用户名: 密码: 验证码:
茄田土壤硝态氮累积及淋失规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国集约化蔬菜生产过程中因过量施氮而导致的硝酸盐淋失和地下水污染所造成的环境问题日益突出,亟待开展相关的基础研究。本文以北京顺义茄田为研究对象,利用田间试验和基于小型原状土柱的渗漏计系统研究了施用无机氮肥、有机肥和灌溉量等不同处理下茄子的产量效应、土壤硝态氮累积量和淋失量、当季氮肥利用率以及茄子-土壤系统中氮素平衡规律。研究结果表明:
     通过正交设计的方法对无机氮肥、有机肥、灌溉和等4种不同因素处理下的茄子产量和收获后0-2m土层土壤硝态氮累积量进行了研究,其中无机氮肥的四个水平用量分别为262.5kg N/hm2(N1),412.5kg N/hm2(N2),562.5kg N/hm2(N3),712.5kg N/hm2(N4),结果表明:无机氮肥的施用是影响茄子产量以及硝态氮累积量的重要因素,有机肥的过量施用同样会引起土壤硝态氮累积量的增加。通过对基于SNK检验的产量比较结果进行分析,4个获得较高产量的处理中,T2、T3和T5处理的无机氮肥施用量均为412.5kg/hm2,而此时的0-2m土层土壤硝态氮累积量为609.6kg/hm2,高于无机氮肥施用量为262.5kg/hm2时的硝态氮累积量371.2kg/hm2,而无机氮肥施用量为262.5kg/hm2时的产量比412.5kg/hm2水平所对应的产量减少了13.2%,为了兼顾产量效应和硝态氮累积量,初步确定无机氮肥推荐施用量在262.5kg/hm2和412.5kg N/hm2之间;而通过有机肥施用量和对应产量的分析,有机肥推荐施用量折氮后为112.5kg N/hm2,因而推荐总施氮量为375-525kg/hm2之间。
     确定施氮量为影响硝态氮累积量的主要因素之后,进一步设置农户施氮量937.5kg N/hm2、中间梯度675kg N/hm2及推荐施氮量450kg N/hm2等三个氮肥梯度值,安排氮肥量级试验,结果表明:收获后各小区1m土层硝态氮的累积总量:农户施氮量>中间梯度>推荐施氮量,其中推荐施氮量水平处理下的1m土层平均硝态氮累积量比农户施氮量和中间梯度处理分别下降了41.7%和51.5%;无肥区、推荐施氮量、中间梯度和农户施氮量等4个小区的氮素表观平衡值分别为115.2、277.8、312.4和516.7kg/hm2,推荐施氮量、中间梯度和农户施氮量3个施氮水平处理下小区的当季氮肥利用率分别为22.78%、14.09%和6.11%,随着施氮量的增加,对应的氮素表观平衡值也随之上升,系统氮素表观损失的可能性越大,而氮肥利用率随着施氮量的增加而呈下降趋势。通过分析试验结果并结合当地生产条件,确定450kg/hm2为北京潮土地区露地秋冬茬茄子的单季最佳施氮量。
     本研究利用基于小型原状土柱的渗漏计系统进一步探明了茄田的土壤硝态氮淋失规律:推荐施氮量、中间梯度和农户施氮量3个施氮水平处理下硝态氮的平均淋失浓度以及60cm土层硝态氮淋失量均有显著差异,不同灌溉量和处理下的硝态氮平均淋失浓度和总淋失量的差异均未达到显著。氮肥的施用能显著增加淋失液中的硝态氮浓度,是造成菜地土壤硝态氮淋失的最主要因素。推荐施氮量、中间梯度和农户施氮量3个施氮水平处理下小区的平均淋失浓度分别为13.84、39.09和54.52mg N/L,当氮肥施用量超过推荐的最佳施氮量(450kg/hm2)时,土壤淋失液中的硝态氮浓度均超过20mg/L的国家地下水硝酸盐限量标准,进一步向下淋洗将会造成地下水硝酸盐污染。不同施氮水平卜的总淋失量分别为,N1:17.08kg N/hm2、N2:46.83kg N/hm2、N3:62.71kg N/hm2,各处理之间达到显著差异,总淋失量随着施氮量的增加而增加。试验进一步验证了450kg/hm2为北京潮土地区露地秋冬茬茄子的单季最佳施氮量。
     本研究首次在国内引进英国最新开发出来的蔬菜作物模型(?)—SMCR_N,并在试验地区进行了校验和初步评价,为北京潮土地区露地茄子的合理施肥提供参考。试验结果表明SMCR_N模型自带的茄子品种参数适用于紫长茄在北京潮土地区的模拟,模拟结果的均方根误差RMSE=0.4242,标准化均方根误差n-RMSE=0.0548,模型预测效率EF=0.9499,E=0.4>0,拟合指数d=0.9855,决定系统参数R2=0.9583。本试验中的圆茄(京茄一号)与模型自带的茄子品种参数存在差异,需要对相关品种参数值进行有针对性的调整。当作物生长系数K1=1.4时,模型达到最好的模拟性能,其统计结果如下:RMSE=1.2170, n-RMSE=12.48%, EF=0.59, E=0.76, d=0.9292,R2=0.8025。通过调整之后的模型对2010年圆茄试验的作物吸氮量数据进行了模拟,拟合后的决定系数(R2)=0.85,说明模型对圆茄的作物吸氮量的模拟性能良好。下一步的田间试验应该在作物的不同生长期取样,测定不同阶段的作物累积吸氮量,通过更多实测数据来进行模刑的校验和评估,最终达到通过预测作物不同生长期的需氮量来确定施氮量和施肥时间。
In the intensive open field vegetable production, environmental problems caused by excessive application of nitrogen have become increasingly prominent, and it is in urgent need to carry out relevant basic research. This study is carried out at Beijing Shunyi District at open aluvial region, take eggplant for test crops, focusing on different factors:eggplant nitrogen nutrient use, soil inorganic nitrogen accumulation and dynamics, eggplant seasonal crop nitrogen utilization, and soil-eggplant system nitrogen apparent balance, and obtained the following results:
     In the study, I set four different factors including inorganic fertilizer, organic fertilizer, irrigation and HA-K by orthogonal design, to study the yield effects and0-2m soil layers' nitrate accumulation. The four levels of inorganic fertilizer rates are262.5kg N/hm2(N1),412.5kg N/hm2(N2),562.5kg N/hm2(N3) and712.5kg N/hm2(N4). The key factor affected0-2m soil layers' nitrate accumulation is inorganic nitrogen fertilizer. To study the comparison between different treatments based on SNK grouping, the T2, T3and T5get the higher yields, with their inorganic fertilizer application rates of412.5kg/hm2. But the soil layers' nitrate accumulation of N2treatment is609.6kg/hm2, higher than the soil layers' nitrate accumulation when its inorganic fertilizer application rates was262.5kg/hm2. For this study, the appropriate amount of organic fertilizer should be OM1(7.5t/hm2)(in this case the nitrogen content of the commercial organic fertilizer is:1.5%), equal to the nitrogen amount of112.5kg N/hm2. Therefore, for this experiment, the appropriate amount of nitrogen fertilizer recommendations was between375and525kg N/hm2.
     Futher, I set three different levels of nitrogen fertilizer application rates with N1=450kg N/hm2, N2=675kg N/hm2and N3=937.5kg N/hm2. The0-1m soil profile residual nitrate-N after harvest of different nitrogen levels are:N3> N2> N1, and compared to the amount of soil profile residual nitrate-N of N3and N2treatment, the N1treatment decreased by41.7%and51.5%. Of the N0, N1, N2and N3treatment, the apparent nitrogen balance values were115.2,277.8,312.4and516.7kg/hm2, respectively. With the amount of nitrogen application increasing, the corresponding apparent nitrogen balance value will rise correspondently, and the apparent nitrogen loss of the system is more likely to occur. After N1, N2and N3nitrogen fertilizer treatment, the nitrogen efficiency are:22.78%,14.09%and6.11%, respectively. And the NUE will futher to decline with the increase in the amount of nitrogen fertilizer application. In summary, N1=450kg/hm2is the appropriate amount of nitrogen rates for eggplant in Shunyi district.
     In2010,Iuse lysimeter based on undisturbed soil columns to study the soil nitrate-N leaching regulations in the vegetable field of Beijing alluvial soil region. The main experimental findings are as follows:
     Under different nitrogen fertilizer treatments, the average nitrate leaching concentrations were significantly different. Nitrogen fertilizer can significantly increase the nitrate concentration in leaching solution, which is the most important factor to cause the vegetable filed nitrate leaching. With the different irrigation management and HA-K treatment, the average concentration of nitrate leaching and total leaching losses were not significantly different. By sampling the leaching solution at different stages in the growing season and analysising its dynamics of nitrate leaching concentration, the T1, T4and T7treatment which get the lowest nitrate-N average concentration and nitrate-N leaching losses are all treated by N1application (450kg/hm2), the sample concentrations of other treatments are higher than the20mg/L national limits for groundwater sources, and more likely to cause groundwater nitrate pollution.
     The study made the first application of the model-SMCR_N in vegetable crops at China, a certain amount of work of the introduction of the model and a preliminary assessment of the applicability of the model for Beijing aluvial region. The own crop parameters of the model can be directly applied to the long-eggplant simulation. The configurations of round-eggplant (Beijing eggplant No.1) are different from model's own eggplant parameter, it need to futher to adjust the relevant parameter values. When crop growth parameter K1=1.4, the model simulation achieves the best performance. When complete the adjustment of growth parameters of K1, simulated N uptake of round-eggplant and got the coefficient of determination (R2)=0.85, which means the model's predictions of crop N uptake are in good performance.
引文
1.北京市农调队.北京市农村社会经济统计资料(1999年度)[R].2000.
    2.北京市水利局.北京市水资源公报[R].1997,27.
    3.白优爱,巨晓棠,陈清,李晓林.商品有机肥及蔬菜残体在菜地土壤中的氮素矿化研究[J].中国农业科技导报,2003,5(2):45-49.
    4.程季珍,亢青选,张春隧.蔬菜平衡施肥技术研究[J].植物营养与肥料学报,1997,3(4):372-375.
    5.陈清,张晓晟,张宏彦,吴建繁,李晓林.氮素供应对露地胡萝卜生长及其氮素利用的影响[J].中国蔬菜,2003,(1):4-6.
    6.陈清,张福锁.蔬菜养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2007.
    7.陈新平,张福锁.京郊蔬菜氮肥施用中的问题与对策[M].菜园土壤肥力与蔬菜合理施肥.南京:河海大学出版社,1997,22-23.
    8.陈振林,张建平,王春乙,郑江平.应用WOFOST模型模拟低温与干旱对玉米产量的综合影响[J].中国农业气象,2007,28(4):440-442.
    9.范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,4(1):16-21.
    10.范小杉,高吉喜.中国农业生态经济系统能值利用现状及其演变态势[J].于旱区资源与环境,2010,24(7):1-9.
    11.高超,张桃林.欧洲国家控制农业养分污染水环境的管理措施[J].农业生态环境,1999,15(2):50-53.
    12.高强.土壤剖面不同位置累积硝态氮的作物有效性及去向[D].北京:博士学位论文.中国农业大学,2003.
    13.高亚军,李云,李生秀.旱地小麦不同栽培条件对土壤硝态氮残留的影响[J].生态学报,2005,25(11):2901-2910.
    14.巩建华,柯尊伟,李季.河北省藁城市蔬菜种植区化肥施用与地下水硝酸盐污染研究[J].农村生态环境,2004,20(1):56-59
    15.郭胜利,党廷辉,郝明德.黄土高原沟壑区不同施肥条件下土壤剖面中矿质氮的分布特征[J].干旱地区农业研究,2000,18(1):22-27.
    16.国家统计局中国统计年鉴(2010).2010.
    17.何念祖,孟赐福.植物营养原理[M].上海:上海科学技术出版社,1987.
    18.黄东风,王果,李卫华,邱孝煊.不同施肥模式对蔬菜生长、氮肥利用率和氮素流失的影响[J].应用生态学报,2009,20(3):631-638.
    19.黄东迈,高家骅,朱培立.有机、无机肥料氮在水稻-土壤系统中的转化与分配[J].土壤学报,1981,18(2):107-121.
    20.黄绍敏,皇甫湘荣,宝德俊.土壤中硝态氮含量的影响因素研究[J].农业环境保护,2001,20(5):351-354.
    21.黄元仿,李韵珠.应用15N示踪微区试验研究土壤氮素循环参数.见:李韵珠,陆锦文,罗远培等.土壤水和养分的有效利用论文集[M].北京:中国农业大学出版社,1994.
    22.金雪霞,范晓晖,蔡贵信.菜地土氮素的主要转化过程及其损失[J].土壤,2005,37(5):492-499.
    23.巨晓棠.尿素配施有机物料时土壤不同氮素形态的动态及利用[J].中国农业大学学报,2002,7(3):52-56.
    24.巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192-197.
    25.柯连科夫著,尹崇仁等译.氮肥的农业化学[M].北京:农业出版社,1983,127-134.
    26.李虎,王立刚,邱建军DNDC模型在农田氮素渗漏淋失估算中的应用[J].应用生态学报,2009,20(7):1591-1596.
    27.李军.作物生长模型ALMANAC的验证与应用初探.干旱地区农业研究[J],1997,15(4):99-104.
    28.李俊良,朱建华.保护地番茄养分利用及土壤氮素淋失[J].应用与环境生物学报,2001,7(2):126-129.
    29.李俊良,陈新平,李晓林.大白菜氮肥施用的产量效应、品质效应和环境效应[J].土壤学报,2003,40(2):261-265.
    30.李庆奎,朱兆良,于天良.中国农业持续发展中的肥料问题[M].南昌:江西科学技术出版社,1998.1-5.
    31.李生秀,付会芳,袁虎林.几种反映旱地土壤供氮能力的方法的比较[J].土壤.1990,22(4):194-197.
    32.李世清,李生秀,李凤民.石灰性土壤剖面氮素的矿化和硝化作用[J].兰州大学学报(自然科学版),2000,36(1):98-104.
    33.李晓鹏,张佳宝,朱安宁,信秀丽,张丛志,黄平.基于WNMM模型的潮土地区农田水氮优化管理[J].生态与农村环境学报,2009,25(1):62-68.
    34.李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土中硝态氮累积的影响[J].干旱地区农业研究,2003,2(31):38-42.
    35.林忠辉,陈同斌,周立祥.中国不同区域化肥资源利用特征与合理配置[J].资源科学.1998,20(5):26-31.
    36.林忠辉,莫兴国,项月琴.作物生长模型研究综述[J].作物学报,2003,29(9):750-758.
    37.刘春增,寇长林,王秋杰.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报,1996,27(5):216-218.
    38.刘刚,谢云,高晓飞,冯艳杰. ALMANAC作物模刑参数的敏感性分析[J].中国农业气象,2008,29(03):259-263.
    39.刘刚,谢云,吴瑞俊,高晓飞,章文波ALMANAC模型对黄土高原玉米、谷子和糜子产量的模拟[J].干旱地区农业研究,2009,27(01):78-83.
    40.刘恒旭,张剑,金再欣,吴吕旺,刘小丽,蒋加勇.施氮量对茄子产量及品质的影响.浙江农业科学,2008(6):660-661.
    41.刘洪滨.正交试验法简介[J].北方水稻,1976,(04):22-28.
    42.刘宏斌,雷宝坤,张云贵.北京市顺义区地下水硝态氮污染的现状与评价[J].植物营养与肥料学报,2001,(4):385-390.
    43.刘宏斌,李志宏,张维理,林葆.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J].植物营养与肥料学报,2004a,10(3):286-291.
    44.刘宏斌,李志宏,张云贵,张维理.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学,2004b,37(5):692-698.
    45.刘宏斌,李志宏,张云贵.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报,2006,(3):405-413.
    46.刘学军,巨晓棠,张福锁.减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响[J].应用生态学报,2004,15(3):458-462.
    47.刘巽浩.对氮肥利用效率若干传统观念的质疑[J].农业现代化研究,1990,11(4):28-34.
    48.吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15.
    49.马文奇.山东省作物施肥现状、问题与对策[D].博士学位论文.北京:中国农业大学,1999.
    50.倪秀菊.几种抑制剂对尿素水解和土壤硝化作用的影响[M].硕士学位论文.北京:中国农业科学院,2010.
    51.钱海燕,王兴祥,黄国勤.施肥对连作蔬菜地蔬菜产量和土壤氮素含量的影响[J].中国农学通报,2008,24(7):270-275.
    52.秦巧燕,贾陈忠,同延安.施用氮肥对设施栽培土壤硝态氮累积量的影响[J].安徽农业科学,2007,35(1):152-153.
    53.任祖淦,邱孝炕,蔡元呈.施用化学氮肥对蔬菜硝酸盐的积累及其治理研究[J].土壤通报,1999,30(6):265-267.
    54.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2007.
    55.沈其荣,沈振国,史瑞和.有机肥氮素的矿化特征及与其化学组成的关系[J].南京农业大学学报,1992,15(1):59-64.
    56.孙丽梅.集约化蔬菜种植区农用化学品投入及地下水硝酸盐污染研究—以山东省寿光市为例[M].硕士学位论文.北京:中国农业大学,2005.
    57.汤丽玲,陈清,张宏彦.不同灌溉与施氮措施对露地菜田土壤无机氮残留的影响[J].植物营养与肥料学报,2002,8(3):282-287.
    58.汤丽玲.日光温室番茄的氮素追施调控技术及其效益评估[D].博士学位论文.北京:中国农业大学,2004.
    59.王朝辉,宗志强,李生秀.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,23(3):79-83.
    60.王东,于振文,于文明.施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响[J].应用生态学报,2006,17(9):1593-1598.
    61.王尔大,Wyatte Harman,郑大玮,常欣,程序.旱作农区轮作和留茬处理方式对风蚀的影响—应用EPIC模型进行模拟和分析的武用案例[J].中国农业科学,2002,35(11):1330-1336.
    62.王琳,郑有飞,于强,王恩利APSIM模型对华北平原小麦-玉米连作系统的适用性[J].应用生 态学报,2007a,18(11):2480-2486.
    63.王琳,郑有飞,于强,王恩利.农田生产系统模型(APSIM)在土地和水肥资源管理中的应用[J].农业环境与发展,2007b,03:27-32.
    64.王少平,高效江,胡雪峰.上海西郊麦期氮素淋溶定位研究[J].环境污染与防治,2002,24(2):68-70.
    65.王兴仁,张福锁,ODOWSKI R石灰性潮土对氮肥连续施用的环境承受力[J].北京农业大学学报,1995,21(增刊):95-98.
    66.王新元,李登顺,张喜英.日光温室冬春茬黄瓜产量与灌水量的关系[J].中国蔬菜,1999,(1):18-21.
    67.王宗明,梁银丽.应用EPIC模型计算黄土塬区作物生产潜力的初步尝试[J].自然资源学报,2002,17(4):481-487.
    68.王宗明,张柏,宋开山,段洪涛CropSyst作物模型在松嫩平原典型黑土区的校正和验证[J].农业工程学报,2005,21(05):47-50.
    69.温美丽,高晓飞,谢云,刘宝元ALMANAC模型对大豆产量的模拟[J].资源科学,2005,27(4):100-105.
    70.吴建繁,王运华,贺建德,张海平,崔秀荣,张彩月,齐岩.京郊保护地番茄氮磷钾肥料效应及其吸收分配规律研究[J].植物营养与肥料学报,2000,6(4):409-416.
    71.吴建繁.北京市无公害蔬菜诊断施肥与环境效应研究[D].博士学位论文.武汉:华中农业大学,2001.
    72.徐福利,梁银丽,陈志杰,杜社妮,张成娥.延安市日光温室蔬菜施肥现状与环境效应[J].西北植物学报,2003,(05):111-115.
    73.薛林宝,姜敦云.果菜类蔬菜生长发育及产量形成模型的研究进展[J].中国蔬菜,2001,(1):48-50.
    74.杨学云,张树兰,袁新民,同延安.长期施肥对壤土硝态氮分布、累积和移动的影响[J].植物营养与肥料学报,2001,7(2):134-138.
    75.于红梅,李子忠,龚元石.不同水氮管理对蔬菜地硝态氮淋洗的影响[J].中国农业科学,2005,38(9):1849-1855.
    76.袁新民,同延安,杨学云.不同施氮量对土壤NO3--N累积的影响[J].干旱地区农业研究,2000a,19(1):8-13.
    77.袁新民,同延安,杨学云,李晓林,张福锁.有机肥对土壤NO3--N累积的影响[J].土壤与环境,2000b,9(3):197-200.
    78.曾化伟,张恩让,谭亮萍,贺冬梅,任媛嫒.土壤水分含量与施氮量对辣椒产量与品质的影响[J].安徽农业科学,2007,35(12):3614-3617.
    79.赵长盛.武汉城郊菜地土壤氮素的转化与淋失研究[D].武汉:华中农业大学,2009.
    80.赵长盛,胡承孝,陈庆锋,黄魏,邱炜红.土柱系统研究进展[J].湖北农业科学,2011,50(5):879-883.
    81.赵丽雯,吉喜斌.基于FAO-56双作物系数法估算农田作物蒸腾和土壤蒸发研究—以西北干旱区黑河流域中游绿洲农田为例[J].中国农业科学,2010,43(19):4016-4026.
    82.赵学蕴,金继续.商品有机肥的研制和施用效果[J].土壤肥料,1996,(4):26-30.
    83.赵允格,邵明安.不同施肥条件下农田硝态氮迁移的试验研究[J].农业工程学报,2002,18(4):37-40.
    84.张恩平,张淑红,葛晓光.土壤有效养分含量对保护地茄子产量及品质的影响.沈阳农业大学学报,2000,31(1):75-77.
    85.张福锁,江荣风,马文奇.养分资源的概念及其综合管理的理论基础与技术途径//张福锁.养分资源综合管理[M].北京:中国农业大学出版社,2003,4-14.
    86.张贵龙.蔬菜保护地氮素利用与去向研究[D].博士学位论文.北京:中国农业科学院,2008.
    87.张宏彦,陈清,汤丽玲.不同水氮管理对菠菜生长和水氮利用的影响[J].植物营养与肥料学报,2002,8(1):48-53.
    88.张乃凤,李家康,陈俊生.科学施用化肥,提高增产效益,降低农业成本.北京:中国农业出版社,1998.
    89.张树兰,同延安,梁东丽等.氮肥施用量和施用时期对土壤剖面硝态氮移动的影响[J].土壤学报,2004,41(2):270-277.
    90.张学军.节水控氮对宁夏不同土壤-蔬菜体系中氮素平衡及NO3--N淋失的影响.博士学位论文.武汉:华中农业大学,2007a.
    91.张学军,赵营,陈晓群,吴礼树,胡承孝.氮肥施用量设施番茄氮素利用及土壤NO3--N累积的影响[J].2007b,27(9):3761-3768.
    92.张维理,田哲旭,张宁,等.我国北方农田氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1 995,(2):80-87.
    93.张颖,刘学军,张福锁,巨晓棠,邹国元,胡克林.华北平原大气氮素沉降的时空变异[J].生态学报,2006,26(6):1633-1638.
    94.张志明,毕庶春,李继云,冯元琦,伍蔚民.长效碳酸氢铵理化特性及增产机理的研究[J].中国科学(B辑),1996,26(5):452-459.
    95.郑国清,尹红征,段韶芬,黄静.作物模拟研究中的模型检验[J].华北农学报,2003,18(02):110-113.
    96.中华人民共和国卫生部和国家标准化管理委员会.农产品安全质量无公害蔬菜安全要求[S].GB18406-2001,2001.
    97.中华人民共和国卫生部和国家标准化管理委员会.生活饮用水卫生标准[S].GB5749-2006,2006.
    98.周艺敏,任顺荣,王玉祥.氮素化肥对蔬菜硝酸盐积累的影响[J].华北农学报,1989,4(1):110-115
    99.朱济成.关于地下水硝酸盐污染原因的探讨[J].北京地质,1995(2):20-26.
    100.朱建华.蔬菜保护地氮素去向及其利用研究[D].博士学位论文.北京:中国农业大学,2002.
    101.朱兆良.我国土壤供氮和化肥氮去向的研究进展[J].土壤,1985,17(1):1-9.
    102.朱兆良,文启孝(主编).中国土壤氮素[M].南京:江苏科学技术出版社,1992:213-249.
    103.朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    104. Addiscott T M, Whitmore A P, Powlson D S. Farming, fertilizers and the nitrate problem. CAB International, Wallingford, United Kingdom,170-171.1991.
    105. Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and drainage paper,56. FAO, Rome.1998.
    106. Andraski T W, Bundy L G, Brye K R. Crop management and corn nitrogen rate effects on nitrate leaching[J]. J. Environ. Qual.,2000,29:1095-1103.
    107. Ator S W, Ferrari M. J. Nitrate and selected pesticides in ground water of the Mid-Atlantic Region. United States Geological Survey. Water-Resources Investigation Report 97-4139.1997.
    108. Bachman L J, Krantz D E, Bohlke J. Hydrogeologic framework, ground-water, geochemistry, and assessment of N yield from base flow in two agricultural watersheds, Kent County, Maryland. U. S. Environmental Protection Agency, EPA/600/R-02/008.46 p.2002.
    109. Baker J L, Johnson H P. Nitrate nitrogen in tile drainage as affected by fertilization[J]. J. Environ. Qual.,1981,10:519-522.
    110. Barbee G C, Brown K W. Comparison between suction and free-drainage soil solution samplers[J]. Soil Sci.,1986,141:149-153.
    111. Barry D A, Goorahoo J D, Goss M J. Estimation of nitrate concentrations in ground water using whole farm N budgets[J]. Journal of Environmental Quality,1993,22(4):767-775.
    112. Bergstrom L, Johnsson H, Tortensson G. Simulated nitrogen dynamics using the SOILN model[J]. Fertilizer Research,1991,27:181-188.
    113. Bock B R, Hergert G.W. Fertilizer nitrogen management. p.139-163. In R.F. Follett et al. (ed.) Managing nitrogen for ground-water quality and farm profitability. SSSA, Madison, WI.1991.
    114. Bock B R. Efficient use of nitrogen in cropping systems. In:Hauk (ed.). Nitrogen in crop production, pp 273-294, American Society of Agronomy, Madison, Wisconsin. International Fertilizer Development Center(IFDC)Annual report 1994.Muscle Shoals, Alabama,USA.1984.
    115. Borlaug N E, Dowswell C R. Feeding a human population that increasingly crowds a fragile planet. 15th World Congress of Soil Science, Acapulco, July 10-16,1994. Keynote lectire.1-15.
    116. Boote K J, Jones J W, Hoogenboom G. Simulation of crop growth:CROPGRO model. In:Peart, R.M., Curry, R.B. (Eds.), Agricultural Systems Modeling and Simulation. Marcel Dekker, New York, pp.651-691.1998.
    117. Boote K J, Jones J W, Hoogenboom G, White J W. The role of crop systems simulation in agriculture and environment[J]. Int. J. Agric. Environ. Inf. Syst.,2010,1:41-54.
    118. Borah M J, Kalita P K. Development and evaluation of a macro-pore flow component for LEACHM[J]. Transactions of the ASAE,1999,42(1):65-78.
    119. Bowen P, Frey B. Response of plasticultured bell pepper to staking, irrigation frequency, and fertigated nitrogen rate[J]. HortScience,2002,37:95-100.
    120. Brady N C Weil R R. The Nature and Properties of Soils,11th Ed. Prentice Hall. Upper Saddle River, New Jersey, pp 400-540.1996.
    121. Brady N C, Weil R R. The nature and properties of soils.13th Ed. Prentice Hall.2002.
    122. Bremner J M. Recent research on problems in the use of urea as a nitrogen fertilizer[J]. Fertilizer Research,1995,42:321-329.
    123. Brisson N, Gary C, Justes E, Roche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussiere F, Cabidoche Y M, Cellier P, Debaeke P, Gaudillere J P, Henault C, Maraux F, Seguin B, Sinoquet H. An overview of the crop model STICS[J]. European Journal of Agronomy,2003,18:309-332.
    124. Cartagena M C, Vallejo A, Diez J A, Bustos A, Caballero R, Roman R. Effect of the type of fertilizer and source of irrigation water on N use in a maize crop[J]. Field Crops Research,1995, 44(1):33-39.
    125. Cassman K G, Dobermann A, Walters D T. Agroecosystems, nitrogen-use efficiency, and nitrogen management[J]. Ambio,2002,31:132-140.
    126. Chern L, Kraft G, Postle J. Nitrate in groundwater-A continuing issue for Wisconsin citizens.http: //www.dnr.state.wi.us/org/water/dwg/gw/pubs/Nitrate.pdf.1999.
    127. Cameron K C, Harrison D F, Smith N P. A method to prevent edge-flow undisturbed soil cores and lysimeters[J]. Australian journal of soil research,1990,28(6):879-886.
    128. Cameron K C, Smith N P, McLay C D A. Lysimeters without edge-flow:an improved design and sampling procedure[J]. Soil Science Society of America Journal,1992,56:1625-1628.
    129. Chin W, Kroontje W. Mechanisms of urea absorption by soils[J]. Soil Soc. Amer. Proc.,1962,26: 479-481.
    130. Christianson C B, Vlek P L G. Alleviating soil fertility constraints to food production in West Africa:Efficiency of nitrogen fertilizer applied to food crops. In A. Uzo Nokwunye (ed.). Alleviating soil fertility constraints to increased crop production in West Africa.1991. Kluwer Academic Publishers, in cooperation with IFDC.1991.
    131. Christine L. simeter stations and soil hydrology measuring sites in Europer-purpose, equipment, research esults, future developments[D]. ustria:hool of Natural Sciences at the Karl-Franzens-University Graz,2004.
    132. Cox S E, Kahle S C. Hydrogeology, ground-water quality, and sources of nitrate in lowland glacial aquifer of Whatcom County, Washington, and British Columbia, Canada. USGS Water Resources Investigation Report 98-4195, Tacoma, Washington.251 p.1999.
    133. Dangler J M, Locascio S J. Yield of trickle-irrigated tomatoes by time of N and K application[J]. Journal of the American Society for Horticultural Science,1990,115:585-589.
    134. DeSimone L, Howes B. N transport and transformations in a shallow aquifer receiving wastewater discharge:A mass balance approach[J]. Water Resources Research,1998,34(2):271-285.
    135. de Paz J M, Ramos C. Simulation of nitrate leaching for different nitrogen fertilization rates in a region of Valencia (Spain) using a GIS-GLEAMS system[J]. Agriculture, Ecosystems & Environment,2004,103(1):59-73.
    136. Di H J, Cameron K C. Nitrate leaching and pasture production from different nitrogen sources on a shallow stony soil under flood irrigated dairypasture[J]. Australian Journal of Soil Research,2002, 40(3):317-334.
    137. Diez J A, Roman R, Caballero R. Nitrate leaching as influenced by fertilization in the brown soil zone[J]. Can. J. Soil Sci,1993,73:387-397.
    138. Diekkruger B, Sondgerath D, Kersebaum C K, Mcvoy C W. Validity of agroecosystem models:a comparison of results of different models applied to the same data set[J]. Ecological Modelling, 1995,81:3-29.
    139. Fink M, Scharpf H C. N-Expert-A decision support system for vegetable fertilization in the field[J]. Acta Horticulture,1993,339:67-74.
    140. Follett R F. Nitrogen management and groundwater protection. Developments in agricultural and managed. Forest Ecology 21. Elsevier, New York.395 pp.1989.
    141. Follett R F, Delgado J A. Nitrogen fate and transport in agricultural systems.J. Soil Water Conserv., 2002,57(7):402.
    142. Fried M, Tanji K, van de R M. Simplified long-term concept for evaluating leaching of nitrogen from agricultural land[J]. J. Environ. Qual.,1976,5:197-200.
    143. Gardner B R, Jone R L. Petiole analysis and nitrogen fertilization of Russet Burbaek potatoes [J]. America Potato Journal,1975,52:195-200.
    144. Gardner B R, Jone R L. Midrib nitrate concentration as a means for determining nitrogen needs of cabbage[J]. Journal of Plant Nutrition,1989,12(9):1073-1088.
    145. Gelhar L W, Wilson J L. Ground-water quality modeling[J]. Ground Water,1974,12(6):399-408.
    146. Gerwing J, Gelderman R. Nitrogen Management and Groundwater Quality in South Dakota. Cooperative Extension Service South Dakota State University U.S. Department of Agriculture. Doc. No. FS 864.1993.
    147. Gilbert P M, Harrison J, Heil C, Seitzinger S. Escalating worldwide use of urea-a global change contributing to coastal eutrophication[J]. Biogeochemistry,2006,77:441-463.
    148. Glass A D. Nitrogen use efficiency of crop plants:physiological constraints upon nitrogen absorbtion[J]. Crit. Rev. Plant Sci.,2003,22:453-470.
    149. Goodlass G, Rahn C, Shepherd M A, Chalmers A G, Seeney F M. The nitrogen requirement of vegetables:comparisons of yield response models and recommendation systems[J]. J. Hort. Sci., 1997,72:239-254.
    150. Goss M J, Goorahoo D. Nitrate contamination of groundwater:Measurement and prediction[J]. Fertilizer Research,1995,42:331-338.
    151. Goulding K. Pathways and losses of fertilizer nitrogen at different scales, p.209-211.In:Mosier, A.R., J.K. Syers, and J.R. Freney (ed.) Agriculture and the Nitrogen Cycle:Assessing the Impacts of Fertilizer Use on Food Prodcution and the Environment. Island, Washington D.C.2004.
    152. Greer F R, Shannon M. American Academy of Pediatrics Committee on Nutrition, American Academy of Pediatrics Committee on Environmental Health, Infant methemoglobinemia:the role of dietary nitrate in food and water[J]. Pediatrics,2005,116:784-786.
    153. Greenwood D J, Cleaver T J, Loquens S H M, Niendorf K B. Relationships between plant weight and growing period for vegetable crops in the UK[J]. Ann. Bot.,1977,41:987-997.
    154. Greenwood D J, Cleaver T J, Turner M K, Hunt J, Niendore K B, Loquens S M H. Comparison of the effects of nitrogen fertilizer on the yield, nitrogen content and quality of 21 different vegetable and agricultural crops[J]. J. Agric. Sci.,1980,95:471-485.
    155. Greenwood D J, Neeteson J J, Draycott A. Response of potatoes to N-fertilizer:dynamic model [J]. Plant Soil,1985,85:185-203.
    156. Greenwood D J, Kubo K, Burns I G, Draycott A. Apparent recovery of fertilizer-N by vegetable crops[J]. Soil Sci. Plant Nutr.,1989,35:367-381.
    157. Greenwood D J, Draycott A. Experimental validation of an N-response model for widely different crops [J]. Fertil. Res.,1989a,18:153-174.
    158. Greenwood D J, Draycott A. Quantitative relationships for growth and N-content of different vegetable crops grown with and without ample fertilizer-N on the same soil[J]. Fertil. Res.,1989b, 18:175-188.
    159. Greenwood D J, Rahn C R, Draycott A, Vaidyanathan L V, Paterson C D. Modelling and measurement of the effects of fertilizer-N and crop residue incorporation on N-dynamics in vegetable cropping[J]. Soil Use Manage,1996,12:13-24.
    160. Greenwood D J, Stone D, Karpinets T V. Dynamic model for the effects of soil P and fertilizer P on crop growth, P uptake and soil P in arable cropping:experimental test of the model for field vegetables[J]. Ann. Bot.,2001,88:279-291.
    161. Haby V A, Simons C, Stauber M S, Loud R, Kresge P O. Relative efficiency of applied N and soil nitrate for winter wheat production [J]. Agronmy Journal,1983,75:49-52.
    162. Hallbcrg G R, Keeney D R. Nitrate, p.297-321. In William M. Alley (Ed.). Regional ground-water quality. U. S. Geological Survey, Van Nostrand Reinhold, New York.1993.
    163. Hall M D, Shaffer M J, Waskom R M, Delgado J A. Regional nitrate leaching variability:What makes a difference in northeastern Colorado[J]. Journal of the American Water Resources Association,2001,37(1):139-408.
    164. Hansen S, Jensen H E, Nielsen N E, Svendsen H. Daisy-A Soil Plant Atmosphere System Model. NPO Research from the National Agency of Environmental Protection No. A 10.272 pp.1990.
    165. Harter T, Davis H, Mathews M, Meyer R. Shallow groundwater quality on dairy farms with irrigated forage crops[J]. Journal of Contaminant Hydrology,2002,55:287-315.
    166. Hassan A E, Hamed K H. Prediction of plume migration in heterogeneous media using artificial neural networks[J]. Water Resources Research,2001,37(3):605-624.
    167. Henry G T. Petiole sap nitrate sufficiency values for fresh market tomato production [J]. Journal of Plant Nutrition.2001,24(6):945-959.
    168. Hill A R. Nitrate distribution in the ground water of the Alliston Region of Ontario, Canada[J]. Ground Water,1982,20(6):696-702.
    169. Hillel D. Environmental Soil Physics. Academic Press.1998.
    170. Hoehmuth, G J. Efficiency ranges for nitrate nitrogen and potassium for vegetable petiole sap quick test[J]. HortTechnology,1994,4:218-222.
    171. Hartz T K, Bendixen W E, Wierdsma L. The value of presidedress soil nitrate testing as a nitrogen management tool in irrigated vegetable production[J]. HortScience,2000,35(4):651-656.
    172. Hoogenboom G, Wilkens P W, Tsuji G Y. (Eds),1999. Decision support system for agrotechnology transfer (DSSAT) version 3, volume 4. Honolulu HI:University of Hawaii.
    173. Hubbard R K, Sheridan J M. Nitrate movement to groundwater in the Southeastern coastal plain[J]. Journal of Soil and Water Conservation,1989,44:20-27.
    174. Hubbard, R.K., and J.M. Sheridan.1994. Nitrates in groundwater in the SoutheasternUSA, p. 303-345. In D. C. Adriano, A. K. Iskandar, and I. P. Murarka (Eds.). Contamination of groundwaters. Science Reviews, Northwood, United Kingdom.
    175. Hudak P F. Regional trends in nitrate content of Texas groundwater[J]. Journal of Hydrology,2000, 228:37-47.
    176. Huffman E C, Yang J H, Gameda S, de Jong R. Using simulation and budget odels to scale-up nitrogen leaching from field to region in Canada[J]. Sci. World.,2001,699-706.
    177. Hutson J L, Wagenet R J. Leaching Estimation And Chemistry Model:A process-based model of water and solute movement, transformations, plant uptake, and chemical reactions in the unsaturated zone. Version 3. Dept. of Soil, Crop, and Atmospheric Sciences. Research series 92-3. Cornell Univ., Ithaca, NY.1992.
    178. International Fertilizer Industry. Total fertilizer consumption statistics by region from 1970/71 to 2005/06. Retrieved April 16,2007, from http://www.fertilizer.org/ifa/statistics.asp.
    179. Jackson L E, Stivers L J,Warden B T, Tanji K K. Crop nirtogen utilizaiton and soil nitrate loss in a lettuce field[J]. Fert. Res.,1993,37(2):93-105.
    180. Jamieson P D, Porter J R, Wilson D R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand[J]. Field Crops Res.,1991,27:337-350.
    181. Jansson S L, Persson J. Mineralization and immobilization of soil nitrogen. p.229-248. In F.J. Stevenson (ed.) Nitrogen inagricultural soils. Agron. Monogr.22. ASA, Madison, WI.1982.
    182. Jarvis S C. Nitrogen cycling and losses from diary farm[J]. Soil Use and management,1993,9: 99-105.
    183. Jemison J M Jr, Fox R H. Nitrate leaching from soil measured with zero-tension pan lysimeters as influenced by nitrogen fertilizer rate and manure application[J]. J. Environ. Qual.,1994,23:347-343.
    184. Inskeep W R, Wraith J M, Wilson J P, Snyder R D, Macur R E, Gaber H M.. Input parameter and resolution effects on prediction of solute transport[J]. J. Environ. Qual.,1996,25:453-462.
    185. Johnson P A, Shepherd M A, Hatley D J, Smith P N. Nitrate leaching from a shallow limestone soil growing a five course combinable crop rotations:The effects of Crop husbandry and nitrogen fertilizer rate on losses from the second complete rotation[J]. Soil Use and management.,2002,18: 68-76.
    186. Johnston W R, Ittihadieh F, Daum R M, Pillsbury A F. Nitrogen and phosphorus in tile drainage effluent[J]. Soil Science Amer. Proc.,1965,29:287-289.
    187. Johnsson H, Bergstrom L, Jansson P E, Paustian K. Simulation nitrogen dynamics and losses in a layered agricultural soil[J]. Agric. Ecosyst. Environ.,1987,18:333-356.
    188. Jones C A, Kiniry J R. Ceres-N Maize:A Simulation Model of Maize Growth and Development. Texas A & M University Press, Collage Station.1986.
    189. Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh W, Gijsman A J, Ritchie J T. The DSS AT cropping system model[J]. European Journal of Agronomy, 2003,18:235-265.
    190. Jungkunst H F, Freibauer A, Neufeldt H, Bareth G. Nitrous oxide emissions from agricultural land use in Germany-a synthesis of vailable annual field data[J]. J. Plant Nutr. Soil Sci.,2006,169: 341-351.
    191. Jury W, and Nielsen D. Nitrate transport and leaching mechanisms, p.139-157. In R.F. Follett (Ed.). Nitrogen management and ground water protection. Elsevier New York.1989.
    192. Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes J P, Silburn M, Wang E, Brown S, Bristow K L, Asseng S, Chapman S, McCown R L, Freebaim D M, Smith C J. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy,2003,18:235-266.
    193. Keeney D R, Nelson D W. Nitrogen-inorganic forms, p.643-693. In A.L. Page, R.H. Miller, and D.R. Keeney (ed.) Methods of Soil Analysis Part 2.Chemical and Microbiological properties 20d ed. ASA Pub. Madison, WI.1982.
    194. Keeney D R, Follett R F. Overview and introduction. In:Managing nitrogen for groundwater quality and farm profitability, p.9-17 Follett, R.F. et al. (ed.). ASA, CSSA, and SSSA, Madison, WI.1991.
    195. Keeney D R. Sources of nitrate to groundwater[J]. Critical Reviews in Environmental Control,1986, 16 (31):257-304.
    196. Kengni L, Vachaud G, Thony J L, Laty R, Garino B, Casabianca H, James P, Viscogliosi R. Field measurements of water and nitrogen losses under irrigated maize[J]. J. Hydrol.,1994,162:23-46.
    197. Kim C S, Hostetler J, Amacher G. The regulation of groundwater quality with delayed responses[J]. Water Resources Research,1993,29(5):1369-1377.
    198. Kim C S, Sandretto C, Hostetler J. Effects of farmer response to nitrogen fertilizer management practices on ground water quality[J]. Water Resources Research,1996,32(5):1411-1415.
    199. Klaring H P. Strategies to control water and nutrient supplies to greenhouse crops:A review[J]. Agronomie,2001,21 (3):311-321.
    200. Kirchmann H, Johnston A E, Bergstrom L R. Possibilities for reducing nitrate leaching from agricultural land[J]. Ambio,2002,31:404-408.
    201. Krishna K R, Rosen C. Nitrogen in soil:Transformations and influence on crop productivity. Pages 91-108 in K.R. Krishna, Ed. Soil fertility and crop production. Science Publisher, Inc. Enfield, New Hampshire, USA.2002.
    202. Krusekopf H H, Mitchell J P, HartZ T K, May D M, Miyao E M, Cahn M D. Pre-sidedress soil nitrate testing identifies processing tomato fields not requiring sidedress N fertilizer[J]. HortScience, 2002,37(3):520-524.
    203. Lamm F R, Trooien T P. Subsurface drip irrigation for corn production:A review of 10 years of research in Kansas[J]. Irrig. Sci.,2003,22:195-200.
    204. Lasserre F, Razack M, Banton O. A GIS-linked model for the assessment of nitrate contamination in groundwater[J]. Journal of Hydrology,1999,224:81-90.
    205. Lea P J, Azevedo R A. Nitrogen use efficiency-Uptake of nitrogen from soil[J]. Ann. of Appl. Biol., 2006,149:243-247.
    206. Lee D J, Kim C S. Nonpoint source groundwater pollution and endogenous regulatory policies[J]. Water Resources Research,2002,38(12):1275.
    207. Lee Y W. Risk assessment and risk management for nitrate-contaminated groundwater supplies. Unpublished PhD dissertation. University of Nebraska, Lincoln, Nebraska.1992,136 p.
    208. Liang X Q, Chen Y X, Li H, Tian G M, Ni W Z, He M M, Zhang Z J. Modeling transport and fate of nitrogen from urea applied to a near-trench paddy field[J]. Environmental Pollution,2007,150: 313-320.
    209. Likens G E. Some perspectives of the major biogeochemical cycles[J]. John Wiley and Sons.1981.
    210. Ling G, El-Kadi A. A lumped parameter model for N transformation in the unsaturated zone[J]. Water Resources Research,1998,34(2):203-212.
    211. Livingston M L, Cory D C. Agricultural nitrate contamination of groundwater:An evaluation of environmental policy[J]. Journal of the American Water Resources Association,1998,34(6): 1311-1317.
    212. Lord E I, Shepherd M A. Developments in the use of porous ceramic cups for measuring nitrate leaching[J]. J. Soil Sci.,1993,44:435-449.
    213. Lorenz O A, Tyler K B. Plant tissue analysis of vegetable crops. In:Reisenauer, H.M.(eds), Soil and plant tissue testing in California. University of California:Berkeley,1983,24-29.
    214. Magdoff F R. Understanding the corn pre-sidedress nitrate test:A step towards environmentally sound N management[J]. J. Prod. Agric.,1991,4:297-305.
    215. Mason S C, Wilcox G E. Nitrogen status evaluation of tomato plants[J]. Journal of the American Society for Horticultural Science,1982,107:483-486.
    216. Ma L, Shaffer M J.2001. A review of carbon and N processes in nine U.S. soil Ndynamics models, p.55-102. In M. J. Shaffer, L. Ma, and S. Hansen (Eds.). Modeling carbon and N dynamics for soil management. Lewis Publishers, Florida.
    217. Meisinger J J, Randall G W.1991. Estimating nitrogen budgets for soil crop systems:Pages 85-124 in R.F. Follet, D.R. Keenny and R.M. Cruse, Eds. Managing nitrogen for groundwater quality and farm profitability. Soil Sci. Soc. Am, Inc. Madison, Wisconsin, USA.
    218. Mercado A. Nitrate and chloride pollution of aquifers:A regional study with the aid of a single-cell model[J]. Water Resources Research,1976,12(4):731-747.
    219. Miller A J, Cramer M D. Root nitrogen acquisition and assimilation[J]. Plant and Soil,2004,274: 1-36.
    220. Miller R W, Donahue R L. Soils:An Introduction to Soils and Plant Growth. Prentice Hall, Inc. Englewood Cliffs, New Jersey.1990,383-411.
    221. Miller P L, MacKenzie A F. Effects of manures, coated urea on yield and uptake of N by corn and on subsequent in southern Quebec[J]. Can. J. Soil Sci.,1978,58:153-158.
    222. Minotti P L, Hankinson T J, Wien H C. Whole leaves versus petioles for assessing the nitrogen status of tomatoes[J]. HortScience,1989,24:84-86.
    223. Mueller D K, Hamilton P A, Helsel D R, Hitt K J, Ruddy B C. Nutrients in ground water and surface water of the United States-An analysis of data through 1992. United States Geological Survey, Water Resources Investigations Report,1995,1-74.
    224. Nebel B J, Wright R T. Environmental Science:The Way the World Works. Prentice Hall. Upper Saddle River, New Jersey.1998,68-303.
    225. Neeteson J J, Carton O T. The environmental impact of Nitrogen in Field Vegetable Production. In proceedings of ISHS/ENVEG conference.1999. Acta Hort.563:21-28.
    226. Nolan B T, Ruddy B C, Hitt K J, Helsel D R. Risk of nitrate in groundwaters of the United States-A national perspective[J]. Environmental Science and Technology,1997,31:2229-2236.
    227. Nolan B T, Hitt K, Ruddy B. Probability of nitrate contamination of recently recharged ground waters in the conterminous United States[J]. Environmental Science and Technology,2002,36(10): 2138-2145.
    228. Nolan B T. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States[J]. Ground Water,2001,39(2):290-299.
    229. Olsen R J, Hensler R F, Attoe O J, Witzel S A, Peterson L A. Fertilizer nitrogen and crop rotation in relation to movement of nitrate nitrogen through soil profiles[J]. Soil. Sci. Soc. Amer. Proc., 1970,34:448-452.
    230. Olson R A, Kurtz L T.1982. Crop nitrogen requirements, utilization and fertilization. In F.J. Stevenson (ed.) Nitrogen in agricultural soils. Agronomy 22:229-252. Am. Soc. of Agron., Madison, Wis.
    231. Pampolino M F, Urushiyama T, Hatano R. Detection of nitrate leaching through bypass flow using pan lysimeter, suction cup, and resin capsule[J]. Soil Sci. Plant Nutr.,2000,46:703-711.
    232. Parliman D J.2002. Analysis of Nitrate (NO3--N) concentration trends in 25 ground-water-quality management areas, Idaho.1961-2001.U.S. Geological Survey, Water-Resources Investigations Report (02):40-56.
    233. Parris K. Agricultural nutrient balances as agri-environmental indicators:an OECD erspective [J]. Environmental Pollution,1998,102:219-225.
    234. Pedersen A, Zhang K, Thorup-Kristensen K, Jensen L S. Simulating root density dynamics and nitrogen uptake-can a simple approach be sufficient? In:37th Biological Systems Simulation Conference,17-19 April,2007, Maryland, USA. pp.11-12.
    235. Power J F. Nitrogen in the cultivated ecosystem. In Clark, F.E., and Rosswall, T. (eds.) Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm),1981,33:343-352.
    236. Power J F, Schepers J S. Nitrate contamination of groundwater in North America[J]. Agric. Ecosyst. Environ.,1989,26:165-187.
    237. Powlson D S. Understanding the soil nitrogen cycle[J]. Soil Use and Management,1993,9(3): 86-94.
    238. Prasad R. Fertilizer urea, food security, health and the environment[J]. Current Science,1998,75: 677-683.
    239. Prunty L, Montgomery B R. Lysimeter study of nitrogen fertilizer and irrigation rate on quality of recharge water and corn yield[J]. J. Environ. Qual.,1991,20:373-380.
    240. Puckett L J, Cowdery T K, Lorenz D L, Stoner J D. Estimation of nitrate contamination of an agro-ecosystem outwash aquifer using a nitrogen massbalance budget[J]. Journal of Environmental Quality,1999,25:2015-2025.
    241. Rahil M H, Antonopoulos V Z. Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed astewater[J]. Agricultural Water Management,2007,92:142-150.
    242. Ramanarayanan T S, Storm D E, Smolen M D. Analysis of N management strategies using EPIC[J]. Journal of the American Water Resources Association,1998,34(5):1199-1211.
    243. Ramos C, Agut A, Lidon A L. Nitrate leaching in important crops of the Valencian Community region (Spain). Environmental Pollution,2002,118:215-223.
    244. Refsgaard J C, Thorsen M, Jensen J B, Kleeschulte S, Hansen S. Large scale modeling of groundwater contamination from nitrate leaching[J]. Journal of Hydrology,1999,221:117-140.
    245. Riley H, Guttormsen G. N requirements of cabbage plants grown on contrasting soils-Model verification and predictions[J]. Norwegian J. Agric.Sci.,1993,8:99-113.
    246. Ritchie J T, Griffin T S, Johnson B S. SUBSTOR:functional model of potato growth, development, and yield. In:Modelling and Parameterization of the Soil-Plant-Atmosphere System:A Comparison of Potato Growth Models,1995,401-434.
    247. Roman R, Caballeroa R, Bustosa A. Field water drainage under traditional and improved irrigation schedules for Corn in Central Spain[J]. Soil Science Society of America Journal,1999,63(6):1811-1817.
    248. Ryden J C, Rolston D E.1983.The measurement of denitrification. Pages 121-134 in H.L. Golterman, Ed. Denitrification in the nitrogen cycle. Plenum Press, New York.
    249. Santamaria P. Nitrate in vegetables:toxicity content, intake and EC regulation[J]. J. Food Agric, 2006,86:10-17.
    250. Schepers J S, Mosier A R. Accounting for nitrogen in non-equilibrium soil-crop systems. Pages 125-138 in R.F. Follet, D.R. Keeney and R.M. Cruse, Eds. Managing nitrogen for groundwater quality and farm profitability. Soil. Sci. Soc. Am, Inc. Madison, Wisconsin, USA.
    251. Shaffer M J, Halvorson A D, Pierce F J. Nitrate leaching economic analysis package(NLEAP): Model description and application. In:Follet, RF. (ed.). Managing nitrogen for groundwater quality and farm profitability. Soil Sci. Soc. Am. Pub. Madison, WI.
    252. Shamrukh M, Corapcioglu M, Hassona F. Modeling the effect of chemical fertilizers on ground water quality in the Nile Valley Aquifer, Egypt[J]. Ground Water,2001,39(1):59-67.
    253. Simonne E H, Dukes M D, Haman D Z.2004. Principles and practices of irrigation management for vegetables, p.33-39. In S.M. Olsen and E.H. Simonne (ed.) Vegetable production guide for Florida, Univ. of Florida, Gainesville, FL.
    254. Smith S J, Cassel D K.1991. Estimating nitrate leaching in soil materials. Pages 65-187 in R.R. Follett, D.R. Kenney, and R.M. Cruse, Eds. Managing nitrogen for groundwater quality and farm Profitability. Proc. Symp. ASA, SSSA and CSSA. Anaheim, CA. SSSA Madison, Wisconsin, USA.
    255. Snyder Cr H, Augustin B J, Davidson J M. Moisture sensor controlled irrigation for reducing N leaching in Bermuda grass turf[J]. Agron. J.,1984,76:964-969.
    256. Solley W B, Pierce R R, Penman H A. Estimated use of water in the United States in 1990[J]. U.S. Geological Survey Circular,1993,18:76.
    257. Spalding R F, Exner M E. Occurrence of nitrate in groundwater-A review[J]. Journal of Environmental Quality,1993,22:392-402.
    258. Stevenson F J.1982. Origin and distribution of nitrogen in soil:Pages 1-42 in F.J. Stevenson, Ed. Nitrogen in agricultural soils. Agronomy Monograph No.22. ASA, CSSA and SSSA. Madison, Wisconsin, USA.
    259. Stockle C O, Donatelli M, Nelson R. CropSyst, a cropping systems simulation model[J]. European Journal of Agronomy,2003,18:289-308.
    260. Tanji K K. Modeling of the soil nitrogen cycle. In F. J. Stevenson(ed) Nitrogen in agricultural soils. Agronomy,22:721-772. Am. Soc. of Agron., Madison, Wis.1982.
    261. Tesoriero A, Liecscher H, Cox S. Mechanism and rate of denitrification in an agricultural watershed:Electron and mass balance along ground water flow paths[J]. Water Resources Research,2000,36(6):1545-1559.
    262. Thompson T L, Doerge T A, Godin R E, Subsurface drip irrigation and fertigation of broccoli:Yield, quality, and nitrogen uptake[J]. Soil Sci. Soc. Am. J.,2002,66:186-192.
    263. Thorsen M, Refsgaard J C, Hansen S E, Pebesma J B, Kleeschutle S. Assessment of uncertainty in simulation of nitrate leaching to aquifers at catchment scale[J]. Journal of Hydrology,2001,242: 210-227.
    264. Tisdale S L, Nelson W L. Soil fertility and fertilizers. Third Edition. Macmillan Publishing Co., NY. 1975,694pp.
    265. Tremblay N, Seharpf H C, Weier U H, Owen J. Nitrogen managemnent in field vegetable-a guide to efficient fertilization. http://www.hridir.org/eouniries/Canada.2001.
    266. US Environmental Protection Agency. Drinking water regulations and health advisories. Office of Water, Washington, D.C.1995.
    267. USGS. Water quality in the Georgia-Florida Coastal Plain, Georgia and Florida,1992-1996. USGS, Reston, VA.1998.
    268. van Ittersum M K, Leffelaar P A, van Keulen H, Kropff M J, Bastiaans L, Goudriaan J. On approaches and applications of the Wageningen crop models[J]. European Journal of Agronomy, 2003,18:201-234.
    269. Wakida F T, Lerner D N. N03- leaching from construction sites to groundwater in the Nottingham, UK, urban area[J]. Water Science and Technology,2002,45(9):243-248.
    270. Wagenet R J, Huston J L. LEACHM:leaching estimation and chemistry model.Ver.2. Cornell University. Ithaca, NY.1989.
    271. Walker R. Nitrate, nitrite and N-nitroso compounds:A review of the occurrence in food and diet and the toxicological implications[J]. Food Add. Cont.,1990,7:717-768
    272. Webster C P, Shepherd M A, Goulding K W T, Lord E. Comparison between methods for measuring the leaching of mineral nitrogen from arable land[J]. J. Soil Sci.,1993,44:49-62.
    273. Weier U U, Riesen V, Scharpf. Nil-N-Plots:A system to estimate the amount of the nitrogen topdressing of vegetables[J]. Acta Horticultrue,2001,563:47-52.
    274. Willian A, Nielse D R. Nitrate transport and leaching mechanism.1989,139-157. In R.F. Follett (ed.) Nitrogen management and ground water. Elsevier, Amsterdam.
    275. Williams J R, Jones C A, Dyke P T. The Epic model. in:Sharpley A.N., Williams J.R. (Eds.), Epic-Erosion Productivity Impact Calculator.1. Model documentation. U S Department of Agriculture Technical Bulletin No 1768. USDA:Washington DC.1993,92 pp.
    276. Willmott C J. Some comments on the evaluation of model performance[J]. B. Am. Meteorol. Soc. 1982,63:1309-1313.
    277. Wolfe A H, Patz J A. Reactive nitrogen and human health:Acute and long-term implications[J]. Ambio,2002,31(2):120-125.
    278. Wolock D M, Kauffman L K. Estimating water-quality conditions in unmonitored water resources[J]. Water Resources Impacts,2002,4(4):26-31.
    279. World Health Organization. Diet, nutrition and the prevention of chronic diseases. Report of a Joint FAO/WHO Expert Consultation. WHO Technical Report Series No.916. Geneva, Switzerland. 2003.
    280. Wu Y, Sakamoto C M, Botner D M. On the application of CERES-Maize model to the North-China Plain[J]. Agric. Meterorol.,1989,49:9-22.
    281. Wyland L J, Jackson L E. Evaluating nitrate recovery by ion-exchange resin bags[J]. Soil science society of America journal,1993,57:1208-1211.
    282. Wylie B K, Shaffer M J, Hall M D. Regional assessment of NLEAP N03--N leaching indices[J]. Water Resources Bulletin,1995,31(3):399-408.
    283. Yang J, Wadsworth G A, Rowell D L, Burns I G. Evaluating a crop nitrogen simulation model, N_ABLE using a field experiment with lettuce[J]. Nutr. Cycl. Agroecosyst.,1999,55:221-230.
    284. Yang J F, Li B Q, Liu S P.A large weighing lysimeter for evapotranspiration and soil-water-groundwater exchange studies[J]. Hydrological Processes,2000,14:1887-1897.
    285. Yang D, Zhang T, Zhang K, Greenwood D J, Hammond J P, White P J. An easily implemented agro-hydrological procedure with dynamic root simulation for water transfer in the crop-soil system: validation and application[J]. J. Hydrol.,2009,(03):5.
    286. Yiridoe E K, Voroney R P, Weersink A. Impact of alternative farm management practices on nitrogen pollution of groundwater:Evaluation and application of CENTURY model[J]. J. Environ. Qual.,1997,26:1255-1263.
    287. Yu Q, Saseendran S A, Ma L, Flerchinger G N, Green T R, Ahuja L R. Modeling a wheat-maize double cropping system in China using two plant growth modules in RZWQM[J]. Agric. Syst., 2006,89(2-3):457-477.
    288. Ziegler J, Strohemerier K. Nitrogen supply of vegetables based on the "KNS-system"[J].Acta Horticultural,1996,428:223-233.
    289. Zhang K, Greenwood D J, White P J, Burns I G. A dynamic model for the combined effects of N, P and K fertilizers on yield and mineral composition:description and experimental test[J]. Plant and Soil,2007,298:81-98.
    290. Zhang K, Yang D, Greenwood D J, Rahn C R, Thorup-Kristensen K. Development and critical evaluation of a generic 2-D agro-hydrological model (SMCR_N) for the responses of crop yield and nitrogen composition to nitrogen fertilizer[J]. Agric Ecosyst Environ,2009,132(1-2):160-172.
    291. Zhang K, Greenwood D J, Spracklen W P, Rahn C R, Hammond J P, White P J, Burns I G. A universal agro-hydrological model for water and nitrogen cycles in the soil-crop system SMCR_N: Critical update and further validation[J]. Agric Water Manage,2010,97(10):1411-1422.
    292. Zhao C S, Hu C X, Huang W, Sun X C, Tan Q L, Di H J. A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China[J]. J Soils Sediments,2010, (10)9-17.
    293. Zhu J G, Han Y, Liu G, Zhang Y L, Shao X H. Nitrogen in percolation water in paddy fields with a rice/wheat rotation[J]. Nutrient Cycling in Agro-ecosystems,2000,57:75-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700