用户名: 密码: 验证码:
滇西羊拉铜矿矿体地质地球化学特征及深部找矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊拉大型铜矿床在区域上处于“三江”(金沙江、澜沧江、怒江)古特提斯构造域中段,隶属中咱陆块与昌都-思茅陆块相夹持的金沙江板块缝合带。研究区域羊拉铜矿区从北到南包括江边矿段、里农矿段及路农矿段,其中里农矿段和路农矿段为主采矿段。本文紧紧围绕羊拉矿区特别是里农矿段矿体为主要研究对象,在深入探讨与形成矿体产出相关的赋矿围岩、花岗岩类以及矽卡岩的地质地球化学特征基础之上,着重对里农矿段2号以及5号矿体展开从矿物学、岩石学、矿床学、地球化学等方面的系统研究,最后总结矿区成矿多样性及矿床谱系规律,建立羊拉矿床成矿模式,并对矿区做深部找矿预测评价,通过研究,所获主要成果及认识如下:
     (1)通过对羊拉矿区赋矿围岩的地球化学元素分析,矿区主要赋矿地层的金属元素Cu、Pb、Zn、Bi、Zn、W、Mo等元素富集,明显高于地壳均值,赋矿地层纹层状硅质岩的发育以及Ba元素在地层中较强富集,反映了地层形成中受到热水沉积作用,表明地层具有为矿体的形成提供了部分物质来源的条件;
     (2)在充分分析羊拉矿区主要岩体的矿物组成、主量元素以及微量元素基础上,探讨了对羊拉矿区岩体的岩浆来源、形成的地质背景,对岩体的含矿性进行了评价。羊拉花岗岩属钙碱性准铝质-弱过铝质Ⅰ型花岗岩。各岩体微量元素普遍富集Rb、Th、U、K和La等大离子亲石元素,相对亏损Nb、Ta、Zr及Hf等高场强元素,稀土元素分配模式均表现为较弱的铕负异常的右倾斜的平滑曲线,反映岩体之间具有相似的岩浆源区;综合区域、微量元素以及同位素资料,探讨了花岗岩类形成的地质背景,认为羊拉矿区花岗岩主要形成于金沙江洋盆向西昌都-兰坪陆块之下俯冲的岛弧环境,兼具火山弧型和同碰撞型之间的过渡型花岗岩体;岩浆活动对活化成矿物质及形成羊拉铜矿起到了重要作用,从岩体矿化形式、元素富集特征等方面对花岗岩体与成矿关系特征进行了评价;
     (3)在羊拉铜矿矽卡岩矿物学、地球化学以及矽卡岩成岩成矿过程方面的研究取得了一些新进展:厘定了羊拉主要矽卡岩矿物类型,主要包括辉石以及石榴子石,辉石以钙铁辉石以及透辉石为主,石榴子石主要包括钙铁榴石以及钙铝榴石;矽卡岩具有一定的空间分带,近岩体的矽卡岩中石榴石含量较高,远岩体的矽卡岩中透辉石含量较高;矿床石榴子石具有环带现象,体现了石榴子石在生长过程中物理化学、流体组成等环境的变化;探讨了Sn元素在石榴子石中的含量以及赋存特征,显示Sn在石榴子石具有较高含量,高含量的锡主要以Sn4+离子状态以类质同相形式存在于石榴子石中;对矽卡岩以及矽卡岩单矿物石榴子石、透辉石稀土元素以右偏Eu正异常的特征产生的原因进行了分析;通过典型剖面地球化学定量分析证明了矽卡岩形成过程中与岩体以及围岩之间发生了物质的迁入与迁出,进一步确认了矿区矽卡岩成矿作用类型为接触渗滤交代作用;
     (4)矿区典型矽卡岩型矿体2号以及5号矿体地质地球化学研究进展:对矿体的品位数值特征进行了定量分析,矿段品位表现为双峰以及多峰特征,分析了矿体品位的空间变化规律;厘定了矿体的形成阶段,包括接触变质期、石英硫化物期以及表生期,大规模矿化发生在石英硫化物期;构建了矿体垂向原生晕分带模式,垂向原生晕表现为上部As、Pb、 Zn,中部Ag、W、Bi、Mn,下部Cu、Sn、Mo的分带特征,体现了矿物形成的由中低温环境到中高温环境变化,构建了原生晕定量评价模型,选取分带指数值Pb*Zn*Ag*Bi/Cu*Sn*Mo作为构建深部找矿预测模型的指标;
     (5)系统分析了铅、硫、碳、氢、氧同位素组成,对矿体形成的物质来源与成矿环境提供了比较全面的证据:在铅模式图上,矿石铅主要落在上地壳与造山带演化曲线之间,也有少数样品落在上地幔与造山带之间,表明矿体中铅主要为地壳来源,但同时也包括地幔组分的加入,本区的主要长石铅以及矿石铅均落在岛弧的范围内,表明在本区在古特提斯成矿作用过程中本区处于岛弧的环境;矿区主要硫化物硫同位素接近0,均一化程度较高,频率直方图上表现明显的塔式分布规律,表明矿床各个溶液硫具有相当均一的性质,硫源比较单一,显示地壳深部硫的来源特征,主要属于幔源硫,硫同位素变化范围小,显示矿床与岩浆具有密切成因联系;氢氧同位素数据表明矽卡岩矿床矿液来源除岩浆水外,大气降水的作用在羊拉矿区成矿的后期比较显著;碳氧同位素结果表明矿石中方解石脉、岩体接触带附近方解石脉以及大理岩型矿石的方解石中的碳、氧可能同时受到了里农岩体的侵位与改造;
     (6)分析了矿区的成矿多样性特征,构建了成矿多样性规律性序列,建立矿区时间-空间-成因谱系,并基于成矿多样性以及矿床谱系特征,提出了综合找矿以及综合利用的意见与建议;对金沙江构造带主要类型铜矿进行了对比研究,总结了羊拉矿床控矿因素、找矿标志以及成矿模式,对矿区找矿远景区进行了圈定与评估,提出了预测依据以及主要方法,确定里农路农结合部、里农矿段深部地区、路农采场北部深部地区具有深部找矿远景,有待更进一步的勘查与研究工作。
The large copper deposit, Yangla deposit, which belongs to Jinsha River plate suture zone gripped by Zhongza landmass and Changdu-Simao landmass, lies in the middle piece of the three-rivers(Jinsha River, Lancang River and Nu River) Paleo Tethys tectonic zone. The Yangla copper orefield discussed by this article contains the Jiangbian ore block, the Linong ore block and the Lunong ore block from north to south, the Linong and Lunong ore blocks are the main mining section. Based on the thorough discussion on the geochemistry characteristics of the ore-related surrounding rocks, granite and skarn, this article takes the Yangla orefield, especially the typical skarn type ore body in the Linong ore block, as main object of study, mainly discusses the mineralogical, petrological and geochemical characteristics of the Ⅱ#and Ⅴ#ore body in the Linong ore block. Finally, the author summarizes the metallogenic diversity and the metallogenic model of the deposit, and makes a deep prospecting prediction evaluation. The main results obtained as follows:
     (1)Based on the element content analysis, the wall rocks are found to be rich in Cu、Pb、 Zn、Bi、Zn、W、Mo, etc. Laminated siliceous rocks development and Ba enrichment in country rocks might represent that the stratum have experienced Hot water deposition, and the surrounding rocks might have provided some ore-forming materials.
     (2)Based on the mineralogy, major elements and trace elements analyses of the main granites in the Yangla orefield, the magma sources, the geological background and ore-bearing ability of the granites are discussed:the Yangla granite belongs to the calc-alkaline slightly peraluminous I type granite. The granites are commonly rich in large-ion lithophile elements such as Rb、Th、U、K and La, but in depletion of HFS elements such as Nb、Ta、Zr and Hf. The REE distribution patterns are characterized by LREE enrichment and slightly negative Eu anomalies, which represent that the granites have the same magma source. The granites in the Yangla orefield mainly formed in island arc environment which formed because of the subduction of the Jinsha River ocean basin under the Xichangdu-Lanping landmass. The granites have both volcanic arc type and S-COLG type. The magmatism plays a significant role in the activation of ore-forming materials and the formation of the Yangla deposit.
     (3)Some new progress has been made in the mineralogy and geochemistry of the skarn and its role in the ore-forming process. The skarn mainly consists of pyroxene and garnet. The pyroxene are mainly hedenbergite and malacolite, while the garnets are mainly andradite and essonite. The skarn has some kind of zoning in space. The rock near terrace contains more garnet, while others far away from the terrace contain more malacolite. Bands, which reflect changes in the physical chemical conditions and fluid composition, can be seen in the garnet of the deposit. The garnet has a high content of the element Sn, which occurs in the form of isomorphism as Sn4+. This article also discusses the REE distribution pattern of the skarn minerals and the reason why Eu content is abnormal. It has been proved by the geochemical analyzes of the typical section that there was material interchange between the granites and wall rocks during the skarn formation. The mineralization has been proved to be dimetasomatism.
     (4) Geological and geochemical study progress has been made for the Ⅱ#and Ⅴ#ore body. Quantitative analysis of mineralization grade and its space variation has been made. The mineralization grade has a character of two-peak type or multi-peak type. The mineralization has been divided into three phases, the quartz sulfide phase is the main metallogenic phase. The vertical primary halo pattern of the ore body has been made:As、Pb、Zn enrichment mainly occurs in upper part of the ore body, while Ag、W、Bi、Mn in the central section and Sn、Cu、 Mo in the bottom, which represents the changes in the mineral formation from mesotherm-microthermal to highheat environment. The the quantitative evaluation model has been built, chosing the zoing index as the Pb*Zn*Ag*Bi/Cu*Sn*Mo as the indicator of the model.
     (5) Evidence of the source of ore-forming materials have been put forward by analysing the Pb, S, C, H, O isotope. The Pb isotope of the ore mainly lies between the evolution line of the upper crust and orogenic belt, while minority samples lies between the evolution line of the upper mantle and orogenic belt, which indicates that the Pb of the deposit mainly came from crust, but also with some mantle materials. Most of the Pb isotope of feldspar and ores lie in the district of island arc, which implies that this area is island arc while the mineralization took place. The S isotope data are concentrated close to0, which occurs as a tower distribution. It suggests that the ore-forming fluid had a single S source. The S of the deposit may came from mantle and has an intimate relationship with granites in this district. The H-O isotope suggests both magmatic water and atmospheric water are involved in the ore-forming fluid, and atmospheric water mainly occured during the late phase of the mineralization. The C-O isotope implies that the C and O element in the calcite vein, around the terrace, or the marble type ore may have relation with both the marble and the influence of the Linong rock mass.
     (6) The metallogenic diversity has been discussed, the regularity sequence and the time-space-genesis pedigree has been built. This article also compares the main copper deposit types in the Jinsha River tectonic zone, and summarizes the ore-controlling factors, the prospecting indicators, and metallogenic model of the Yangla deposit. Finally, the author put forward the ore-hunting prospect areas in this district by different evidences and specific method. The author pointed out that combining site of the Linong and Lunong district, the deep part of the Linong district and the north of the Lunong district may have great ore prospecting potential.
引文
[1]战明国,路远发,陈式房,等.滇西德钦羊拉铜矿[M].武汉:中国地质大学出版社,1998.
    [2]曲晓明,杨岳清,李佑国.从赋矿岩系岩石类型的多样性论羊拉铜矿的成因[J].矿床地质.2004,23(4):431-442.
    [3]刘月东,龙斐.云南德钦羊拉铜矿里农铜矿床地质特征[J].采矿技术.2009,9(1):15-18,40.
    [4]魏君奇,陈开旭.德钦羊拉地区火山岩形成的构造环境讨论[J].云南地质.1999,18(1):53-62.
    [5]魏君奇,陈开旭,何龙清.滇西羊拉矿区火山岩构造-岩浆类型[J].地球学报.1999,20(3):246-252.
    [6]魏君奇,陈开旭,魏福玉.滇西羊拉地区构造-岩浆-成矿作用分析[J].华南地质与矿产.2000(1):59-62.
    [7]M G Zhan, YFLu, S F Chen, et al. Formation and Enrichment of the Yangla Copper Deposit and its Implications for the Evolution of the Jinshajiang Suture in the Northern Margin of Gondwanaland [J]. Gondwana Research.1999,2(4):592-595.
    [8]陈开旭,路远发,魏君奇,等.滇西北羊拉铜矿区成矿地质背景及多期成矿作用[J].矿床地质,2002,21(增刊):361-364.
    [9]路远发,陈开旭,何龙清,等.德钦县羊拉铜矿区碳——氧同位素组成特征及其地质意义[J].地质论评.2002,48(增刊):225-229.
    [10]路远发,陈开旭,黄惠兰.云南羊拉地区不同类型铜矿床流体包裹体研究[J].地质科技情报.2004,23(2):13-20.
    [11]路远发,陈开旭,战明国.羊拉地区含矿矽卡岩成因的地球化学证据[J].地球科学-中国地质大学学报.1999,24(3):298-303.
    [12]路远发,战明国,陈开旭,等.羊拉地区含矿夕卡岩流体包裹体特征及其成因意义[J].矿床地质.1998,17(4):331-342.
    [13]魏君奇,陈开旭.云南羊拉地区铜矿成矿系列[J].地质科技情报.2004,23(2):21-24.
    [14]魏君奇,战明国,路远发,等.滇西德钦羊拉矿区花岗岩类地球化学[J].华南地质与矿产.1997,4(9):50-56.
    [15]王立全,潘桂棠,李定谋,等.金沙江弧—盆系时空结构及地史演化[J].地质学报.1999,73(3):206-218.
    [16]朱经经,胡瑞忠,毕献武,等.滇西北羊拉铜矿矿区花岗岩成因及其构造意义[J].岩石学报.2011,27(9):2553-2566.
    [17]甘金木,战明国,余凤鸣,等.滇西德钦羊拉铜矿区构造变形特征及其控矿作用分析[J].华南地质与矿产.1998,(4):59-65.
    [18]何龙清,战明国,路远发.滇西羊拉铜矿区层序地层划分及赋矿层位研究[J].华南地质 与矿产.1998,(3):37-41.
    [19]余凤鸣,战明国,甘金木,等.滇西羊拉大型铜矿床石英构造岩微观构造与动力学分析[J].中国区域地质.2000,19(1):92-99.
    [20]林仕良,王立全.云南德钦羊拉铜矿床构造特征[J].沉积与特提斯地质.2004,24(3):48-51.
    [21]朱俊,曾普胜,曾礼传,等.滇西北羊拉铜矿区地层划分[J].地质学报.2009,83(10):1415-1420.
    [22]曾礼传.云南德钦羊拉铜矿区地层研究[J].云南地质.2010,29(1):84-89.
    [23]王彦斌,韩娟,曾普胜,等.云南德钦羊拉大型铜矿区花岗闪长岩的锆石U-Pb年龄、H洞位素特征及其地质意义[J].岩石学报.2010,26(6):1833-1844.
    [24]董涛.德钦县羊拉铜矿床地球化学特征及成因研究[D].昆明理工大学,2009.
    [25]杨喜安,刘家军,韩思宇,等.云南羊拉铜矿床里农花岗闪长岩体锆石U-Pb年龄、地球化学及其与成矿关系研究[J].矿物学报.2011,(增刊):257-258
    [26]杨喜安,刘家军,韩思宇,等.云南羊拉铜矿床里农花岗闪长岩体锆石U-Pb年龄、矿体辉钼矿Re-Os年龄及其地质意义[J].岩石学报.2011,27(9):2567-2576.
    [27]Zhu J, Hu R, Bi X, et al. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China:Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean[J]. Lithos.2011,126(3-4): 248-264.
    [28]潘家永,张乾,马东升,等.滇西羊拉铜矿区硅质岩特征及与成矿的关系[J].中国科学D辑.2001,31(1):10-16.
    [29]潘家永,张乾,马东升,等.滇西羊拉铜矿床稳定同位素地球化学研究[J].矿物学报.2000,20(4):385-389.
    [30]赵一鸣,林文蔚.中国矽卡岩矿床[M].北京:地质出版社,1990.
    [31]Burt D M. Skarn deposits:historical bibliography through 1970[J]. Econ. Geol.1988,77: 755-763.
    [32]Einaudi M T, Meinert L D, Newberry R T. Skarn deposits [J]. Econ. Geol.1981,75th Anniv.: 317-391.
    [33]黄华盛.矽卡岩矿床的研究现状[J].地学前缘.1994,1(3-4):105-111.
    [34]Meinert D, L. Origins of skarn:regional metamorphism and metasomatism, contact effects related to plutions, and metamorphism of pre-existing ore deposits[J]. IAGOD Symposium. 1994,1:313-314.
    [35]黄崇轲.中国铜矿床(上册)[M].北京:地质出版社,2001.
    [36]赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床基本地质特征[J].中国地质科学院院报.(14):59-87.
    [37]常印佛,刘学圭.关于层控式矽卡岩型矿床——以安徽省内下扬子坳陷中一些矿床为例[J].矿床地质.1983,(1):11-20..
    [38]翟裕生.矽卡岩矿床研究的若干问题[J].地质科技情报.1983(1):46-54.
    [39]林新多,许国建.岩浆成因矽卡岩的某些特征及形成机制初探[J].现代地质.1989,3(3):351-358.
    [40]廖宗廷.论永平铜矿区“层状矽卡岩”成因及与矿化的关系[J].上海地质.1990,(4):55-61.
    [41]赵一鸣.环太平洋地区的矽卡岩矿床[J].矿床地质.1991,10(1):41-51.
    [42]陈衍景,郭抗衡.河南银家沟矽卡岩型金矿的地质地球化学特征及成因[J].矿床地质.1993,12(3):265-272.
    [43]赵斌,赵劲松,张重泽,等.岩浆成因矽卡岩的实验依据[J].科学通报.1993,38(21):1986-1989.
    [44]岑况,於崇文.渗滤脉状矽卡岩成岩过程的计算机模拟[J].地球科学:中国地质大学学报.1994,19(1):65-73.
    [45]庞春勇.我国矽卡岩型铜矿床同位素地质特征及其“三位一体”成矿模式[J].矿产与地质.1995,9(5):368-374.
    [46]陈衍景,常兆山.中国矽卡岩型金矿床地质研究和勘查的进展与问题[J].有色金属矿产与勘查.1996,5(3):129-139.
    [47]赵劲松,Newb. R. J对柿竹园矽卡岩成因及其成矿作用的新认识[J].矿物学报.1996,16(4):442-449.
    [48]高章鉴,罗才让,井继锋.青海省肯德可克金矿热水沉积层矽卡岩特征及成矿意义[J].西北地质.2001,34(2):50-53.
    [49]张智宇.安徽铜山矽卡岩铜矿床特征与成因[D].中国地质大学(北京),2011.
    [50]Bakhterev V V, Kuznetsov A Z. High-temperature conductivity of magnetite ores in relation to their genesis and mineral composition (by the example of the Goroblagodatskoe skarn-magnetite deposit) [J]. Russian Geology and Geophysics.2012,53(2):209-213.
    [51]Orhan A, Mutlu H, Fallick A E. Fluid infiltration effects on stable isotope systematics of the Susurluk skarn deposit, NW Turkey[J]. Journal of Asian Earth Sciences.2011,40(2): 550-568.
    [52]Xie G, Mao J, Zhao H, et al. Timing of skarn deposit formation of the Tonglushan ore district, southeastern Hubei Province, Middle-Lower Yangtze River Valley metallogenic belt and its implications[J]. Ore Geology Reviews.2011,43(1):62-77.
    [53]Liu X Q, Cai Z L, Kang M X. Study on the Distribution Regularity of Accompanying Harmful Elements in the Copper-Bearing Skarn Mine at the Fengshan in the Mineral Processing System[J]. Procedia Earth and Planetary Science.2011,2:139-144.
    [54]Gaskov I V, Borisenko A S, Babich V V, et al. The stages and duration of formation of gold mineralization at copper-skarn deposits (Altai-Sayan folded area)[J]. Russian Geology and Geophysics.2010,51(10):1091-1101.
    [55]Kamvong T, Zaw K. The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand:Evidence from fluid inclusion and sulfur isotope studies[J]. Journal of Asian Earth Sciences.2009,34(5):624-633.
    [56]Bertelli M, Baker T, Cleverley J S, et al. Geochemical modelling of a Zn-Pb skarn: Constraints from LA-ICP-MS analysis of fluid inclusions[J]. Journal of Geochemical Exploration.2009,102(1):13-26.
    [57]郑建民,谢桂青,陈懋弘,等.岩体侵位机制对矽卡岩型矿床的制约——以邯邢地区矽 卡岩铁矿为例[J].矿床地质.2007,26(4):481-486.
    [58]D. S. Korzhinskii. The theory of systems with perfectly mobile components and processes of mineral formation.American Journal of Science,1965,263(3):193-205.
    [59]Meinert L D. Application of skarn deposit zonation models to mineral exploration[J]. Exploration and Mining Geology.1997.6(2):185-208.
    [60]袁见齐,朱上庆,翟裕生.矿床学[M].1985.
    [61]Zharikov V.A. Skarn types, formation and mineralization condition[J]. Athens:Theophrastus pub.1991:455-465.
    [62]梁祥济,王福生.接触交代型夕卡岩金矿床形成机理的实验研究[J].黄金地质.2000,6(1):1-14.
    [63]梁祥济,王福生.层控交代型夕卡岩金矿床形成机理的实验研究[J].黄金地质.2000,6(4):1-13.
    [64]Ciobanu C L, Cook N J. Skarn textures and a case study:the Ocna de Fier-Dognecea orefield, Banat, Romania[J]. Ore Geology Reviews.2004,24(3-4):315-370.
    [65]Drobe J, Cann R M. Cu-Au Skarn Mineralization, Minas de Oro District, Honduras, Central America[J]. Exploration and Mining Geology.2000,9(1):51-63.
    [66]於崇文,唐元骏,石平方,等.云南个旧锡多金属成矿区内生成矿作用的动力学体系[M].武汉:中国地质大学出版社,1988.
    [67]凌其聪,周贵斌,黄许陈,等.“层控式”矽卡岩矿床特征及成矿机制——以铜陵大团山铜(金)矿床为例[J].贵金属地质.1998,7(2):91-103.
    [68]马毅,黎应书,秦德先,等.个旧锡矿区层状矽卡岩的成因探讨[J].昆明理工大学学报:理工版.2006,31(4):6-9.
    [69]涂光炽.地学中若干思想方法的讨论[J].1989,5(5):1-11.
    [70]吴言昌,常印佛.关于岩浆矽卡岩问题[J].地学前缘.1998,5(4):291-301.
    [71]林新多.矽卡岩的一种成因——岩浆成因[J].地质科技情报.1987,6(2):92-94.
    [72]裴荣富.中国矿床模式[M].北京:地质出版社,1995.
    [73]伍超群,杨洪之.鸡笼山夕卡岩型金铜矿床地球化学特征及成矿模式[J].地质与勘探.1993,(8):52-57.
    [74]李全海,方招信,章中久,等.淮北夕卡岩型铁(铜)多金属矿床成矿模式的研究[J].安徽地质.2009,19(1):27-34.
    [75]M. Amelia V L. Mineralogy and geochemistry of the Gualilan skarn deposit in the Precordillera of western Argentina [J]. Ore Geology Reviews.2000,17(1-2):113-138.
    [76]邓军,侯增谦,莫宣学,等.三江特提斯复合造山与成矿作用[J].矿床地质.2010,29(1):37-42.
    [77]李兴振,刘文均,王义昭,等.西南三江地区特提斯构造演化与成矿(总论)[M].北京:地质出版社,1999.
    [78]刘增乾,李兴振,叶庆同.三江地区构造岩浆带的划分与矿产分布规律[M].北京:地质出版社,1993.
    [79]简平,刘敦一,张旗,等.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J].地学前缘.2003,10(4):439-456.
    [80]李定谋,王立全,须同瑞,等.金沙江构造带铜金矿成矿与和找矿[M].北京:地质出版社,2002.
    [81]云南铜业集团有限公司.云南省德钦县羊拉铜矿路农矿段首期详查报告[R].2005.
    [82]云南铜业集团有限公司.云南省德钦县羊拉铜矿江边矿段普查报告[R].2005.
    [83]云南铜业集团有限公司.云南省德钦县羊拉铜矿里农矿段首采区地质勘探报告[R].2004.
    [84]云南省地质调查院.云南德钦县羊拉—鲁春铜多金属矿化集中区评价地质报告[R].2003.
    [85]黎彤.化学元素的地球丰度[J].地球化学.1976,(3):167-174.
    [86]陈先沛,高计元,陈多福,等.热水沉积作用的概念和几个岩石学标志[J].沉积学报.1992,10(3):124-132.
    [87]李献华,周汉文,刘颖,等.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅰ.岩石学和同位素地质年代学[J].地球化学.2000,29(6):513-520.
    [88]Vinogradov. Average contents of chemical elements in the principal types of igneous rocks of the earth's crust [J]. Geochemistry.1962,7:641-664.
    [89]史长义,鄢明才,迟清华.中国花岗岩类化学元素丰度[M].北京:地质出版社,2008.
    [90]赵江南,陈守余,赵鹏大.个旧高松矿田断裂带构造岩稀土元素地球化学特征及意义[J].中国稀土学报.2011,29(2):224-232.
    [91]陈德潜,陈刚.实用稀土元素地球化学[M].北京:冶金工业出版社,1990.
    [92]吕伯西,王增,张能德,等.三江地区花岗岩类及其成矿专属性[M].北京:地质出版社,1993.
    [93]侯增谦,曲晓明,周继荣,等.三江地区义敦岛弧碰撞造山过程:花岗岩记录[J].地质学报.2001,75(4):484-497.
    [94]杨岳清,侯增谦,黄典豪,等.中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报.2002,23(1):17-24.
    [95]彭头平,王岳军,范蔚茗,等.澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义[J].中国科学D辑.2006,36(2):123-132.
    [96]徐克勤,胡受奚,孙明志,等.华南两个成因系列花岗岩及其成矿特征[J].矿床地质.1982,2:1-14.
    [97]徐克勤,孙鼐,王德滋,等.华南两类不同成因花岗岩岩石学特征[J].岩矿测试.1982,1(2);1-12.
    [98]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报.2007,23(6):1217-1238.
    [99]J B, Whalen, KL, Currie, B W, Chappell. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contribution to Mineralogy and Petrology.1987,95: 407-419.
    [100]F Y, Wu, B M, Jahn, S A, Wilde, et al. Highly fractionated I-type granites in NE China (Ⅰ):Geochronology and petrogenesis[J]. Lithos.2003,66:241-273.
    [101]F Y, Wu,BM, Jahn, SA, Wilde, et al. Highly fractionated I-type granites in NE China (Ⅱ):Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos. 2003,67:191-204.
    [102]Chappell B, White A. Two contrasting granite types [J]. Pacific Geology.1974,8:173-174.
    [103]B W, Chappell. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos.1999,46:535-551.
    [104]Wang X F, Metcalfeb I, Jian P, et al. The Jinshajiang-Ailaoshan suture zone, China: Tectonostratigraphy, ageand evolution. Journal of Asian Earth Sciences[J].2000,18: 675-690.
    [105]庄永秋,王任重,尹金明,等.云南个旧锡铜多金属矿床[M].北京:地震出版社,1996.
    [106]朱经经,胡瑞忠,毕献武,等.滇西北羊拉大型铜矿——一个典型的矽卡岩型矿床[J].矿床地质,2010,29(增刊):333-364.
    [107]战明国,陈式房,张翼飞.滇西北羊拉大型铜矿床形成条件及其成因类型[J].矿床地质,1998,17(增刊):183-186.
    [108]朱俊,李文昌,曾普胜,等.滇西羊拉矿区层状铜矿床复合成因的地质地球化学证据[J].地质论评.2011,57(3):337-349.
    [109]赵劲松,Newb. R. J对柿竹园矽卡岩成因及其成矿作用的新认识[J].矿物学报.1996,16(4):442-449.
    [110]M, Enami. Pressure-temperature path of senbagawa prograde metamorphism deduced from grossniar zoning of garnet[J]. J Metamorphic Geol.1998,16:97-106.
    [111]Lasaga A.C. Reaction kinetics in geosciences [M]. Princeton, New Jersey:Princeton University Press,1998.
    [112]Konrad-Schmolke M, Handy M, Babist J, et al. Thermodynamic modeling of diffusion controlled garnet growth [J].Contrib. Mineral. Petrol.2005,16:181-195.
    [113]Hollister L. S. Garnet zoning:interpretation based on the Rayleigh fractionation model[J]. Science.1966,154:1647.
    [114]Kohn M.J., Catlos E., Ryerson F.J., et al. Pressure-Temperature-time path discontinuity in the Main Central thrust zone, Central Nepal[J]. Geology.2001,29:571-574.
    [115]Kohn M.J. Geochemical zoning in metamorphic minerals[J]. Treatise on Geochemical. 2003,3:229-261.
    [116]Selverstone J, Spear F S, Franz G, et al. High-Pressure Metamorphism in the SW Tauern Window, Austria:P-T Paths from Hornblende-Kyanite-Staurolite Schists[J]. Journal of Petrology.1983,25:501-531.
    [117]S Geller. Crystal chemistry of the garnet[J]. Zeitschrift fur Kristallographie.1967,125:1-47.
    [118]陈图华.石榴子石中锡的赋存状态[J].矿物学报.1987,7(1):58-65.
    [119]刘桠颖,毕献武,武丽艳,等.柿竹园千吨尾矿库尾矿中锡的赋存状态研究[J].矿物岩石地球化学通报.2009,28(4):344-348.
    [120]赵一鸣,李大新.云南个旧锡矿床花岗岩接触带的交代现象[J].中国地质科学院院报,1987,(2):248-252.
    [121]潘兆橹.结晶学与矿物学[M].北京:地质出版社,1994.
    [122]赖来仁,李艺.矽卡岩锡矿石中锡的赋存状态与锡物相[J].矿产与地质.1999,13(2):86-90.
    [123]赵一鸣,张轶男,林文蔚.我国夕卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系[J].矿床地质.1997,16(4):318-319.
    [124]Nakano, T, Yoshino T, Shimazaki H, et al. Pyroxene composition as an indicator in the classification of skarn deposits[J]. Econ. Geol.1994,89:1567-1580.
    [125]赵劲松,邱学林,赵斌,等.大冶-武山矿化夕卡岩的稀土元素地球化学研究[J].地球化学.2007,36(4):400-412.
    [126]王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989.
    [127]赵斌,赵劲松,刘海臣.长江中下游地区若干Cu(Au)、Cu-Fe(Au)和Fe矿床中钙质夕卡岩的稀土元素地球化学[J].地球化学.1999,28(2):113-125.
    [128]Irving A.J. A review of experimental studies of crystal/liquid trace element partitioning experimental trace element geochemistry [J]. Geochimica et Cosmochimica Acta.1978,42: 743-770.
    [129]任涛,钟宏,张兴春,等.浪都夕卡岩型铜矿床中石榴子石稀土元素地球化学研究[J].地学前缘.2010,17(2):348-358.
    [130]Hanson, G N. Rare earth element in petrogenetic studies of igneous systems [J]. Ann R Earth. 1980,8:371-406.
    [131]Shimizu N, Richardson S H. Trace element abundance patterns of garnet inclusions in peridotite suite diamonds [J]. Geochim Cosmochim Acta.1987,51:755-758.
    [132]Birgit Scheibner, Gerhard Worner, Lucia Civetta, et al. Rare earth element fractionation in magmatic Ca-rich garnets[J]. Contrib Mineral Petrol.2007,154:55-74.
    [133]Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta.2008, 72(1):185-205.
    [134]李厚民,沈远超,毛景文,等.石英、黄铁矿及其包裹体的稀土元素特征--以胶东焦家式金矿为例[J].岩石学报.2003,19(2):267-274.
    [135]范建国,倪培,苏文超,等.辽宁四道沟热液金矿床中石英的稀土元素的特征及意义[J].岩石学报.2000,16(4):587-590.
    [136]包志伟,赵振华.东坪金矿床成矿过程中稀土元素活动性[J].地球化学.1998,27(1):81-90.
    [137]顾尚义,万国江,毛健全.广西凭祥英安岩中方解石稀土元素地球化学研究[J].地球与环境.2007,35(1):51-56.
    [138]双燕,毕献武,胡瑞忠,等.芙蓉锡矿方解石稀土元素地球化学特征及其对成矿流体来源的指示[J].矿物岩石.2006,26(2):57-65.
    [139]黄智龙,李文博,陈进,等.云南会泽超大型铅锌矿床构造带方解石稀土元素地球化学[J].矿床地质.2003,22(2):199-207.
    [140]Haas J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems:estimates of standard partial molal thermodynamic properties of aqueous comp lexes of the rare earth elements at high p ressures and temperatures [J]. Geochimica et Cosmochimica Acta.1995, 59:4329-4350.
    [141]邵跃.热液矿床岩石测量(原生晕法)找矿[M].北京:地质出版社,1997.
    [142]陈永清,韩学林,赵红娟,等.内蒙花敖包特Pb-Zn-Ag多金属矿床原生晕分带特征与深部矿体预测模型[J].地球科学-中国地质大学学报.2011,36(2):236-246.
    [143]章永梅,顾雪祥,程文斌,等.内蒙古柳坝沟金矿床原生晕地球化学特征及深部成矿远景评价[J].地学前缘.2010,17(2):209-221.
    [144]孙华山,孙林,曹新志,等.胶西北上庄金矿床原生晕轴(垂)向分带特征及深部矿体预测的勘查地球化学标志[J].矿床地质.2008,27(1):64-70.
    [145]李厚民,孙继东,沈远超,等.东昆仑五龙沟金矿床Ⅲ矿段原生晕特征及模式[J].地质地球化学.2001,29(3):109-116.
    [146]王长明,邓军,张寿庭,等.河南萑香洼金矿原生晕地球化学特征和深部找矿预测[J].地质与勘探.2007,43(1):58-63.
    [147]Beus, A.A. Grigorian, S.V. Geochemical exploration methods for mineral deposits[M]. Applied Publishing Ltd., Wilmette Illinois, USA,1977.
    [148]熊继传,郭学全,李辉文.鄂东南夕卡岩型矿床元素轴向分带及分带模式在找矿中的应用[J].地质与勘探.1992,(6):43-50.
    [149]王莉娟,王京彬,王玉往,等.新疆准噶尔—东天山地区产于韧性剪切带中的金矿床成矿流体与碳、硫、铅同位素[J].地质论评.2006,52(4):486-493.
    [150]王莉娟,王京彬,王玉往,等.新疆准噶尔地区富硫型与贫硫型浅成低温热液金矿床成矿流体与碳、硫、铅同位素[J].岩石学报.2005,21(5):1382-1388.
    [151]张理刚.长石铅和矿石铅同位素组成及其地质意义[J].矿床地质.1988,7(2):55-64.
    [152]张建芳,张刚阳.铅同位素在矿床研究和找矿勘探中的应用综述[J].地质找矿论丛.2009,24(4):322-328.
    [153]Zartman R E, Doe B R. Plumbotectonics-the model[J]. Tectonophysics.1981,75(1): 135-162.
    [154]朱炳泉.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京:科学出版社,1998.
    [155]Kajiwara Y, Krouse H R. Sulfur isotope partitioning in metallic sulfide systems[J]. Canadian Jour.1971,8:1397-1408.
    [156]韩吟文,马振东.高等教育面向21世纪课程教材-地球化学[M].北京:地质出版社,2003.
    [157]H, Ohmoto. Systematics sof sulfur and carbon isotopes in hydrothermal ore deposits[J]. Econ. Geol.1972,67:551-579.
    [158]王守旭,Xingchun Zhang,冷成彪,等.中甸红山矽卡岩铜矿稳定同位素特征及其对成矿过程的指示[J].岩石学报.2008,24(3):480-488.
    [159]田世洪,丁悌平,侯增谦,等.安徽铜陵小铜官山铜矿床稀土元素和稳定同位素地球化学研究[J].中国地质.2005,32(4):604-613.
    [160]黄玉凤,曹殿华,王志军,等.云南兰坪盆地北部东缘铅锌矿床喷流沉积成因的厘定——来自矿物学和硫同位素证据[J].地质力学学报.2011,17(1):91-102.
    [161]吴元保,郑永飞,龚冰,等.北淮阳新开岭地区花岗岩锆石U-Pb年龄和氧同位素组成[J].地球科学-中国地质大学学报.2005,30(6):659-672.
    [162]丁悌平.氢氧同位素地球化学[M].北京:地质出版社,1980.
    [163]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    [164]芮宗瑶,李宁,王龙生.关门山铅锌矿床盆地热卤水成矿及铅同位素打靶[M].北京:地质出版社,1991.
    [165]Taylor B E. Magmatic volatiles:Isotope variation of C, H and S[J]. Reviews in Mineralogy and Geochemistry.1986,16:185-225.
    [166]M L Keith, J N Weber. Carbon and oxygen isotopic composition of selected limestones and fossils Original Research Article[J]. Geochimica et Cosmochimica Acta.1964,28: 1787-1816.
    [167]赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展[J].地学前缘.2003,10(2):455-463.
    [168]赵鹏大,陈建平,陈建国.成矿多样性与矿床谱系[J].地球科学-中国地质大学学报.2001,26(2):111-117.
    [169]张继荣.德钦拖顶铜矿床地质特征[J].云南地质.1997,16(1):85-90.
    [170]王立全,李定谋,管士平.云南德钦鲁春锌铜矿评价[M].北京:地质出版社,2001.
    [171]赵灿华,范玉华,孟青.云南德钦鲁春铜铅锌多金属矿同位素及矿床成因[J].云南地质.2011,30(1):32-37.
    [172]潘桂棠,徐强,侯增谦,等.西南“三江”多岛孤造山过程成矿系统与资源评价[M].北京:地质出版社,2003.
    [173]曹新志,高秋斌,徐伯骏.矿区深部矿体定位预测的有效途径研究--以山东招远界河金矿为例[J].地质找矿论丛.2001,16(4):243-246.
    [174]曹新志,孙华山,徐伯骏.关于成矿预测研究的若干进展[J].黄金.2003,24(4):11-14.
    [175]赵鹏大主编.矿产勘查理论与方法[M].武汉:中国地质大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700