十五年研究进展.地球学报,2001,26(:1)11-16
    王小莉,袁心强.铝硅钡石在缅甸翡翠矿床中的发现[J].宝石和宝石学杂志.2006,8(2):30-33
    吴维平,徐树桐,汀来利,等.中国东部大别山超高压变质杂岩中的石英硬玉岩带.岩石学报,1998,14(1):60-70
    徐树桐,苏文,刘贻灿,等,大别山东段高压变质岩中的金刚石,科学通报,1991b.(17),1318-1322
    徐树桐,苏文,刘贻灿,等.安徽大别山含金刚石高压变质岩及其矿物共生组合和变质条件.安徽地质,1991a.(1)1-17
    徐树桐,吴维平,苏文,江来利,刘贻灿.1998.大别山东部榴辉岩带中的变质花岗岩及其大地构造意义.岩石学报,14(1):60-68
    徐树桐,刘贻灿,江来利等.大别山的构造格局和演化[M].北京:科学出版社,1994,1-175.
    徐树桐,苏文,刘贻灿,等.大别山北部榴辉岩的发现及其岩相学特征.科学通报,1999,44(13):1452-1456
    徐志,陶专,解永顺.翡翠的矿物组成及其宝石学意义[J].地质找矿论,2005,20(1):35.
    杨尽,王志辉.缅甸翡翠矿石的结构及其成因探讨[J].成都理工学院学报.2001,28(4):363-365
    杨启军,钟增球,周汉文.大别—苏鲁超高压地体折返过程中岩石组合演化的地球化学约束.地球科学—中国地质大学学报,2003,28(3):241-249
    游振东,苏尚国,梁风华,等.中国大陆科学钻探主孔榴辉岩类岩石退变质过程-对超高压变质地体隆升的启示.岩石学报,2005,21(2):381-88
    于波,陈炳辉,丘志力等.现代测试技术在优化处理翡翠鉴定中的应用[J].2004,3(16):37-39.
    鱼海鳞,陈学明.试论世界主要翡翠矿床特征及在我国找矿的可能性[J].建材地质.1996,2(22-26)
    袁心强,亓利剑,张森.缅甸翡翠阴极发光光谱特征[J].宝石和宝石学杂志.2005,7(2):9-13
    袁心强.翡翠宝石学[M].中国地质大学出版社.2004,51-55
    曾广策,朱云海,叶德隆.晶体光学及光性矿物学[M].武汉:中国地质大学出版社.2006
    翟明国,从柏林,赵中岩等.大别山榴辉岩带中的高压硬玉石英岩块体及其地质意义[J].科学通报,1992,(11):1013-1015.
    张蓓莉.系统宝石学[M].北京:地质出版社.2006
    张金富,吴飞豹,史清琴.缅甸翡翠的矿床成因以及在我国找矿的可能.1998,17(3、4):400-406.
    张良矩.缅甸纳莫原生翡翠矿体特征与成因研究[J].岩石矿物学杂志.2004,23(1):49-53
    张泽明,张金风,游振东,等.苏鲁造山带超高压变质作用及其P-Tt轨迹.岩石学报,2005,21(2):257-270
    周颖.翡翠的阴极发光结构及其宝石学意义[J].宝石和宝石学杂志.2002,4(3):31-35
    庄育勋.大别山超高压变质岩组合中石榴硬玉石英岩及相关岩石的特征-陆壳成因岩石的证据.中国地质,1998,:430-34
    自文吉,周美付,胡旭峰,等.华北地块岩石圈构造演化与镁铁-超镁铁杂岩及矿化特征.北京:北京出版社,1993
    邹天人,於晓晋,夏凤荣等.翡翠的单斜辉石类矿物研究[J].宝石和宝石学杂志.1999,1(1):27-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700