用户名: 密码: 验证码:
云南格咱岛弧印支期斑岩型铜矿成矿系统与矿床变化保存研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格咱岛弧带是西南“三江”(怒江、澜沧江、金沙江)多岛弧盆系中一个重要的地质构造单元,位于甘孜—理塘结合带西侧德格—中甸陆块的东缘,印支期义敦岛弧带南段。它始于晚三叠世甘孜—理塘洋壳的向西俯冲,燕山期经历了陆内汇聚和造山后伸展作用阶段,喜山期受青藏高原碰撞隆起效应的影响,本区表现为强烈的逆冲-推覆构造和大规模走滑平移活动。区内岩浆活动强烈,物化探异常显著,成矿地质条件优越,成矿作用丰富,金属矿床众多,是近年来新发现的重要铜多金属成矿带,其中以印支期产出于普朗复式岩体的斑岩型铜矿床最为典型。本文研究在对典型矿床形成的动力学背景、成矿机理、岩浆源区研究的基础上,利用裂变径迹法恢复格咱岛弧花岗质杂岩的隆升历史,求取岩体剥蚀程度的定量数据来研究矿床形成→变化→保存的演化规律,取得研究成果如下:
     1、利用岩石地球化学方法,对格咱岛弧岩浆岩带内主要成矿岩体的时空分布、岩石学特征及岩浆成因进行了系统分析和探讨。研究表明,格咱岛弧岩浆岩的时空分布具带状分布的特点;斑(玢)岩与区内火山岩具有相似的地球化学组成,说明两者具有相同或相似的岩浆源岩,斑(玢)岩属钙碱性岩石系列,具Ⅰ型花岗岩的特征;花岗岩构造环境判别揭示了该区岩浆岩主要形成于俯冲造山的构造环境,也指示其物质来源较深,一般为下地壳或上地幔,并具有壳幔混源的特点。
     2、在前人研究的基础上,利用LA-ICP-MS锆石U-Pb测年方法对普朗成矿斑岩体进行了较系统的成岩成矿时代的厘定和Hf同位素分析,来探讨该区岩浆岩形成的时代、岩石成因、物质源区及成岩构造环境。应用同位素地球化学方法,对格咱岛弧与斑岩成矿作用有关的典型矿床进行了铅同位素示踪研究,对成矿物质的来源进行了探讨研究。
     3、对格咱岛弧斑岩成矿系统进行较为全面的研究和总结,并对成矿系统的划分作出新的界定,将格咱岛弧成矿系统划分为印支期成矿亚系统和燕山期成矿亚系统。印支期主要发育了与安山岩同源的壳幔型中酸性岩浆作用,形成了斑岩型Cu矿成矿系统,燕山期伴随着同碰撞中酸性岩浆活动形成了斑岩型Mo(Cu)及热液型W(Mo)成矿系统,本区成矿系统的形成与洋壳俯冲有关,成矿物质来源为上地幔或下地壳,并具壳幔混源的特征。研究表明,格咱岛弧深部找矿具有较好的资源潜力,其中燕山期Mo多金属成矿已显现出良好的找矿前景。
     4、矿床形成后的变化与保存受各种地质作用的控制和影响,区域的隆升和剥蚀是控制矿床变化与保持的关键因素之一。研究利用黑云母矿物地质压力计和磷灰石裂变径迹(AFT)法恢复了格咱岛弧花岗质杂岩体的隆升演化历史,获得了岩体剥蚀程度和剥蚀速率的定量数据。磷灰石裂变径迹年龄数据及成岩成矿的同位素年龄,给出了区内主要斑岩型铜矿床含矿岩体的岩浆侵入作用与冷却过程的时限,从而限定了斑岩型铜矿成矿作用的时代与剥露历史。格咱岛弧成矿带内主要成矿斑岩体的侵位深度和剥蚀程度的对比分析表明,各成矿岩体的剥蚀深度都小于侵位深度,这对矿床形成后的保存较为有利。根据区内主要斑岩型矿床剥蚀资源量的定量计算,将矿床剥蚀情况划分为三个数量级:Ⅰ级为矿床轻度剥蚀、Ⅱ级为矿床中等剥蚀、Ⅲ级为矿床严重剥蚀,为该区斑岩成矿系统资源潜力评价和深部找矿提供了理论依据。
Geza island arc belt is one of the important tectonic units in the archipelagic arc-basin system in the Sanjiang area (Jiasha River, Nujiang River, Lancang River), which located in the eastern edge of the Dege-Zhongdian continental blocks Ganzi-Litang and the southern of Yidun arc. It began at Ganzi-Litang oceanic crust westward subduction in the Late Triassic, experienced intracontinental convergence and post-orogenic extensional phase in Yanshanian, and showed a strong thrust-nappe structure and large-scale strike-slip translation activities by the effect of the collision uplift of the Qinghai-Tibet Plateau in the Himalayan. In this area, there were strong magmatic activities, significant geophysical and geochemical anomalies, superior metallogenic geological conditions, the rich mineralization and a lot of deposits. It was a newly discovered copper polymetallic ore concentration area of China in recent years, in which the Pulang porphyry copper deposits is a typical representative of Indosinian porphyry copper deposits. This article researched on the dynamics background, metallogenic mechanism and magma source of the typical deposits formation, using the Apatite Fission Track method (AFT) restored the uplift history of granitic rocks in Geza arc and got the denudation quantitative data of intrusions to research on the evolution of deposits formation→post-ore modification→preservation, the research achievements of this thesis are:
     1. Using the geochemical method and analyzed the temporal and spatial distribution, discussed petrology characteristics and magma origin of main metallogenic porphyries in Geza arc magmatic belts. This study shown that magmatic rocks has the zonal distribution characteristics in the temporal and spatial. The similarities of porphyries and local acidic volcanic rocks in the geochemistry composition suggest that they both have the same or the similar magmatic source. The porphyry(porphyrite) and island-arc granite rocks have the same rock series (calc-alkaline) and genetic type (I-type granite). The tectonic discrimination shown that magmatic rocks mainly formed in the subduction orogenic tectonic environment, and indicated that the material also has a deeper source. It is generally believed that the source is lower crust or upper mantle and has a crust-mantle mixed characteristic.
     2. Based on the previous studies, we used the LA-ICP-MS U-Pb zircon method comprehensively redefiniteded the diagenetic age, mineralization age and Hf isotope analysis of Pulang mineralization porphyries, discussed the formation age of magmatic rocks in this area, the rock genesis, material source and tectonic environment. Applicated the isotope geochemical methods researched on the Pb isotope tracing and the source of the minerals of typical porphyry copper deposits in Geza arc.
     3. Our studies comprehensively summarized and researched on the porphyry metallogenic system of Geza arc, which can be divided into Indosinian epoch metallogenic subsystem and Yanshanian epoch metallogenic subsystem. The Indosinian epoch mainly developed intermediate-acidic crust-mantle magmatism homologous with the andesite and formed porphyry Cu metallogenic system; the Yanshanian epoch had syn-collision magmatic activities and led to product Porphyry Mo(Cu) and W(Mo) hydrothermal metallogenic system.
     4. The post-ore changing and preservation was controlled and influenced by various geological processes, but the regional up lift and denudation is the most important factors. Using the biotite mineral geobarometer and Apatite Fission Track (AFT) restored the uplift evolution of Geza arc granitic porphyries, obtained the quantitative data of rock erosion degree and denudation rate. AFT age and minerogenetic isotopic age given the time of intrusions and cooling process and limited the exhumation history of main porphyry Cu deposits. The comparative studied of emplacement depth and denudation degree shown that the ore-forming rocks erosion depth was less than the emplacement, which was more favorable to the post-ore changing and preservation of porphyry Cu deposits in Geza arc. According to the quantitative calculation of erosion resources to mainly porphyry deposits, the denudation was divided into three orders of magnitude:Grade I for deposit mild denudation, II was medium denudation, III for deposit severe denudation, which provided the theory basises for evaluation of the metallogenic potential and the deep prospecting of porphyry metallogenic system.
引文
Alpers C N, and Brimhall G H. Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, northern Chile[J]. Economic Geology,1989,84,229-255.
    Abdel Rahman A M. Nature of biotites from alkaline, cala-alkaline and peraluminous magmas. Journal of Petrology, 1994,35:525-541.
    Amelin Y, Lee D C, Halliday A N, et al. Nature of the earth's earliest crust from hafunium isotopes in single detrital zricons[J]. Nature,1999,399:252-255.
    Alther R, Holl A, Hegner E, Langer C, et al. High-potassium,calc-alkaline 1-type plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany) [J]. Lithos,2000,50:51-73.
    Audetat A, Pettke Tand Dolejs D. Magmatic anhydrite and calcitein the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico(USA):Genetic constraints on porphyry-Cu mineralization[J]. Lithos,2004,72,147-161.
    Brimhall G H, Agee C, Stoffregen R E. The hydrothermal conversion of hornblende to biotite[J].Canadian Mineralogist,1985,23:369-379.
    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol.,1985(48):43-55.
    Barth M C, Mcdonough W F, Rndnick R L. Tracking the budget of Nd and Ta in the continental crust[J]. Chemical Geology,2000,165:197-213.
    Belton D X., Brown R W.,Kohn B P.,et al. Quantitative resolution of the debate over antiquity of the cental Australin landscape:implications for the tectonic and geomorphic stability of cratonic interiors[J]. Earth and Planetary science Letters,2004,219(1-2): 21-34.doi:10.1016/S0012-821 X(03)00705-2.
    Chambefort I, Dilles J H, Kent A J R. Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits[J]. Geology,2008,36:719-722.
    Chappell B W. Aluminium saturation in I-type granites and the characterization of fractionated haplo grantites[J]. Lithos,1999,46:535-551.
    Clark A H., Tosdal R M, Farrar E, et al. Geomorphologic environment and age of supergene enrichment of the Cuajone, Quellaveco, and Toquepala porphyry copper deposits, Southeastern Peru[J]. Economic Geology,1990,85,1604-1628.
    Candela P A. Physics of aqueous phase evolution in plutonic environments:American Mineralogist,1991,76:1081-1091.
    Cathles L M and Shannon R. How potassium silicate alteration suggests the formation of porphyry copper deposits begins with the nearly explosive but barren expulsion of large volumes of magmatic water[J]. Earth and Planetary Science Letters,2007,262,92-10.
    Chambefort l., Dilles J H, and Kent A J R. Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits[J]. Geology,2008,36,719-722.
    Dold B and Fontbote L. Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing[J]. Journal of Geochemical Exploration,2001,74,3-55.
    Emmons S F. Principles of economic geology,Ist ed [M]. New York, McGraw-Hill,1918, 550.
    Einaudi M T, Hedenquist J W, Inan E E. Sulfidation state of fluids in active and extinct hydrothermal systems-Taransitions from porphyry to epithermal environments[J]. Society of Economic Geologists Special Publication 10,2003-285-313.
    Einaudi M T, Hedenquist J W, and lnan E E. Sulfidation state of fluids in active and extinct hydrothermal systems:Transitions from porphyry to epithermal environments[M]. Society of Economic Geologists Special Publication,2003,10,285-313.
    Enders M S, Knickerbocker C, Titley S R, et al. The role of bacteria in the supergene environment of the Morenci porphyry copper deposit, Greenlee County, Arizona[J]. Economic Geology,2006,101,59-70.
    Franklin J M, Lydon J W, Sangster D F. Volcanic-associated masive sulfide deposit[J]. Econ. Geol.75th Anniversary Volume,1981,485-627.
    Field C W, Zhang L, Dilles J H, et al. Sulfur and oxygen isotope record in sulfate and sulfide minerals of early, deep, pre-Main Stage porphyry Cu-Mo and late Main Stage base-metal mineral deposits, Butte district, Montana[J]. Chemical Geology,2005,215:61-93.
    Foster M D. nterpretation of the composition of trioctahedra micas.U.S [J]. Geol. Surv. Prof. Paper,1960,354B:11-48.
    Griffin W L, Belousova E A, Shee S R. Crustal evolution in the northearn Yilarn Craton:U-Pb and Hf isotope evidence from detrital zircons[J]. Precambrian Research,2004,131 (3-4):231-282.
    Gleadow A J W, Kohn B P, Brown R W, et al. Fission track therm oteetonie imaging of the Australian continent[J].Tectonophysics,349:5-21.
    Ge W, Wu F, Zhou C, et al. Porphyry Cu-Mo deposits in the eastern Xing'an-Mongolian Orogenic Belt-Mineralization ages and their geodynamic implications[J]. Chinese Science Bulletin,2007,52,3416-3427.
    Hemley J J, Cygan G L, Fein J B, et al. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems-I. Iron-copper-zinc-lead sulfide solubility relations[J]. Economic Geology,1992,87:1-22.
    Hemley J J and Hunt J P. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems:Ⅱ. Some general geologic applications:Economic Geology, 1992,87,23-43.
    Hou Z Q, Mo X X. Geology, geochemistry and genetic aspects of Kuroko-typc volcanogenic massive sulfide deposits in Sanjiang Region, Southwestern China. Explor. Mining Geol.,1993,2:17-29
    Hedenquist J W, Arribas A J, Reynolds T J. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology,1998,93,373-404.
    Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:A thermodynamic study[J]. Mineralium Deposita, 2005,39,864-889.
    Hartley A J., and Rice C M. Controls on supergene enrichment of porphyry copper deposits in the Central Andes-A review and discussion[J]. Mineralium Deposita,2005,40,515-525.
    Hou Z Q, Zhong D L, Deng W M, et al. A tectonic model for porphyry copper-molybdenum-gold deposits in the eastern Indo-Asian collision zone, in Porter, T.M., ed., Super porphyry copper and gold deposits-A global perspective, Adelaide, Porter GeoConsultancy Publishing,2005,2,423-440.
    Han C, Xiao W, Zhao G., et al. Geological characteristics and genesis of the Tuwu porphyry copper deposits, Hami, Xinjiang, central Asia[J]. Ore Geology Reviews,2006,29, 77-94.
    Jerome S E. Some features pertinent in the exploration of porphyry copper deposits, in Titley S R., and Hicks, C.L., eds., Geology of the porphyry copper deposits, southwestern North America[M]. Tucson, University of Arizona Press,1966,75-85.
    Kesler S E, Chryssoulis S L, Simon G. Gold in porphyry copper deposits:its distribution and fate[J]. Ore Geology Reviews,2002,21:103-124.
    Kokonyangi J, Armstong R, Kampunzu A B, et al. U-Pb zircon geochronology and petrology of granitoids from Mitwada:implications for the evolution of the Mesoproterozoic Kibaran belt[J]. Precambrian Research,2004,132:79-106.
    Ketcham R A, Carter A, Donelick R A, et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist,2007,92(5-6):799-798. doi: 10.2138/am.2007.2281.
    Lydon J W. Ore deposit models volcanogenic masive sulfide deposits Part 2:Genetic mod el[J].Geosci.Canada,1988,15:43-65.
    Le Bas M J, Le M R W, Streckeisen A, Zanettin B A. Chimical classification of vocanic rocks based on the total alkaline-silica diagram, Journal of Petrology,1986,27:745-750.
    Liu Y, Gao S, Hu Z. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and traceelements in zircons of mantle xenoliths. Journal of Petrology,2010,51:537-571.
    Mortimer C. The Cenozoic history of the southern Atacama Desert, Chile[J]. Journal of the Geological Society of London,1973,129,505-526.
    Maksaev V, Munizaga F, Zentili M, et al. Fission track thermochronology of Neogene plutons in the Principal Andean Cordillera of central Chile (33-35°S):Implications for tectonic evolution and porphyry Cu-Mo mineralization[J]. Andean Geology,2009,36 (2): 153-171.
    Ohnmto H. Geological setting of the Kuroko deposits, Part I. of major non-ferrous metal deposits in Western Yunnan. Yunnan Geological history of the Green Tuff region. Economic Geology,1983,10(1):11-43.
    Ohmoto, Hiroshi, Rye R O. Isotopes of sulfur and carbon, in Barnes [J].Geochemistry of hydrothermal ore deposits,2nd ed.:New York, John Wiley and Sons,1979,509-567.
    Pearce J A, Harris H B W, Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of grantic rocks[J]. Journal of petrology,1984,25 (4):956-983.
    Parsons A B. The porphyry coppers[M]. New York, American Institute of Mining and Metallurgical Engineers,1933,581.
    Pokrovski G S, Tagirov B R, Schott, et al. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling[J]. Geochimica et Cosmochimica Acta,2006,73,5406-5427.
    Pudack C, Halter W E, Heinrich C A, et al. Evolution of magmatic vapor to gold-rich epithermal liquid:The porphyry to epithermal transition at Nevados de Famatina, northwest Argentina[J]. Economic Geology,2009,104,449-477.
    Reich M, Parada M A, Palacios C, et al. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of Central Chile-Metallogenic implications[J]. Mineralium Deposita,2003,38,876-885.
    Rabb M J, Brown R W, Gallagher K, et al. Denudational and thermal history of the Early Cretaceous Brandberg and Okenyenya igneous complexes on Namibia's Atlantic passive margin[J]. Tectonics,2005,24:1-15,TC3006,doi:10.1029/2004TC001688.
    Rusk B G, Reed M H, Dilles, et al. Fluid inclusion evidence for Rusk B G, Miller B J, Reed M H. Fluid-inclusion evidence for the formation of Main Stage polymetallic base-metal veins, Butte, Montana, United States, in Spencer, J.E., and Titley, S.R., eds. Ores and orogenesis:Circum-Pacific tectonics, geologic evolution, and ore depos-its[J]. Arizona Geological Society Digest,2008,22,573-581.
    Sajona F G, Maury R C. Association of adakites with gold copper mineraliation in Philippines[J]. C R Acad Sci Paris Earth Planet Sci,1998,326 (1):27-34.
    Reich, Martin, Palacios C, et al. Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile[J]. Mineralium Deposita,2009,44, 497-504.
    Richard, H S. Porphyry copper systems [J]. Society of Economic Geologist,2010,105 (1):3-41.
    Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology,1972,67.184-197.
    Stern C R and Skewes M A. Miocene to present magmatic evolution at the northern end of the Andean Southern Volcanic Zone, central Chile[J]. Revista Geologica de Chile.1995, 22,261-272.
    Sillitoe R H. Supergene oxidized and enriched porphyry copper and related deposits:Society of Economic Geologists[J]. Economic Geology 100th Anniversary Volume,2005, 723-768.
    Shafiei, Behnam, Haschke M, et al. Recycling of orogenic arc crust triggers porphyry copper mineralization in Kerman Cenozoic arc rocks, southeastern Iran[J]. Mineralium Deposita,2009,44,265-283.
    Sillitoe R H. A plate tectonic model for the origion of porphyry copper deposits [J]. Econ.Geo,1972,1.67:184-197.
    Sun S S, Mcdonough W F. Chemical and istopic and proceses in Saunders AD and Nony MJ (eds). Magmatism in Ocean Basins[J]. Geological Society of Longdon Special publication,1989,42:313-345.
    Simon G. Epithermal gold mineralization in an old volcano arc:the Jacinto depo sit, Canmaguey district, Cuba[J]. Econ. Geol,1999,94:487-506.
    Taylor S R, McLennan S. The Continental Crust:composition and evolution[M]. Blackwall Scientific Publications,1985:209-230.
    Taylor S R, McLennan S M. The continental crust, Its composition and evolution[J]. Oxford, 1985, Blackwell,312.
    Titley S R and Hicks C L. Geology of the porphyry copper deposits, southwestern North America[M]. Tucson, University of Arizona Press,1966,287.
    Uchida E, Endo S, Makino M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J]. Japan Resource Geology,2006,57(I):47-56.
    Williams-Jones A E, Bowell R J. Gold in solution[J]. Elements,2009,5 (5):281-287.
    Yogodzinski G M, Vervort J D, Brown S T, et al. Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc[J]. Earth and Planetary Science Letters,2010,300: 226-238.
    Zartman R E and Doe B R. Plumbotectonics-the model[J]. Tectonophysics,1981,175 (1-2): 135-162.
    Zartman R E and Haines S M. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs? A case for bi-dirrectional transport[J]. Geochim Cosmochim Acta,1988,52 (6):1327-1339.
    Zen E. Plumbing the depths of batholiths [J]. Am. J. Sci.,1989,289:1137-1157.
    Zhang L, Xiao W, Qin K, et al. The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China-Trace element and Sr-Nd-Pb isotope geochemistry[J]. Mineralium Deposita,2006,41,188-200.
    陈衍景,肖文交,张进江.成矿系统:地球动力学的有效探针[J].中国地质,2008,35(6):1059-1073.
    陈建平,唐菊兴,丛源,等.藏东玉龙斑岩铜矿地质特征及成矿模型[J].地质学报,2009,83(13):1887-1900.
    曹殿华,王安建,李文昌,等.普朗斑岩铜矿岩浆混合作用:岩石学及元素地球化学证据[J].地质学报,2009,83(2):166-175.
    曹殿华,王安建,黄玉凤,等.中甸弧雪鸡坪斑岩铜矿含矿斑岩锆石SHR1MP U-Pb年代学及Hf司位素组成[J].地质学报,2009,83(10):1430-1435.
    陈宣华,王志宏,陈正乐,等.中亚萨亚克大型铜矿出矽卡岩型铜成矿作用的年代学制约[J].岩石学报,2012,28(7):1981-1994.
    常远,周祖翼.利用低温热年代学数据计算剥露速率的丛本方法[J].科技导报2010,28(21):86-95.
    丁孝石.西藏中南部各类花岗岩中黑云母标型特征及其地质意义[J].中国地质科学院矿床地质研究所所刊,1988,1:33-50.
    杜杨松,庞振山,王功文,等.云南省普朗铜矿成矿规律与成矿预测研究[R].中国地质 大学(北京),2007.
    邓军,王长明,李龚建.三江特提斯叠加成矿作用样式及过程[J].岩石学报,2011,28(5):1349-1361.
    丁汝鑫.大别造山带晚白垩世以来的剥蚀作用及古地形再造[D].同济大学博士学位论文,2006.
    范玉华,李文昌.云南普朗斑岩铜矿床地质特征[J].中国地质,2006,33(2):352-362.
    冯庆来,张世涛,葛孟春,等.滇西北中甸地区哈工组放射虫及其构造古地理意义[J].地质科学,2002,37(1):70-78.
    龚松林.角闪石全铝压力计对黄陵岩体古隆升速率的研究[J].东华理工学院学报,2004,27(1):52-58.
    郭欣,杜杨松,庞振山,等.云南普朗斑岩铜矿蚀变带成矿流体特征及其成矿意义.现在地质,2009,23(3):456-471.
    侯增谦,莫宣学.义敦岛弧的形成演化及其对“三江”地区块状硫化物矿床的控制作用[J].地球科学-中国地质大学学报,1991,16(2):154-163.
    侯增谦,曲晓明,周继荣,等.三江地区义敦岛弧碰撞造山过程:花岗岩记录[J].地质学报,2001,75(4):17-24.
    侯增谦,杨岳清,曲晓明,等.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报,2004,13(1):109-120.
    侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,2006,33(2):340-351.
    侯增谦,潘小菲,杨志明.初论大陆环境斑岩铜矿[J].现代地质,2007,332-351.
    胡建,邱检生,王汝成,等.广东龙窝和白石冈岩体锆石U—Pb年代学、黑云母矿物化学及其成岩指示意义[J].岩石学报,2006,22(10):2464-2474.
    黄肖潇,徐继峰,陈建林,等.中甸岛弧红山地区两期中酸性侵入岩的年代学、地球化学特征及成因[J].岩石学报,2012,28(5):1493-1499.
    姜启明,李岳.甘肃崖湾金矿微量元素特征及矿床剥蚀程度研究[J].甘肃地质学报,2005,14(1):27-32.
    李文昌,曾普胜.云南普朗超大型斑岩铜矿特征及成矿模型[J].成都理工大学学报(自然科学版),2007,34(4):436-446.
    李文昌.义敦岛弧构造演化与普朗超大型斑岩铜矿成矿模型[D].中国地质大学(北京)博士学位论文,2007.
    李文昌,曾普胜.云南普朗超大型斑岩铜矿特征及成矿模型[J].成都理工大学学报(自然科学版),2007,34(4):436-446.
    李文昌,尹光候,刘学龙,等.中甸普朗复式斑岩体演化及40Ar-39Ar同位素依据[J].地质学报,2009,83(10):1421-1429.
    李文昌,潘桂棠,侯增谦,等著.西南“三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M].北京:地质出版社,2010,42-46.
    李文昌,尹光候,刘学龙,等.中甸矿集区普朗-红山铜多金属成矿亚带北段帕纳牛场斑岩体40Ar-39Ar年龄及锑矿化[J].地质与勘探,2010,46(2):597-618.
    李文昌,尹光侯,卢映祥,等.西南“三江”格咱岛弧火山-岩浆弧中红山-属都蛇碌混杂岩带的厘定及意义[J].岩石学报,2010,26(6):1661-1671.
    李文昌,刘学龙,曾普胜,等.云南普朗斑岩型铜矿成矿岩体的基本特征[J].中国地质,2011,38(2):403-414.
    李文昌,尹光侯,余海军,等.滇西北格咱火山-岩浆弧斑岩成矿作用[J].岩石学报,2011,27(9):2541-2552.
    李龙,郑永飞,周建波.中国大陆地壳铅同位素演化的动力学模型[J].岩石学报,2001,17(1):61-68.
    李小伟,黄雄飞,黄丹峰.花岗岩中常用压力计的应用评述[J].高校地质学报,2011,17(3),415-422.
    李玉荣,范玉华,孟青.滇西北浪都矽卡岩型铜矿[J].云南地质,2009,28(2):137-142.
    冷成彪,张兴存,王守旭,等.云南中甸地区两个斑岩铜矿容矿斑岩地球化学特征[J].矿物学报,2007,27(3):414-421.
    冷成彪,张兴春,王守旭,等.滇西北中旬松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义[J].大地构造与成矿学,2008,32(1):124-130.
    林文蔚,殷秀兰.玲珑花岗质杂岩体形成的物理化学条件及其地质意义[J].地球学报,1998,19(1):40-49.
    林清茶,夏斌,张玉泉.云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义[J].地质通报,2006,25(2):133-137.
    林秀斌,陈汉林,杨树峰,等.阿尔泰早善待富蕴基性麻粒岩折返过程:来自磷灰石裂变径迹年代学的限定[J].岩石学报,2010,26(2):413-420.
    吕志成,段国正,郝立波,等.大兴安岭中南段燕山期两类不同成矿花岗岩角闪石的化学成分及其成岩成矿意义[J].矿物岩石,2003,23(1):5-10.
    楼亚儿,杜杨松.安徽繁昌-铜陵中生代侵入岩的黑云母特征和成因探讨[J].矿物学报,2006,26(2):175-180.
    李建康,李文昌,王登红,等.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报,2007,23(10):2415-2422.
    刘学龙.中甸岛弧岩浆岩地球化学特征及斑岩型铜矿成矿研究[D].昆明理工大学硕士学位论文,2009.
    刘学龙,李文昌,尹光侯.云南普朗斑岩型铜矿成矿物质来源探讨及成矿作用[J].矿物学报,2011,31(增刊):369-370.
    刘学龙,李文昌,尹光侯.云南格咱岛弧岩浆成矿带铅同位素特征及成矿物质来源示踪[J].现代地质,2012,26(3):445-452.
    刘学龙,李文昌,尹光侯.云南格咱岛弧斑岩-矽卡岩铜、钼(金)矿床成矿系统[J].中国地质,2012,39(4):1007-1022.
    刘学龙,李文昌,尹光侯.格咱岛弧印支期岩浆演化及普朗斑岩型铜矿成矿作用[J].地质学报,2012,86(12):1933-1945.
    刘学龙,李文昌,尹光侯.云南格咱岛弧印支期地壳的隆升与剥蚀[J].矿床地质,2012,31(增刊):1153-1154.
    刘学龙,李文昌.云南格咱岛弧印支期岩浆作用的锆石年龄和铪同位素证据[J].地学前缘,2013,20(3):1-18.
    刘学龙,李文昌,尹光侯.云南格咱岛弧地苏嘎成矿岩体LA-ICP-MS锆石U-Pb年龄及地质意义[J].地质通报,2013,32(4):573-579.
    刘文浩,张均,李婉婷,等.宁芜庐枞盆地玢岩铁矿成矿深度及成矿后抬升剥蚀情况-来自磷灰石裂变径迹的证据[J].地球科学-中国地质大学学报,2012,37(5):966-981.
    骆文娟,张德会,孙剑.河北丰宁岱沟门钼矿区成矿岩体地球化学特征及其对矿床成因的约束[J].地质与勘探,2010,46(3):491-505.
    庞振山,杜杨松,王功文,等.云南普朗复式岩体地质地球化学特征及成因[J].地质通报,2009,28(4):531-538.
    邱检生,肖娥,胡建,等.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hfl司位素制约[J].岩石学报,2008,24(11):2468-2484.
    邱家骧.应用岩浆岩石学[M].北京:地质出版社,1991.
    邱永泉.矿床剥蚀程度研究途径与判别[J].火山地质与矿产,1993,10(1):73-76.
    芮宗瑶,张立生,陈振宇,等.斑岩铜矿的源岩或源区探讨[J].岩石学报,2004,20(2):229-238.
    芮宗瑶,黄崇轲,齐国明等.中国斑岩铜(钼)矿床[M].北京:地质出版社.1984.
    任建波,徐继峰,陈建林.中甸岛弧成矿斑岩的锆石年代学及其意义[J].岩石学报,2011,27(9):2591-2599.
    史长义,鄢明才,迟清华,等.中国花岗岩类化学元素丰度[M].北京:地质出版社,76-106.
    吴利仁.中国东部中生代花岗岩类[J].岩石学报,1985,1(1):1-10.
    吴开兴,胡瑞忠,毕献武,等.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学,2002,30(3):73-81.
    王守旭,张兴春,冷成彪,等.滇西北中甸普朗斑岩铜矿床地球化学与成矿机理初探[J].矿床地质,2007,26(3):277-288.
    王守旭,张兴春,秦建华,等.滇西北普朗斑岩铜矿流体包裹体的初步研究[J].地球化学,2007,36(5):465-478.
    王守旭,张兴春,冷成彪,等.滇西北普朗斑岩铜矿锆石离子探针U-Pb年龄成矿时限及地质意义[J].岩石学报,2008,24(10):2313-2321.
    王守旭,张兴春,冷成彪,等.中甸红山矽卡岩铜矿稳定同位素特征及其对成矿过程的指示[J].岩石学报,2008,24(3):480-488.
    吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb解释的制约[J].科学通报,2004,49(16):1589-1604.
    吴元福,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石化学应用[J].岩石学报,2007,2(2):185-220.
    王建平,翟裕生,刘家军,等.矿床变化与保存研究的裂变径迹新途径[J].地球科学进展,2008,23(4):427-428.
    王建平,刘俊,刘家军,等.黑云母全铝压力计估算胶东西北部玲珑花岗质杂岩剥蚀程度[J].矿物学报,增刊,2009,481-482.
    王功文.基于遥感与GIS的区域矿床保存条件研究-以青海三江北段重点铜矿为例[D].中国地质大学(北京)博士学位论文,2009.
    徐克勤,孙鼐,王德滋,等.华南两类不同成因花岗岩岩石学特征[J].岩石矿物及测试,1982,1(2):1-12.
    徐兴旺,蔡新平,屈文俊,等.滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义[J].地质学报,2006,80(9):1422-1433.
    肖荣阁,白凤军,原振雷,等.东秦岭钼、金多金属矿区域成矿系统与成矿预测[J].现代地质,2010,24(1):1-10.
    薛顺荣.云南三江地区西北部优势矿产资源潜力评价研究[D].中国地质科学院博士毕业论文,2008.
    云南省地质矿产局.云南省区域地质志[M].北京:地质出版社,1990.
    杨岳清,侯增谦,黄典豪,等.中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报,2002,23(1):17-24.
    杨帆,邹国富,吴静,等.中甸春都铜矿区岩体成岩时代及地质意义[J].大地构造与成矿学,2011,35(2):307-314.
    袁万明,王世成,王兰芬.东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据[J].地球学报,2000,21(4):390-395.
    袁万明,杨志强,张招崇,等.安徽省黄山山体的隆升与剥露[J].中国科学(D辑),2011,41(10):1435-1443.
    杨坤光,马昌前.大陆剥蚀速率与造山隆升速率研究的某些进展[J].地质科技情报,1996,15(4):89-96.
    尹光侯,李文昌,蒋成兴,等.中甸火山-岩浆弧燕山期热林复式岩体演化与Ar-Ar定年及铜钼矿化[J].地质与勘探,4(10):385-394.
    翟裕生.金属成矿学研究的若干进展[J].地质与勘探,1997,33(1):13-18.
    翟裕生,邓军,彭润民.矿床变化与保存的研究内容和研究方法[J].地球科学-中国地质大学学报,2000,25(4)340-346.
    翟裕生,彭润民,向运川,等.区域成矿研究法[M].北京:中国大地出版社,2004,41-135.
    翟裕生,邓军,彭润明,等.成矿系统论[M].北京:地质出版社,2010.
    朱炳泉.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化[M].北京:科学出版社,1998:1-330.
    张绪教,何科昭,周志广.滇西地区新第三纪抱粉组合特征及环境变迁[J].现代地质,1996,1(2):187-201.
    张绪教,何科昭.利用新近系煤的镜质反射率计算滇西高原的隆升幅度[J].地质通报,2012,31(2-3):235-240.
    张旗,李承东.花岗岩:地球动力学意义[M].北京:海洋出版社,2012.
    周真恒,向才英.云南岩石圈地温分布[J].地震地质,1997,19(3):227-234.
    曾普胜,莫宣学,喻学忠,等.滇西北中甸斑岩及斑岩铜矿[J].矿床地质,2003,22(4):393-400.
    曾普胜,李文昌,王海平,等.云南普朗印支期超大型斑岩铜矿:岩石学及年代学特征[J].岩石学报,2006,22(4):989-1000.
    赵振华,熊小林,王强,等.新疆西天山莫斯早特石英钠长斑岩铜矿床-一个与埃达克质岩石有关的铜矿实例[J].岩石学报,2004,20(2):249-258.
    赵文津.大型斑岩铜矿成矿的深部构造岩浆活动背景[J].中国地质,2007,34(2):179-205.
    张兴春,冷成彪,杨朝志,等.滇西北中甸春都斑岩铜矿含矿斑岩的锆石SIMS U.Pb年龄及地质意义[J].矿物学报(增刊),2009(1),359-360.
    张华锋,李胜荣,翟明国,等.胶东半岛早白垩世地壳隆升剥蚀及其动力学意义[J].岩石学报,2006,22(2):285-295.
    张新钰,季建清,韩宝福,等.地表剥蚀、下地壳流变与造山作用研究进展[J].地球科学进展,2006,21(5):521-531.
    张德会,周圣华,万天丰,等.矿床形成深度与深部成矿预测[J].地质通报,2007,26(12):1509-1518.
    赵海杰,毛景文,向君峰,等.湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd.Pb司位素特征.岩石学报,2010,26(3):768-784.
    张世全.中甸亚杂铅锌银矿找矿标志及远景[J].云南地质,2010,29(1):36-40.
    张万良.相山铀矿田成矿后隆升剥露的磷灰石裂变径迹分析[J].地质找矿论丛,2012,27(1):23-28.
    张新钰,季建清,韩宝福,等.地表剥蚀、下地壳流变与造山作用研究进展[J].地球科学进展,2006,21(5):521-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700