用户名: 密码: 验证码:
利用秸秆水解液的微生物暗发酵产氢特性及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秸秆类木质纤维素以其数量大、价格低廉、可再生、获取容易等诸多优点成为暗发酵生物制氢潜在的适宜底物。利用秸秆类物质进行生物制氢可以大大降低氢气的生产成本,使生物制氢在经济上更具有可行性,同时避免了秸秆类物质通常的焚烧处理导致的严重环境污染。然而,秸秆类物质具有高结晶度、高异质性的复杂结构,致使微生物对其的直接降解效率较低。因此,利用富含戊糖、己糖的秸秆水解液进行微生物发酵产氢成为生物制氢产业化应用的重要发展方向。目前,在混合微生物进行秸秆水解液发酵产氢过程中,存在着底物降解不充分,产氢效率较低等瓶颈问题,严重阻碍了秸秆水解液产氢的生产规模应用。另一方面,对秸秆水解液利用过程中的微生物产氢分子机制亦不清楚,难以从理论层面指导实际产氢工艺的运行过程。
     基于此,本研究考察了种泥预处理和发酵温度对不同类型混合微生物利用秸秆水解液产氢过程的影响。为提高系统的底物降解率与产氢能力,采用对秸秆水解液具有高效降解、产氢能力的菌株Thermoanaerobacterium thermosaccharolyticum W16对混合微生物利用秸秆水解液产氢过程进行了生物强化。通过扩增片段长度多态性(AFLP)和木质纤维素降解基因分析阐述了T.thermosaccharolyticum类型微生物在秸秆类物质利用过程中的分子机制。对菌株W16的[FeFe]-氢化酶基因簇进行了基因克隆、特征分析与转录表达分析,解析了T. thermosaccharolyticum类型微生物的产氢机制。
     结果表明,热、酸、碱、超声和紫外五种预处理方法中,热预处理对活性污泥、河流底泥和颗粒污泥中混合微生物的产氢过程具有较好提升效果,热预处理下的活性污泥接种达到了最大的氢气产量5.03mmol/g-sugar utilizedo在不同发酵温度(30℃、37℃、55℃、70℃)中,55℃时三种类型种泥均达到最高氢气产量,颗粒污泥接种时数值最大(7.74mmol/g-sugar utilized),而70℃时混合微生物对秸秆水解液的产氢效能显著低于55℃。预处理过程和高温条件显著改变了微生物群落结构,使之由Enterobacter spp.、Escherichia spp.、 Klebsiella spp.等兼性微生物的普遍存在,转变为Clostridium spp.、 Bacillus spp. Thermoanaerobacterium spp等高效厌氧产氢微生物的大量富集。
     菌株W16的生物强化作用可以显著提升腐烂秸秆和厌氧污泥接种时混合微生物利用秸秆水解液过程的氢气产量,同时一定程度提高了底物降解率,生物强化下的腐烂秸秆接种达到最高的氢气产量9.90mmol-H2/g-sugar utilized。AFLP分析显示T. thermosaccharolyticum类型微生物具有较高的基因组DNA保守性,差异条带中的2-polyprenylphenol6-hydroxylase基因可能为T.thermosaccharolyticum类型微生物较强木质纤维素降解能力的关键因素。此外,在T. thermosaccharolyticum中的木质纤维素降解基因中,Cellulose1,4-beta-cellobiosidase基因中-10区RNA聚合酶结合位点处的单碱基差异可能与T. thermosaccharolyticum类型微生物对纤维素的利用效果密切相关。
     克隆得到了菌株W16[FeFe]-氢化酶hyd和hfs基因簇的完整DNA序列,分别包含hyaⅡ (1308bp)、 hydC (480bp)、 hydD (363bp)、 hydB (1788bp)和hydA (1752bp),以及hfsA (243bp)、hfsB (1716bp)和hfsC (1512bp),其中hyaⅡ、hydB、 hydA、hfsB和hfsC为较重要的氢化酶基因。分析了hyd和hfs基因簇中各基因的DNA序列特征、对应蛋白质的物理化学性质、二级和三级结构、结构功能区与保守区。考察不同气相条件(起始N2、H2或CO2灌注)对氢化酶转录表达的影响。对hyd基因簇,hydA的转录过程在高H2或高CO2分压下被严重抑制;hyaB只对高H2分压较为敏感;hyaⅡ在高N2、高H2或高CO2分压下都表达量较低。对hfs基因簇,hfsB在高CO2分压下表现出较高的转录活性,在高H2分压下转录表达较低;hfsC基因在高CO2分压下的转录水平最低。
Due to the advantages of large quantities, lower cost, renewable and easy to obtain, stover-like lignocellulosic materials are considered as potential suitable substrates for dark-fermentation hydrogen (H2) production. Biohydrogen production by stover-like materials can largely decrease H2production cost, making biohydrogen production more economically available. In addition, serious environmental pollution can be avoided by utilizing stover for H2production instead of commonly adopted combustion disposal. However, the higher crystallinity and heterogeneity of stover biomass lead to the lower utilization efficiency of microbes. Therefore, biohydrogen production from stover hydrolysate, which is produced by various pretreatment methods towards stover materials, becomes important route for practical applications. At present, bottleneck problems, such as lower substrate utilization efficiency and H2yield, exist in biohydrogen production from stover hydrolysate by using mixed cultures, preventing the development of practical applications. Furthermore, it is not clear for the molecular mechanisms of substrate degradation and H2production during the process.
     This study investigated the effects of inoculum pretreatment and fermentation temperature on H2-production performances from stover hydrolysate by different kinds of mixed cultures. Thermoanaerobacterium thermosaccharolyticum W16, which was previously isolated and presented better utilization and H2production from stover hydrolysate, was introduced into mixed cultures for bioaugmentation. Amplified fragment length polymorphism (AFLP) and analysis of lignocellulose degradation genes were carried out to illustrate the molecular mechanisms of T. thermosaccharofyticum-kind microbes. For efficient H2-producing strain W16,[FeFe]-hydrogenase gene complexes were cloned, characterized, and analyzed for the transcriptional level to address the molecular mechanisms of H2production.
     Among five pretreatment methods of heat, acid, alkali, ultrasonic, and ultraviolet, heat pretreatment presented the better efforts on the inoculums of activated sludge, river sediments and granular sludge, and activated sludge pretreated by heat reached the optimum H2yield of5.03mmol-H2/g-sugar utilized. Among different fermentation temperatures (30℃,37℃,55℃and70℃), H2production reached the optimum at55℃for the three inoculums, in which granular sludge achieved the highest H2yield (7.74mmol-H2/g-sugar utilized). In addition, Fb production at70℃was significantly lower than that at55℃. Inoculum pretreatment and thermophilic condition significantly changed the microbial community structure, from the universal existances of facultive anaerobes such as Enterobacter spp., Escherichia spp. and Klebsiella spp. to the enrichments of some efficient H2-producing microbes such as Clostridium spp., Bacillus spp. and Thermoanaerobacterium spp.
     The bioaugmentation by the strain W16can significantly increase the H2production from stover hydrolysate by using rotten corn stover and anaerobic sludge, and increase the utilization efficiency to some extent. Bioaugmented rotten corn stover reached the highest H2yield of9.90mmol-H2/g-sugar utilized. AFLP analysis showed that the genomic DNA of T. thermosaccharolyticum-kind microbes was highly reserved, and the2-polyprenylphenol6-hydroxylase gene detected by AFLP might act a key role in the degradation of lignocellulose materials. In addition, the single base located in the-10region (RNA polymerase binding site) of Cellulose1,4-beta-cellobiosidase gene might be relevant to the utilization of cellulose by T. thermosaccharolyticum-kind microbes.
     For the strain W16, the complete DNA sequences of [FeFe]-hydrogenase hyd and hfs gene complexes were cloned and analyzed, which contained hydⅡ (1308bp), hydC (480bp), hydD (363bp), hydB (1788bp), hydA (1752bp) and hfsA (243bp), hfsB (1716bp), hfsC (1512bp), respectively, in which hydⅡ, hydB, hydA, hfsB, and hfsC were important [FeFe]-hydrogenase genes. The study also discussed the physical and chemical characteristics, secondary and the third level structures of proteins, structural functional zones, and conservative zones of [FeFe]-hydrogenase hyd and hfs gene complexes. While investigating the effects of different gas-phase conditions (initial N2, H2, or CO2pouring) on transcriptional expression of important [FeFe]-hydrogenase genes, the transcription of hydA was significantly inhibited under high H2or CO2partial pressure, hydB was only susceptible for high H2partial pressure, and hydll preformed lower transcriptional activities for all the situations. For hfs complex, hfsB showed higher transcriptional level under high CO2partial pressure and lower transcriptional level under high H2partial pressure, and hfsC displayed the lowest transcriptional level under high CO2partial pressure.
引文
1金晶.世界及中国能源结构.能源研究与信息.2003,19(1):20-26
    2柯水洲,马晶伟.生物制氢研究进展(Ⅰ)产氢机理与研究动态.化工进展.2006,25(9):1001-1005
    3顾钢,马驰.2004年世界能源发展总态势.国际石油经济.2005,13(2):6-10
    4J. O. M. Bockris. The Origin of Ideas on Hydrogen Economy and its Solution to the Decay of the Environment. Int. J. Hydrogen Energy.2002,27:731-740
    5S. Dunn. Hydrogen Futures:Toward a Sustainable Energy System. Int. J. Hydrogen Energy.2002,27:235-260
    6J. Miyake, T. Mastsunaga and A. S. Pietro. Biohydrogen II:an Approach to Environmentally Acceptable Technology. Elsevier Science Ltd.2001,3-32
    7J. Miyake, M. Miyake, Y. Asada. Biotechnological Hydrogen Production Research for Efficient Light Energy Conversion. J. Biotechnol.1999,70:89-101
    8卢文玉,刘铭辉,陈宇等.厌氧发酵法生物制氢的研究现状和发展前景.中国生物工程学杂志.2006,26(7):99-104
    9R. A. Hefner III. The Age of Energy Gases. Int. J. Hydrogen Energy.2002,23(1):1-9
    10S. E. Oh, S. Van Ginkel, B. E. Logan. The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production. Environ. Sci. Technol.2003,37:5186-5190
    11J. Benemann. Hydrogen Biotechnology:Progress and Prospects. Nat. Biotechnol.1996,14:1101-1103.
    12D. Das, V. T. Nejat. Hydrogen Production by Biological Processes:a Survey of Literature. Int. J. Hydrogen Energy.2001,26:13-28.
    13B. D. Levin, L. Pitt, M. Love. Biohydrogen production:prospects and limitations to practical applications. Int. J. Hydrogen Energy.2004,29:173-185
    14J. Miyake, M. Miyake, Y. Asada. Biotechnological Hydrogen Production Research for Efficient Light Energy Conversion. J. Biotechnol.1999,70:89-101
    15任南琪.有机废水处理生物产氢原理与工程控制对策研究.哈尔滨建筑大学博士学位论文.1993
    16J. D. Brosseau, J. E. Zajic. Continuous Microbial Production of Hydrogen Gas. Int. J. Hydrogen Energy.1998,23:559-563
    17C. T. Gray, H. Gest. Biological Formation of Molecular Hydrogen. Science.1964,148:186-192
    18S. Tanisho, M. Kuromoto, N. Kadokura. Effect of CO2removal on hydrogen production by fermentation. Int. J. Hydrogen Energy.1998,23(7):559-563
    19S. Tanisho. Astrategy for improving the yield of hydrogen by fermentation. Proceedings of13th WHEC, Beijing,2000,363-369
    20A. Cohen, J. M. Gemert, R. J. Zoeremeyer, A. M. Breure. Main Characteristics and Stoichiometric Aspects of Acidogenesis of Soluble Carbohydrate Containing Wastewater. Proc. Biochem.1984,19(6):228-232
    21任南琪,王宝贞.有机废水发酵法生物制氢技术.黑龙江科学技术出版社.1994:32-33
    22N. Q. Ren, B. Z. Wang, J. C. Huang. Ethanol-Type Fermentation form Carbohydrate in High Rate Acidogenic Reactor. Biotech. Bioeng.1997,54:428-433
    23F. Taguchi, J. D. Chang, S. Takiguchi, et al. Efficient Hydrogen Production from Starch by a Bacterium Isolated from Termites. J. Ferment Bioeng.1992,73:244-245
    24F. Taguchi, J. D. Chang, N. Mizukami, et al. Isolation of a Hydrogen Producing Bacteria Clostridium beijerincki strain AM21B from Termites. Can. J. Microbiol.1993,39:726-732
    25W. M. Chen, Z. J. Tseng, K. S. Lee, et al. Fermentative hydrogen production with Clostridium butyricum CGS5isolated fromanaerobicsewage sludge.Int. J. Hydrogen Energy.2005,30:1063-1070
    26X. Y. Wang, B. Jin. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J Biosci. Bioeng.2009,107:138-144
    27M. L. Chong, R.A. Rahima, Y. Shiraib, et al. Bio-hydrogen production by Clostridium butyricum EB6from palm oil mill effluent. Int. J. Hydrogen Energy.2009,34:764-771
    28U. Ramachandran, N. Wrana, N. Cicek, et al. Hydrogen production and end-product synthesis patterns by Clostridium termitidis strain CT1112in batch fermentation cultures with cellobiose or a-cellulose. Int. J. Hydrogen Energy.2008,33:7006-7012
    29Z. Ren, T.E. Ward, B.E. Logan, et al. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J. Appl. Microbiol.2007,103:2258-2266
    30S. Tanisho, Y. Suzuki, N. Wakao. Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005. Int. J. Hydrogen Energy.1987,12:623-627
    31M. Rachman, Y. Furutani, Y. Nakashimada, et al. Enhanced Hydrogen Production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J. Ferment. Bioeng.1991,4:358-363
    32N. Kumar, D. Das. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT08. Proc. Biochem.2000,35:589-593
    33H. S. Jayasinghearachchi, P. M. Sarma, S. Singh, et al. Fermentative hydrogen production by two novel strains of Enterobacter aerogenes HGN-2and HT34isolated from sea buried crude oil pipelines. Int. J. Hydrogen Energy.2009,34:7197-7207
    34Y. K. Oh, E. H. Seol, E. Y. Lee, S. Park. Fermentative Hydrogen Production by a New Chemoheterotrophic Bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy.2002,27:1373-1379
    35Y. K. Oh, E. H. Seol, J. R. Kim, S. Park. Fermentative Biohydrogen Production by a New Chemoheterotrophic Bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy.2003,28:1353-1359
    36林明.高效产氢发酵新菌种的产氢机理及生态学研究.哈尔滨工业大学博士学位论文.2002
    37邢德峰.产氢—产乙醇细菌群落结构与功能研究.哈尔滨工业大学博士学位论文.2006
    38E. W. J. van Niel, M. A. W. Budde, G. G. de Haas, F. J. van der Wai, P. A. M. Claassen, A. J. M. Stams. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int. J. Hydrogen Energy.2002,27:1391-1398
    39S. O-Thong, P. Prasertsan, D. Karakashev, I. Angelidaki. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int. J. Hydrogen Energy.2008,33:1204-1214
    40S. O-Thong, P. Prasertsan, D. Karakashev, I. Angelidaki. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2immobilized on heat-pretreated methanogenic granules. Int. J. Hydrogen Energy.2008,33:6498-6508
    41Y. Liu, P. Yu, X. Song, Y. B. Qu. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4and Thermoanaerobacterium thermosaccharolyticum GD17. Int. J. Hydrogen Energy.2008,33:2927-2933
    42N. Q. Ren, G. L. Cao, A. J. Wang, D. J. Lee, W. Q. Guo, Y. H. Zhu. Dark Fermentation of Xylose and Glucose Mix using Isolated Thermoanaerobacterium thermosaccharolyticum W46. Int. J. Hydrogen Energy.2008,33:6124-6132
    43M. W. Adams. The structure and mechanism of iron-hydrogenases. Biochim. Biophys. Aeta.1990,1020:115-145
    44M. Stephenson, L. H. Stickland. Hydrogenase:A bacterial enzyme activating molecular hydrogen. The proprieties of the enzyme. Biochem. J.1931,25:205-214.
    45S. P. J. Albracht. Nickel hydrogenases:in search of the active site. Biochim. Biophys. Acta.1994,1188:167-204
    46A. Bock, P. W. King, M. Blokesch, M. C. Posewitz. Maturation of Hydrogenases. Adv. Microb. Physiol.2006,51:1-72
    47杜明,任南琪,张璐,许继飞,邱颉.氢化酶结构研究进展.生物信息学.2009,7(4):323-325
    48A. Volbeda, M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey, J. C Fontecilla-Camps. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature.1995,373:580-587
    49J. W. Peters, W. N. Lanzilotta, B. J. Lemon, L. C. Seefeldt. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8Angstrom resolution. Science.1998,282:1853-1858.
    50S. Shima, R. K. Thauer. A third type of hydrogenase catalyzing H2activation. Chem. Rec.2007,7(1):37-46
    51M. Frey. Hydrogenases:hydrogen-activating enzymes. Chem. Biochem.2002,3:153-160
    52G. Chittibabu, K. Nath, D. Das. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Proc. Biochem.2006,41:682-688
    53J. F. Zhao, W. L. Song, J. Cheng, et al. Heterologous expression of a hydrogenase gene in Enterobacter aerogenes to enhance hydrogen gas production. World J. Microbiol. Biotechnol.2010,26:177-181
    54J. H. Jo, C. O. Jeon, S. Y. Lee, et al. Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1. Int. J. Hydrogen Energ.2010,35:1065-1073
    55A. J. Shaw, D. A. Hogsett, L.R. Lynd. Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J. Bacteriol.2009,191(20):6457-6464
    56赵鑫.乙醇型发酵群落分析及产乙醇杆菌功能基因表达研究.哈尔滨工业大学博士论文.2011
    57X. Zhao, D. F. Xing, L. Zhang, N. Q. Ren. Characterization and overexpression of a [FeFe]-hydrogenase gene of a novel hydrogen-producing bacterium Ethanoligenens harbineme. Int. J. Hydrogen. Energ.2010,35:9598-9602
    58N. Kumar, D. Das. Production an Purification of a-amylase from Hydrogen Producing Enterobacter Cloacae IIT-BT08. Bioproc. Eng.2000,23:205-208
    59F. Taguchi, J. D. Chang, N. Mizukami, T. Saito-Taki, K. Hasegawa. Isolation of a Hydrogen-producing Bacterium Clostridium Beijerinckii Strain AM21B,from Termites. Can. J. Microbiol.1993,39:726-730
    60H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi, Y. Takasaki. Hydorgen Production by Immobilized Cells of Aciduric Enterobacter aerogenes Strain HO-39. J. Ferment. Bioeng.1997,83(5):481-484
    61王相晶.发酵产氢细菌B49生理特性及其固定化应用研究.哈尔滨工业大学博士论文.2003
    62Y. C. Lo, M. D. Bai, W. M. Chen, J. S. Chang. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour. Technol.2008,99:8299-8303
    63D. Y. Cheong, C. L. Hansen. Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes. Bioresour. Technol.2007,98:2229-2239
    64Y. T. Fan, Y. Xing, H. C. Ma, C. M. Pan, H. W. Hou. Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure. Int. J. Hydrogen Energy.2008,33:6058-6065
    65P. E. P. Koskinen, C. H. Lay, J. A. Puhakka, P. J. Lin, S. Y. Wu, J. Orlygsson, C. Y. Lin. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an icelandic hot spring. Biotechnol. Bioeng.2008,101:665-678
    66C. Y. Lin, C. C. Wu, J. H. Wu, F. Y. Chang. Effect of cultivation temperature on fermentative hydrogen Production from xylose by a mixed culture. Biomass Bioenergy.2008,32:1109-1115
    67H. H. P. Fang, T. Zhang and H. Liu. Biohydrogen Production from Starch in Wastewater under Thermophilic Condition. J. Environ. Manag.2003,69:149-156
    68H. Yokoyama, M. Waki, N. Moriya, T. Yasuda, Y. Tanaka, K. Haga. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl. Microbiol. Biotechnol.2007,74:474-483
    69李日强.纤维素类废弃物的综合利用.中国环境科学.2002,22(1):24-27
    70夏黎明.可再生纤维素资源酶法降解的研究进展.林产化工通讯.1999,33(1):23-28
    71陈洪章.纤维素生物技术.北京:化学工业出版社.2005,1-2
    72C. E. Wyman. Ethanol from lignocellulosic biomass:Technology, economies, and opportunities. Bioresour. Technol.1994,50:3-15
    73J. Perez, J. Mufioz-Dorado, T. Rubia. Biodegradation and Biological Treatments of cellulose, Hemicellulose and Lignin:an Overview. Int. Microbiol.2002,5:53-63
    74H. J(?)rgensen, J. B. Kristensen, C. Felby, Enzymatic conversion of lignocellulose into fermentable sugars:challenges and opportunities. Biofuels. Bioprod. Bioref.2007,1:119-134
    75R. C. Kuhad, A. Singh. Lignocellulose biotechnology:Current and future prospects. Crit. Rev. Biotechnol.1993,13:151-172
    76Y. Lin, S. Tanaka. Ethanol fermentation from biomass resources:current state and prospects. Appl. Microbiol. Biotechnol.2006,69:627-642
    77L. R. Lynd, R. T. Elander, C. E. Wyman. Likely features and costs of mature biomass ethanol technology. Appl. Biochem. Biotechnol.1996,57/58:741-761
    78N. Mosier, C. Wyman, B. Dale, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol.2005,96:673-686
    79I. K. Kapdan, F. Kargi. Bio-hydrogen production from waste materials. Enzyme Microb. Technol.2006,38:569-582
    80J. Weil, P. Westgate. Cellulose pretreaments of lignocellulosic substrates. Enzyme microb. Technol.1994,16(11):1002-1004
    81L. Cadoche, G. D. Lopez. Assessment of size reduetion as a preliminary step in the produetion of ethanol from lignocellulosic wastes. Biol. Wastes.1989,30:153-157
    82S. D. Zhu, Y. X. Wu, Z. N. Yu, et al. Pretreatment by microwave/alkali of rice Straw and its enzymic hydrolysis. Proc. Biochem.2005,40:3082-3086
    83W. C. Neely. Faetors affecting the pretreatment of biomass with gaseous ozone. Biotechnol. Bioeng.1984,20:59-65
    84A. Esteghlalian, A. G. Hashimoto, J. J. Fenske, et al. Modeling and optimization of the dilute-sulfuric-acid Pretreatment of cornstover, poplar and switehhgrass. Bioresour. Teehnology.1997,59:129-136
    85R. Torget, M. E. Himmel, K. Grohnlann. Dilute sulfuric acid pretreatment of hardwood bark. Bioresour. Technol.1991,35:239-246
    86M. von Sivers, G. Zacchi. A Techno-economical Comparison of three Processes for the Production of Ethanol from Pine. Bioresour. Technol.1995,51(1):43-52
    87D. E. Akin, L. Y. Rigsby, A. Sethuraman, et al. Alterations in strueture,chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cathus stercoreus. Appl. Environ. Microbiol.1995,61:1591-1598
    88I. Ballesteros, J. M. Oliva, M. J. Negro, et al. Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Proc. Biochem.2002,38:187-192
    89D. M. Li, H. Z. Chen. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int. J. Hydrogen Energy.2007,32(12):1742-1748
    90Y. C. Lo, W. C. Lu, C. Y. Chen, J. S. Chang. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour. Technol.2010,101:5885-5891
    91S. Pattra, S. Sangyoka, M. Boonmee, et al. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int. J. Hydrogen Energy.2008,33:5256-5265
    92Z. Kadar, T. D. Vrije, G. E. van Noorden, M. A. W. Budde, Z. Szengyel, K. Reczey, P. A. M. Claassen. Yields from Glucose, Xylose, and Paper Sludge Hydrolysate during Hydrogen Production by the Extreme Thermophile Caldicellulosiruptor Saccharolyticus. Appl. Biochem. Biotechnol.2004,(113-116):497-508
    93R. Datar, J. Huang, P. C. Maness, et al. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrogen Energy.2007,32:932-939
    94M. L. Zhang, Y. T. Fan, Y. Xing, C. M. Pan, G. S. Zhang, J. J. Lay. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass. Bioenerg.2007,31:250-254
    95P. Kongjan, I. Angelidaki. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation:Effect of reactor configuration. Bioresour. Technol.2010,101:7789-7796
    96C. Z. Liu, X. Y. Cheng. Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int. J. Hydrogen Energy.2010,35:8945-8952
    97L. Magnusson, R. Islam, R. Sparling, D. Levin, N. Cicek. Direct Hydrogen Production from Cellulosic Waste Materials with a Single-step Dark Fermentation Process. Int. J. Hydrogen Energy.2008,33:5398-5403
    98曹广丽.玉米秸秆高效利用产氢菌种及其产氢性能研究.哈尔滨工业大学博士学位论文.2010
    99C. M. Huban, R. D. Plowman. Bioaugmentation:Put Microbes to Work. Chem. Eng.1997,3:74-84
    100H. V. Limbergen, E. M. W. Vestraete. Bioaugmentation in Activated Sludge: Current Feature and Future Perspectives. Appl. Microbiol. Biotechnol.1998,50:16-23
    101K. K. Chin, S. L. Ong, L. H. Poh. Wastewater Treatment with Bacterial Augmentation. Wat. Sci. Tech.1996,33(8):17-22
    102R. Saravanane, D. V. S. Murthy, K. Krishnaiah. Bioaugmentation and Treatment of Cephalexin Drug-Based Pharmaceutical Effluent in an Upflow Anaerobic Fluidized Bed System. Bioresour. Technol.2001,76:279-281
    103全向春.生物强化技术治理废水中难降解有机物2,4-二氯酚的研究.清华大学博士论文.2002
    104秦智.生物反应器发酵类型控制对策及其生物强化作用研究.哈尔滨工业大学博士论文.2003
    105D. F. Xing, N. Q. Ren, A. J. Wang, et al. Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3under non-sterile condition. Int. J. Hydrogen Energy.2008,33:1489-1495
    106R. I. Amann, W. Ludwig, K. H. Schleifer. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev.1995,59(1):143-169
    107C. Palmer, E. M. Bik, M. B. Eisen. Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res.2006,34(1):e5
    108J. L. Kirk, L. A. M. Beaudette. Methods of studying soil microbial diversity. J. Microbiol. Met.2004,58:169-188
    109S. G. Fischer, L.S. Lerman. Length-independent Separation of DNA Restriction Fragments inTwo Dimensional Gel Electrophoresis. Cell.1979,16:191-200
    110G. Muyzer, E. C. Waal, A. G. Uitterlinden. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction Amplicied Genes Encoding for16S rRNA. Appl. Environ. Microbiol.1993,59:695-700
    111张坤.应用DGGE监测SBR启动及恶化期微生物群落结构与演替.哈尔滨工业大学硕士论文.2007
    112H. S. Shin, J. H. Youn. Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation.2005,16:33-44
    113Y. Akutsu, Y. Y. Li, M. Tandukar, K. Kubota, H. Harada. Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch. Int. J. Hydrogen Energy.2008,33:6541-6548
    114H. Yokoyama, N. Moriya, H. Ohmori, M. Waki, A. Ogino, Y. Tanaka. Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Appl. Microbiol. Biotechnol.2007,77:213-222
    115P. Vos, R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res.1995,23(21):4407-4414
    116C. Valsangiacomo. Use of AFLP in Molecular Taping of Legionella Pneuymophial and Application to Epidemiological Studies. Res. Microbiol.1995,33:1717-1719
    117P. Janssen, G. Coopman, J. Huys, et al. Evaluation of the DNA Fingerprinting Method AFLP as a New Tool in Bacteral Taxonomy. Microbiology.1996,142:1881-1893
    118N. Velappan, J. L. Snodgrass, J. R. Hakovirta, B. L. Marronea, S. Burde. Rapid identification of pathogenic bacteria by single-enzyme amplified fragment length polymorphism analysis. Diagn. Mcicrobiol. Infect. Dis.2001,39:77-83
    119L. Mcauliffe, B. Kokotovic, R. D. Ayling, et al. Molecular Epidemiological Analysis of Mycoplasma Bovis Isolates from the United Kingdom Shows two Genetically Distinct Clusters. J. Clin. Microbiol.2004,42(10):4556-4565
    120张小平,陈强,李登煜等.用AFLP技术研究花生根瘤菌的遗传多样性.微生物学报.1999,39(6):483-488
    121高俊莲,陈文新,T. Zewdu等.应用AFLP技术对斜茎黄芪根瘤菌遗传多样性的分析研究.应用与环境生物学报.1999,5(4):387-395
    122郑国香.产乙醇杆菌属突变菌株YR-3的产氢行为及其突变机制.哈尔滨工业大学博士论文.2008
    123Y. G. Liu, R. F. Whittier. Thermal asymmetric interlace PCR:automatable amplification and sequencing of insert end fragments from PI and YAC clones for chromosome walking. Genomics,1995,25(3):674-681
    124杨春晖,王海燕.短小芽孢杆菌碱性蛋白酶基因启动子的克隆、鉴定及其应用.遗传.2007,29(7):874-880
    125H. Q. Huang, N. Shao, Y. Wang, H. Y. Luo, P. L. Yang, Z. G. Zhou, et al. A novel beta-propeller phytase from Pedobacter nyackensis MJ11CGMCC2503with potential as an aquatic feed additive. Appl. Microbiol. Biotechnol.2009,83:249-259
    126Y. J. Zou, L. F. Yang, L. Wang, S. S. Yang. Cloning and Characterization of a Na+/H+Antiporter Gene of the Moderately Halophilic Bacterium Halobacillus aidingensis AD-6T. J. Microbiol.2008,46(4):415-421
    127朱辉,丁延芹,田方,姜远茂,杜秉海.多粘类芽孢杆菌SC2xynD和gluB的克隆及序列分析.生物技术通报.2008,4:171-174
    128H. K. Goering, P. J. Van Soest. Forage Fiber Analysis (apparatus, reagents, procedures, and some applications). Agricultural handbook No.379. Washington, DC:Agricultural Research Service, United States Department of Agriculture1970:1-20
    129E. A. Wolin, M. J. Wolin, R. S. Wolfe. Formation of Methane by Bacterial Extracts. J. Biol. Chem.1963,238:2882-2886
    130G. L. Miller. Use of dinitrosalicylic acid and reagent for the determination ofreducing sugars. Anal. Chem.1959,31:426-428
    131T. M. Rose, E. R. Schultz, J. G. Henikoff, et al. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Res.1998,26(7):1628-1635.
    132M. A. Larkin, G. Blackshields, N. P. Brown, et al. Clustal W and Clustal X version2.0. Bioinformatics.2007,23:2947-2948
    133K. Tamura, J. Dudley, M. Nei et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version4.0. Mol. Biol. Evol.2007,24:1596-1599
    134C. Lambert, N. Leonard, X. De Bolle, et al. ESyPred3D:Prediction of proteins3D structures. Bioinformatics.2002,18(9):1250-1256
    135M. Punta, P.C. Coggill, R.Y Eberhardt, et al. The Pfam protein families database. Nucleic Acids Res.2012,40:290-301
    136J. L. Wang, W. Wan. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int. J. Hydrogen Energy.2008,33:2934-2941
    137B. Baghchehsaraee, G. Nakhla, D. Karamanev, A. Margaritis, G. Reid. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int. J. Hydrogen Energy.2008,33:4064-4073
    138P. Mohammadi, S. Ibrahim, M. S. M. Annuar, S. Law. Effects of different pretreatment methods on anaerobic mixed microflora for hydrogen production and COD reduction from palm oil mill effluent. J. Clean Prod.2011,19:1654-1658
    139S. Singh, A. K. Sudhakaran, P. M. Sarma, S. Subudhi, A. K. Mandal, G. Gandham, et al. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from river bed sediments. Int. J. Hydrogen Energy.2010,35:10645-10652
    140S. H. Kim, H. S. Shin. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int. J. Hydrogen Energy.2008,33:5266-5274
    141D. Li, Z. H. Yuan, Y. M. Sun, L. L. Ma. Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW). Int. J. Hydrogen Energy.2010,35:8234-8240
    142D. M. Rossi, J. B. da Costa, E. A. de Souza, M. C. R. Peralba, D. Samios, M. A. Z. Ayub. Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int. J. Hydrogen Energy.2011,36:4814-4819
    143E. Seol, S. Kim, S. M. Raj, S. Park. Comparison of hydrogen production capability of four different Enterobacteriaceae strains under growing and non-growing conditions. Int. J. Hydrogen Energy.2008,33:5169-5175
    144X. Zhu, X. W. Xie, Q. Liao, Y. Z. Wang, D. J. Lee. Enhanced hydrogen production by Rhodopseudomonas palustris CQK01with ultra-sonication pretreatment in batch culture. Bioresour. Technol.2011,102:8696-8689
    145L. Guo, X. M. Li, X. Bo, Q. Yang, G. M. Zeng, D. X. Liao, et al. Impacts of sterilization, microwave and ultrasoni cation pretreatment on hydrogen producing using waste sludge. Bioresour. Technol.2008,99:3651-3658
    146E. Elbeshbishy, H. Hafez, G. Nakhla. Enhancement of biohydrogen producing using ultrasonication. Int. J. Hydrogen Energy.2010,35:6184-6193
    147H. Wang, M. Fang, Z. Fang, H. Y. Bu. Effects of sludge pretreatments and organic acids on hydrogen production by anaerobic fermentation. Bioresour. Technol.2010,101:8731-8735
    148C. C. Wang, C. W Chang, C. P. Chu, D. J. Lee, B. V. Chang, C. S. Liao. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J. Biotechnol.2003,102:83-92
    149S. M. Kotay, D. Das. Microbial hydrogen production with Bacillus coagulans IIT-BT SI isolated from anaerobic sewage sludge. Bioresour. Technol.2007,98:1183-1190
    150T. Noike, H. Takabatake, O. Mizuno, et al. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int. J. Hydrogen Energy.2002,27:1367-1371
    151H. S. Shin, J. H. Youn, S. H. Kim. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy.2004,29:1355-1363
    152A. Geng, Y. L. He, C. L. Qian, X. Yan, Z. H. Zhou. Effect of key factors on hydrogenproduction from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour. Technol.2010,101:4029-4033
    153M. E. Nissila, H. P. Tahti, J. A. Rintala, et al. Thermophilic hydrogen production from cellulose with rumen fluid enrichment cultures:Effects of different heat treatments. Int. J. Hydrogen Energy.2011,36:1482-1490
    154Y. Ueno, S. Haruta, M. Ishii, Y. Igarashi. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol.2001,57:555-562
    155林海龙.产乙醇杆菌属功能基因克隆表达及基因敲除载体构建.哈尔滨工业大学博士论文.2008
    156S. E. Oh, Y. Zuo, H. Zhang, M. J. Guiltinan, B. E. Logan, J. M. Regan. Hydrogen production by Clostridium acetobutylicum ATCC824and mega plasmid-deficient mutant M5evaluated using a large headspace volume technique. Int. J. Hydrogen Energy.2009,34:9347-9353
    157O. Mizuno, R. Dinsdale, F. R. Hawkes, D. L. Hawkes, T. Noike. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol.2000,73:59-65
    158D. H. Kim, S. K. Han, Kim SH, Shin HS. Effect of gas sparging on continuous fermentative hydrogen production. Int. J. Hydrogen Energy.2006,31:2158-2169
    159J. T. Kraemer, D. M. Bagley. Optimization and design of nitrogen sparged fermentative hydrogen production bioreactors. Int. J. Hydrogen Energy.2008,33:6558-6564
    160J. Massanet-Nicolau, A. Guwy, R. Dinsdale, G. Premier, S. Esteves. Production of hydrogen from sewage biosolids in a continuously fed bioreactor:effect of hydraulic retention time and sparging. Int. J. Hydrogen Energy.2010,35:469-478
    161I. Valdez-Vazquez, E. Rios-Leal, A. Carmona-Martianez, K. M. Munoz-Paez, H. M. Poggi-Varaldo. Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Environ. Sci. Technol.2006,40:3409-3415
    162M. Prathima Devi, S. Venkata Mohan, G. Mohanakrishna, P. N. Sarma. Regulatory influence of CO2supplementation on fermentative hydrogen production process. Int. J. Hydrogen Energy.2010,35:10701-10709
    163B. F. Liu, N. Q. Ren, J. Ding, G. J. Xie, G. L. Cao. Enhanced photo-H2production of R. faecalis RLD-53by separation of CO2from reaction system. Bioresour. Technol.2009,100:1501-1504
    164W. Park, S. H. Hyun, B. E. Logan, I. S. Kim. Removal of headspace CO2increases biological hydrogen production. Environ. Sci. Technol.2005,39:4416-4420
    165X. J. Wang, N. Q. Ren, W. S. Xiang, W. Q. Guo. Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49. Int. J. Hydrogen Energy.2007,32:748-754
    166N. Q. Ren, G. L. Cao, A. J. Wang, D. J. Lee, W. Q. Guo, Y. H. Zhu. Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energy.2008,33:6124-6132
    167S. Shima, O. Pilak, S. Vogt, M. Schick, M. S. Stagni, W. Meyer-Klaucke, et al. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science.2008,321:572-575
    168O. Pilak, B. Mamat, S. Vogt, C. H. Hagemeier, R. K. Thauer. The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. J. Mol. Biol.2006,358:798-809
    169M. Y. Wang, Y. L. Tsai, B. H. Olson, J. S. Chang. Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR. Int. J. Hydrogen Energy.2008,33:4730-4738

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700