用户名: 密码: 验证码:
聚醚砜(PES)改性血液相容性材料的制备及相关生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究工作的目的是以聚醚砜(PES)为基材,采用整体肝素化方法开发研究用于与血液接触的器官制造及设备如人工心脏、透析膜等的生物材料,对材料的改性磺化、胺化、肝素化等制备过程与机制、材料的表征、材料的血液相容性及力学性能进行了较系统的研究。本研究首先以氯磺酸为磺化剂对聚醚砜(PES)进行磺化处理,选用直链二胺为空间臂,通过2-(N-吗啉代)乙烷磺酸(MES)和盐酸乙基-3-(二甲氨基丙基)碳二亚胺(EDC)的催化实现,磺酸基与二胺一端的氨基发生脱水缩合反应,将二胺固定在聚醚砜材料上,二胺另一端的氨基与肝素分子中的酯磺酸基或羧基又通过2-(N-吗啉代)乙烷磺酸(MES)和盐酸乙基-3-(二甲氨基丙基)碳二亚胺(EDC)的催化,再次发生脱水缩合反应,肝素被固定在聚醚砜上,从而得到肝素化的磺化聚醚砜材料。由于聚醚砜分子中每一个苯环上都连着强吸电子性能的砜基(-SO2-),砜基使相邻的苯环钝化,从而使亲电取代的磺化变得异常困难,仅有反应活性很高的亲电试剂才能做为它的磺化剂,只有成功地对本来化学性质呈惰性的聚醚砜活化后,才能对其进行下一步的改性。实验研究了聚醚砜的磺化过程中各影响因素。对用氯磺酸为磺化剂,浓硫酸为溶剂磺化过程中的磺化时间、反应温度、搅拌速度和氯磺酸与聚醚砜的摩尔比等因素进行了探讨,发现低温下磺化效果较好,用浓硫酸作溶剂,由于反应体系接近为均相,故可得到均匀的磺化产物。同时通过改变氯磺酸与聚醚砜的摩尔比,可以对反应进行控制。得到最佳的反应参数为:10℃、800rpm、磺化时间2小时。在低温脱水剂2-(N-吗啉代)乙烷磺酸和盐酸乙基-3-(二甲氨基丙基)碳二亚胺的催化作用下,在室温、300rpm、反应3小时,实现了磺化聚醚砜接枝胺化。由于磺化、胺化、肝素化三过程是一个连串的相互影响的复杂过程,综合考虑以上三个步骤的影响,进行了正交实验,实验结果表明,磺化和胺化的交互作用和胺化对材料抗凝血性能影响最大,通过分析可得最佳工艺条件为:磺化过程磺化度为10%、胺化过程二胺的分子量为200、肝素化过程氨基摩尔比100%。
    磺化、胺化、肝素化三过程是否成功,磺酸基团是否成功地连接在实验方案设计的基团位置,二胺“空间臂”分布是否均匀,肝素在材料表面的分布均匀性和牢固性如何,本研究采用红外光谱、扫描电子显微镜和荧光分析方法结合游离肝素分析对制备的材料进行了表征和分析。结果表明,通过在磺化PES表面链接重氮盐的荧光分析方法确定了PES磺化的均匀性,磺酸基是非常均匀地分布在基材PES的表面,该方法对指导和控制磺化度具有重要意义。红外光谱的分析结果显示,最初分子设计路线与实验结果一致,通过磺化、胺化及肝素化过程制备整体肝素化聚醚砜
    
    
    材料可保持肝素结构原有特性, 肝素未遭到破坏,仍维持其原来的成分和结构,从而保持肝素的抗凝血活性。通过甲苯胺蓝与肝素结合后,其在632nm处出现最大吸收峰的方法检测胺化PES表面接入肝素的量,实验材料的肝素含量为:65mg/g。除去游离肝素的质量,实际固定的量为58.365mg/g,根据表面积计算为5.8mg/cm2,材料达到了作为抗凝血肝素化表面的要求。
    制备的肝素化磺化聚醚砜材料是在与血液接触环境中使用,因此,材料的血液相容性性能评价显得尤为重要。本研究选择了合成的肝素化磺化聚醚砜材料,聚醚氨酯、聚醚砜材料和亲水接枝的聚乙烯GAMBRO和FRESENIUS材料进行了血液相容性实验评价及比较研究。生物材料与血液或机体内环境接触首先发生的现象就是蛋白质的吸附。生物材料表面性能会对蛋白吸附层的成分和构象等性能产生影响。实验结果显示,表面亲水性的提高可以减少血浆总蛋白的吸附量,提高白蛋白的吸附比例,减少球蛋白的吸附,肝素化比提高表面亲水性的方法更有利于减少蛋白的吸附和提高白蛋白吸附的比例。通过扫描电镜结果分析表明,聚醚砜在肝素化前后有显著的区别,亲水性较好的聚氨酯明显比聚醚砜吸附有较多的白蛋白,两种亲水接枝的聚乙烯GAMBRO和FRESENIUS又比前两者有更多的吸附量。聚醚砜在未肝素化前引起了白蛋白的某些变化,出现絮凝状和网状凝聚蛋白,肝素化后吸附的蛋白分散非常的均匀,表面光滑,表明肝素的海藻状结构起到了作用。
    材料表面与血液接触时吸附血浆蛋白的种类与血小板贴壁的数量密切相关,表面吸附了白蛋白可减少血小板的贴壁,表面吸附球蛋白,若主要是纤维蛋白原及Y一球蛋白(以IgG为主)时,将发生大量的血小板粘附在吸附球蛋白的材科表面粘附、聚集。我们的实验也验证了这一观点。研究显示,血浆蛋白吸附最多的整体肝素化聚醚砜血小板的黏附量比本体材料减少了55%,达到19×109/L;比GAMBRO和FRESENIUS两种亲水性改性聚乙烯减少了23%。显微观察表明,聚醚砜表面血小板聚集成絮状,而整体肝素化聚醚砜表面清晰,未有可见异物。血小板的计数,也为这一现象提供数量上证据。对五种材料血小板黏附的研究发现,材料表面亲水性的提高可以减少血小板的黏附,肝素化对减少血小板的黏附有更大的帮助。复钙实验研究显示GAMBRO和FRESENIUS两种经过表面亲水性改性的聚乙烯,由于亲水性的提高,对凝血因子的激活有延缓的作用,因而表现出复钙时间比空白延长。从复钙时间来看,全身肝素化聚醚砜超过7分钟,是本体材料的3倍多,而且含有肝素的材料引?
In this study, we use polyethersulfone(PES) as basic material to develop a biomaterials ,which can make artificial organs and equipments such as artificial heart,dialyzer and so no. The main research target is to study the process and technics of sulfonated, aminated and heparinized , biocompatibility and material’s mechanical property.
    The principles and methods of organic synthesis were applied for heparinizating PES wholly. After sulfonated, 2-Morpholinoethanesulfoni acid monohydrate and N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimidhydrochlorid served as condensation reagent ,1,30-Hexanediamine was connected noto PES. And then 1,30-Hexanediamine served as space arm, 2-Morpholinoethanesulfoni acid monohydrate and N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimidhydrochlorid as condensation reagent too,thus heparin was linked to the PES materials modified by sulfonation via covalent bond . Because each benzene in PES molecule connects a sulfonyl(-so2-), which has the strong ability to attract electrons and deactivates the benzene.It is very difficult to sulfonate PES by electrophilic aromatic substitution reaction.Thus, sulfonated agent must have high reactivity and reation conditions affect on sulfonating process much.In our experiment, some factors such as reacting temperature, reacting time, stirring velocity and mole ratio of chlorosulfonic acid and PES, had been studied. The real reaction indicated that it is more suitable for sulfonating reaction in low temperature, dissolved by vitriol would make reacting system more symmetrical, controlling the relation of the sulfonated degree and the mole ratio of chlorosulfonic acid and PES it’s likely to control the mole ratio to get proper products. Polyethersulfone (PES) was activated by chlorosulfonic acid as sulfonated agent in 10℃ reacting temperature, 2 hours reacting time and 800rpm stirring rate. After that, 2-Morpholinoethanesulfoni acid monohydrate and N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimidhydrochlorid served as condensation reagent , in 300rpm, 25℃ reacting temperature, 3 hours, 1,30-Hexanediamine was connected noto PES. Because sulfonated process, aminated process and heparinized process are consecutive and complex courses.For studying these 3 process, we designed a perpendicular experiment. It indecates that interaction of sulfonated process and aminated process and different hexanediamine affected the whole process the most greatly. The best processing condition is that: sulfonated degree is 10%,
    
    
    hexanediamine molecular weight is 200 and amido mole ratio is 1:1 in heparinized process.
    For proving above 3 process had been made, we used ultraviolet spectroscopy analysis, scan electron microscope and fluorescence analysis to characterize. In fluorescence analysis,diazonium salt was connect onto sulfonated PES surface. And then through fluorescence microscope, we foung that sulfonic group is well-proportioned. It is very important to using this method to guide the sulfonated process. By ultraviolet spectroscopy analysis, it showed that experimental result is concurrent with origenal synthesis route. After sulfonated process, aminated process and heparinized process, heparin keeped initial structure and activity didn’t changed.In coloring determination with toluidine quantitatively, the heparin content was 58.365mg/g.According suface caculation,the heparin content was 5.8mg/cm2.It reach the standard of heparinized anticoagulate biomaterials.
    It’s important to evaluate biocompatibility of materials, because heparinized PES will contact with blood. In our research, we choose PEU, PES, GAMBRO and FRESENIUS hemodialysis vessel as contrast materials. When materials contact with blood, plasma protein adsorption is occured at first. Ingredient and structure of adsorbed layer deside the performance. In our experient, we found that improving surface hydrophilicity can decrease the quantity of plasma protein adsorption, increase the ratio of white protein in total plasma protein and reduce ball protein adsorption. But heparinized materials wer
引文
[1] 顾汉卿、徐国凤.生物医学材料学[M].天津:天津科技翻译出版公司,1993,8;175-179
    [2] 林思聪. 高分子生物材料分子工程研究进展[J].高分子通报,1997,(1):1~7
    [3] Market analysis: perfusion. In: Theta Reports, editor. Theta reports–cardiac equipment and materials markets. New York (212) 262-8230,1997:92-129.
    [4] Martin PY, Chevrolet JC, Sute P etal. Anticoagulation in pationts treated by continuacs venovenous hem ofillration: A retrospective study. Am J Kid Dis, 1994,24:806
    [5] 刘丽敏、池艳春、杨晓梅,血液透析治疗肾病综合征出血的几种抗凝方法对比研究,透析与人工器官,Vol2.,No.1,pp19-22,2001
    [6] Langenecker SA, Felfernig M, Werba A etal. Anticoagulation with prostacylin and heparin dtcring continuous venovenous hem ofiltration. Crit care Med, 1994,22:1774
    [7] Davenport A, Will EJ, Davison AM. Comparison of the use of standard heparin and prostacyclin anticougulation is spontaneous and pump driver extracorporeal circuits in patient with combimed acute and hepatic failure. Nephron, 1994,66:431
    [8] Mehta RL, Bestose JT, Ward DM, Experience with regional atrate anticoagulation for continuous renal replacement therapy. J Am Soc Nephrol, 1993,4:368
    [9] King DJ,Kelton JG. Heparin associated thrombocytopenia. J Annintern Med, 1984,100:535
    [10] Warkentin TE, Kelton JG. Heparin and plalelets.J Hematol Oncol Clin North Am., 1990,4:243
    [11] Chong BH. Heparin induced throm J Aust. NZL Med, 1992,22:145
    [12] Warkentin TE, Kelton JG. A 14 year study of heparin induded throm bocytopenia.J AM.J.Med, 1996,101:502
    [13] Bjok I,Olson ST. Shore TD. Molecular mechemisms of the accelerating effect of heparin on the reactions between antithrombin and clotting proteinases. Lane DA&Lindahl U.eds. Heparin. London:Edward Arnold, P229,1989
    [14] Bidstrup BP,Royston D,Sapsford RN, et al. Reduction in blood use after CPB
    
    
    with high dose aprotinin[J]. J Thorac Cardiovasc Surg,1991,101(3):958
    [15] 张华民、张爱霞、孟红霞. 肝素引起血小板减少症及血栓形成[J]. 滨州医学院学报,2000,23(6):555~557
    [16] G. A. Grode etal., P.B. Rept, 1969,188:108
    [17] 屠湘同等,抗凝血生物材料的合成研究,功能高分子学报,Vol8.,No.2,pp209-212,1995
    [18] Eloy R,Belleville J, Rissoan Mc etal.Heparinization of medical grade polyurethanes.J Biomater Applicat, 1988,4(2):475
    [19] Valiathan MS.Heparin bonding :Thenand now. Bull Matew Sci, 1994,17(7):1199
    [20] Matsuda T. Photochemically-driven surface process technologies for biocompatible design of fabricated cardiovascular devices. The 23rd Annual Meeting of the Society for Biomaterials, April 30 May 4, 1997, New Orleans, Louisiana, USA
    [21]黄寿吾、李惜光. 肝素抗凝血和抗血栓作用机理研究进展[J]. 国外医学输血及血液学分册,1996;19(2):99-101
    [22] 柏乃庆.血液保存[M].上海:上海人民出版社.1983.7:1-2
    [23] Akira S,Shinji K,Kazuya F,et al.Biocompatibility of silicone-coated oxygenator in cardiopulmonary bypass[J].The Annals of Thoracic Surgery.2000.(69):115-120
    [24] 陈羽仲等.抗凝血肝素化聚(醚-酰胺胺-脲-氨酯)的研究(J).功能高分子学报.1992,5(4):292-298
    [25] 林思聪、刘晓宁。The second international Kyoto symposium on biomedical materials,Kyoto,Japan,1984,PP9
    [26] Kim I C,Tak T M,Choi J G. Sulfonated polyether-sulfone by heterogeneous method and its membraneperformances[J].J of Appl Polym Sci,1999,74(8):2046~2055.
    [27]李刚、孙求实、後晓淮. 等离子体引发甲基丙烯缩水甘油酯在聚丙烯膜上的接枝反应及肝素的固定化[J]. 高分子学报, 1997;(10):589~591
    [28] G.S. Aldea, P. O'Gara, O.M. Shapira, et al. Effect of anticoagulation protocol on outcome in patients undergoing CABG with heparin-bonded cardiopulmonary bypass circuits. Ann Thorac Surg 65 (1998), pp. 425–433.
    [29] Lyman DJ, et al. Tasaio[J], 1965(11): 301.
    [30] Nyilas E, et al.Tasaio [J],l 975(21):55.
    [31] Andrade JD,et al.Tasaio[J],l 973(19): 1.
    
    [32] Okano T et al. J Biomed Mater Res, 1981, 15: 393
    [33] Ikada Y.Adv. of Polymer Science [J],1984(57):103.
    [34] 林思聪.血液相容性高分子生物材料.在黄维恒、闻建勋主编的《高技术有机高分子材料新进展》中,北京:化学工业出版社,1994,第14章
    [35] Mori Y.The effect of released heparin from the heparinized polymer on the process of thrombus formation[J].Trans Am Soc.1978.(24):736-744
    [36] Demirkan F,Eskandari MM,Arslan E.Salvage by heparinized blood injection through the altrnate pedicle in a toe treanplant[J].Plastic and reconstructive surgery.2001.108(2):579-580
    [37] GOOSEN M F A,SEFON M V.Properties of a heparin-poly(vinyl alcohol) hydrogel coating[J].Materials Research.1993.17:359-361
    [38] Andrade J D,等.表面和血液相容性的当今假设[J].国外医学生物医学工程分册.1989.12(1):36-41
    [39] Belanger MC,Marois Y,Roy R,et al.Selection of a polyurethane membrance for the manufacture of ventricles for a totally implantable artificical heart:blood compatibility and biocompatibility studies[J].Artifical Organs.2000.24:879-888
    [40] 黄如注. 日本聚醚砜树脂的生产与应用[J],化工新型材料,1994,(8):36-39
    [41] 黄锐.、王勇.、林旭. 特种工程塑料聚醚砜[J],塑料科技,1994,(1):52-55
    [42] 马建标等.功能高分子材料(M).北京,化学工业出版社.2000年7月.436
    [43] V. L. Gott etal., Science, 1963,142:1297
    [44] Sun,Duoxian; Sefton,M.V. Correlation between heparin release and bound way from heparinized materials(J). Tianjin Daxue Xuebao 1991,(1),82-87
    [45] Grode G. A. et al. Northrombogenic material via a simple coating process[J] trans Am soc. Artf.inter.organs. 1969,15:1-5
    [46] 屠湘同,胡昕、李香梅,等.抗凝血生物材料的合成研究 Ⅴ.聚醚胺酯表面肝素化的新途径[J].功能高分子学报,1995,8(2):209~212
    [47] O. Larm, R. Larsson and P. Olsson, A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomater Med Devices Artif Organs 11 (1983), pp. 161–173.
    [48] Lin SC. Preprints of the Second International Kyoto Symposium of Biomedical Materials [M].1985.Kyoto,Japan.P9.
    [49] 汪传清、黄玉惠、丛广民.磺化聚苯醚的制备及表征[J],高分子学报,1995,(4):488
    [50] 吴也凡、林国栋、洪亮,等.磺化聚苯硫醚的制备及表征[J],化学通报,
    
    
    1991,(5):25
    [51] 牛利、张万金、吕慧娟,等.聚醚砜、聚醚醚酮的微波磺化研究[J].高等学校化学学报,1995,16(5)?:119~120
    [52] Kim I C,Tak T M,Choi J G. Sulfonated polyether-sulfone by heterogeneous method and its membraneperformances[J].J of Appl Polym Sci,1999,74(8):2046~2055.
    [53] Moechel dirk,Guiver Michael,Staude Eberhard. Static protein adsorption ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes[J].J Membrane Sci,1999,158(1):63~75
    [54] Shibuya, Porter, Roger S, Sulfonation of a polyethersulfone in concentrated sulfuric acid. Proceedings of the ACS Division of Polymeric Materials Science and Engineering.1992 ,v 67 Aug 23-27
    [55] Sluma Heinz Dieter, Huff Dieter. Sulfonation of aromatic polyether-polysulfone[P].USA:5,013,765. 1991
    [56] Bikson Benjamin,Coplan M J,Gotz G.Compositions by chlorosulfonation of difficulty sulfonatable poly(ether sulfone)[P].USA:4,508,852. 1985
    [57] Coplan Myron J. Goetz Gertrud. Heterogeneous sulfonation for difficult sulfonatable poly(ether-sulfone)[P].USA:4,413,106.1983
    [58] 吕慧娟、申连春、王彩霞,等.聚醚砜的磺化及表征[J].高等学校化学学报,1998,19(5):833~835
    [59] 杨龙、黄方、李建树,等.采用气体SO3对聚醚砜进行磺化改性的研究[J].四川大学学报(工程科学版),2001,33(4):90~93
    [60] 张德生. 浅谈影响化学反应速率常数的因素[J].安庆师范学院学报,1999,(1):85-90
    [61] 陈黔. 浓度温度对化学反应速度影响的实验 [J]. 实验教学与仪器,1999(10):12
    [62] 张泉灵.、王树青. 间歇化学反应温度先进控制系统 [J]. 高校化学工程学报,2001(2):195-198
    [63] 郝向英. 关于化学反应平衡常数的讨论 [J]. 内蒙古师大学报,1999(1):71-75
    [64] 杨南培. 化学反应方向次序理论及其应用 [J]. 海南矿冶,1998(1):30-33
    [65] 易回阳、曾繁涤. 正交实验法合成磺化聚醚酮酮 [J]. 高分子材料科学与工程,1998(3):30-31
    [66] 张建方. 混合位级正交试验设计的极差分析方法 [J]. 数理统计与管理,
    
    
    1998(6):31-37
    [67] 魏坤、孙日圣. 正交实验法选择硬脂酸稀土合成工艺条件的研究 [J]. 稀土,1998(1):21-24
    [68] 林思聪.血液相容性高分子生物材料.在黄维恒、闻建勋主编的《高技术有机高分子材料新进展》中,北京:化学工业出版社,1994,第14章
    [69] 李刚、孙求实、後晓淮. 等离子体引发甲基丙烯缩水甘油酯在聚丙烯膜上的接枝反应及肝素的固定化[J]. 高分子学报, 1997;(10):589~591
    [70] 应锡璋、王蓓蓓、姚诗凯,等.一种新颖的抗血栓材料的研究[J].高等学校化学学报,1996,17(5):815~819
    [71] 王秀芬、王浩、曹传宝,等. 等离子体引发聚乙烯表面肝素化及其生物相容性[J].北京理工大学学报, 1999;19(3):384-389
    [72]罗祥林、段友容、凌鸿. 聚醚氨酯共价键合肝素的研究[J]. 生物医学工程学杂志, 2000;17(1):16~18
    [73] 林思聪,Jocobs H J and Kim S W. J Biomed Mster Res, 1991, 25: 791.
    [74] 赵早潘,周性尧,张悟铭等.仪器分析.高等教育出版社.1998,87-94
    [75] 杨柏、袁年武等,聚醚砜单烯大分子单体的合成与表征及其共聚物的光学特性, 高分子学报,1994 (6): 659-665
    [76] 郑玉斌、张善举等,聚醚砜-聚酚氧的嵌段共聚,吉林大学自然科学学报,1996(2):107-108
    [77] 陈连周、蹇锡高,二甲基杂萘联苯聚醚砜的合成与表征,高分子材料科学与工程,2000(5):158-160
    [78] 张昌敬、陈朝碧、林光平,猪肺源肝素的分离纯化及其成分鉴定,中国生物化学与分子生物学报,1994(1):50-54
    [79] 张倩、乐以伦、万昌秀,低分子量肝素的制备及纯化,四川大学学报,1999(2):39-47
    [80] 张守海、杨大令、蹇锡高,含磺酸钠基的杂萘联苯聚芳醚砜酮的合成与表征,高等学校化学学报,2002(12):2382-2385
    [81] 王俊、杨锦宗等,发散法合成树枝状高分子聚酰胺-胺,合成化学,2001(1):62-64
    [82] 雷姝蕾、于世林等,脱氧核糖核酸-聚胺基酰胺树状间隔臂-(二氧化锆-脲醛树脂)亲和色谱固定相的合成及其应用,分析化学,2001(12):1129-1134
    [83] 王琴梅、潘仕荣、郑振声,聚醚型聚氨酯表面接枝肝素及其表面性质研究,功能材料,1997(6):644-647
    [84] 刘敬肖、杨大智、蔡英骥,医用TiO_2/SiO_2薄膜表面共价键合肝素研究,
    
    
    材料研究学报,2002(5):529-535
    [85] 杜黎明、许庆琴等,司帕沙星氯代物的制备及荧光性质研究,光谱学与光谱分析,2002(1):131-133
    [86] 孙晓光等,荧光脱氧葡萄糖显像的初步试验研究,中国临床医学,2001(6):598-600
    [87] 杨伯瑄、曹维孝等,十二烷基硫酸钠减慢二苯胺-4-重氮盐及重氮树脂在水溶液中热分解反应的机理,2000(6): 969-975
    [88]Smith PK, Nalia AK, Hermasom. Cotorimetric Methods for the assay of heparin content in immobilized heparin preparations. Anal Biochem, 1980,109:466
    [89] 冯元桢著.生物力学.北京:科学出版社,1983 155~184.
    [90] 冯元帧.心肺血管受力时的改造.北京:第四次全国生物医学工程学术会议论文汇编,1990,1~3.
    [91] 孙永达,贾有权.血管管径的动态测量.生物力学研究和应用,1990,202~204.
    [92] John B.Rose. Sulphonated polyarylethersul phone copolymers. U.S.Patent 4,273,603. 1981.
    [93] MacSweeney STR, Powell JT, Grenhalgh RM. Pathogenesis of abdominal aortic aneurysms. Br J Surg 1994,81:935-941.
    [94] Erasmo Simao da Silva, Aldo JR, et al. Variation of aortic dianeter: Anecropsy study. J Vascu Surg 1999,29:920-927.
    [95] Milano Politecnico di, Piazza Leonarde da Vinci, et al. Biomechanical factors in abdominal aortic Aneurysms rupture. Eur Jvascu Surg 1993,7:667-674.
    [96] Labourrene JI,et al. Alterations in elastin and collagen related to the mechanism of progressive pulmonary venous obstruction a piglet model. Cire Res 1990, 66(2):438.
    [97] Woo SL, et al. Tensile properties of medical collateral ligament as function
    of age. Orthop Res, 1986,4:133-141.
    [98] Yamamoto N,et al.Mechanical properties of the rabbit patellar tendon.J Biomech Eng,1992,114:332-337.
    [99] Yu Qilian. Neutral axis location in bending and Young’s modulus of different layers of arterial wall .Am J physiol, 1993,265:1052-1060.
    [100] M Ochi, N Fukushima,N Fujita. Mechanism for reduction of internal stress in epoxy resin systems modified with silicone elastomer. Kobunshi Ronbunshu, 1995,52(5):265-271.
    [101] Masaki Kimoto, Kiyoshi Mizutani.Blends of thermoplastic polyimide with
    
    
    epoxy resin Part Ⅱ: Mechanical studies. Matr. Sci., 1997, 132:2479-2483.
    [102] 许国辰. 血管支架的类别及其特性. 心血管病学进展,1995,16(2):65-67.
    [103] Freddi G et al. Structure and physical properties of silk fibroin/PAA blend films. J of Appl Poly Sci. 1999,71:1563.
    [104] Galford J E, Mcelhaney J H. A viscoelastic study of scalp,brain and dura. J Biomechanics, 1970, 3(2):211~221.
    [105] 周振平,马洪顺,朱伟民等.静脉血管蠕变实验研究.中国生物医学工程学报,1999,18(2):234-237.
    [106] Eberhardt, Alan W., Grissom, Jerry D. et al. Analytical and finite element models of scleral creep in tree shrews with deprivation-induced myopia. Petroleum Division PDv 77n 5,1996,7:189-193.
    [107] Fung YC. Biomechanical-mechanical properties of living tissues. Springer, New York, 1998, 187-319
    [108] Vaishnav RN, Patel DJ, et al. Nonlinear elastic properties of the canine aorta. Biophysical J, 1972,12:1008-1072.
    [109] Wu SG, Lee GC, Tseng NT. Nonlinear elastic analysis of blood vessels. J Biomech Eng, 1984,106:376-383.
    [110] 曾衍钧,黄昆,许传青. 扩张皮肤移植后的粘弹性. 固体力学学报,2002,23(1):1-7.
    [111] Zeng Y.J., Huang K. A comparision of biomechanical properties between humen and porcine cornea. J of biomechanicals., 2001, 34:533-537.
    [112] John T. Siegwart J., Thomas T. Norton. Regulation of the mechanical properties of tree shrew sclera by the visual environment. Vision Research, 1999,39:387-407.
    [113] 马勒群,李振宇,马洪顺. 人体关节软骨粘弹性的实验研究. 中国现代医学杂志,1997,21(1):53-55.
    [114] 陈帼芬、曹守才、赵文香. 体外循环中肝素、鱼精蛋白的应用[J].维坊医学院学报(麻醉学专辑),1994,16(1):28~30
    [115] Mccarthy HE,Singer ER,Davies MC,et al.The effect of sodium heparin on equine articular cartilage[J].Vet Journal.2001.
    [116]Zhao CS,Liu T,Lu ZP,et al.an evaluation of a polyethersulfone hollow fiber plasma separator by animal experiment[J].Artif Organs.2001.25(1):60-63
    [117]Mori Y.The effect of released heparin from the heparinized polymer on the process of thrombus formation[J].Trans Am Soc.1978.(24):736-744
    
    [118]Demirkan F,Eskandari MM,Arslan E.Salvage by heparinized blood injection through the altrnate pedicle in a toe treanplant[J].Plastic and reconstructive surgery.2001.108(2):579-580
    [119]Feuerstein I A, et al. Biomaterials, 1993; 14: 137
    [120]Akira S,Shinji K,Kazuya F,et al.Biocompatibility of silicone-coated oxygenator in cardiopulmonary bypass[J].The Annals of Thoracic Surgery.2000.(69):115-120
    [121]Andrade J D,等.表面和血液相容性的当今假设[J].国外医学生物医学工程分册.1989.12(1):36-41
    [122]GOOSEN M F A,SEFON M V.Properties of a heparin-poly(vinyl alcohol) hydrogel coating[J].Materials Research.1993.17:359-361
    [123]Belanger MC,Marois Y,Roy R,et al.Selection of a polyurethane membrance for the manufacture of ventricles for a totally implantable artificical heart:blood compatibility and biocompatibility studies[J].Artifical Organs.2000.24:879-888
    [124]Peres-Luna V H, et al. J Biomed Mater Res 1994; 28: 1111-1126.
    [125]Hong J,Larsson A,Ekadahl KN,et al.Contact between a polymer and whole blood:sequence of events leading to thrombin generation[J].The Journal of Laboratory and clinical medicine.2001.138(2):139-145
    [126]Mori Y.The effect of released heparin from the heparinized polymer on the process of thrombus formation[J].Trans Am Soc.1978.(24):736-744
    [127]Hari, Heparin-coated cardiopulmonary bypass circuits. J Cardiothorac Vasc Anesth 8 (1994), pp. 213–222.
    [128]G. Cottonar, C. Baquey, C. Roth, N. Benillan, S. Belisle and J.F. Hardy, Extracorporeal circulation, hemocompatibility, and biomaterials. Ann Thorac Surg 62 (1996), pp. 1926–1934.
    [129]M.C. Miyama et al. Structure activity rela. in hep. : A syn.pentasa.with high affi. for anti III. Ibid. 1992,13:425-436
    [130]Okano Moon,H.;Lee,Y.-K.;et al. A novel formulation for controlled release of heparin-DOCA conjugate dispersed as nanoparticales in polyurethane film(J). Biomaterials. 2001,22(3),281-289
    [131] Feng X D. et al. Polym letters Edn (J) . J Polym Sci. 1983,21:593-604
    [132]Nagaoka Fukumoto, et al. Biomaterials, 1992; 13: 235
    [133]Toes J, van den Dungen JJ et al. Fuorescence labeling to study paltlet and leucocyte deposition onto vascular grafts in vitro. Biomaterials 1999 Oct:
    
    
    20(20): 1951-1958
    [134]Juliette N Thrombosis and Hacmostasis 1987; 57(2): 1-8
    [135]Albanese A, et al. Biomaterials, 1994; 15: 129
    [136] Silver J H, et al. Surface and blood contacting properties of alkysiloxane monolayers on silicone rubber, J Biomed Mater Res, 1995, 29: 535.
    [137] Von Recum A F, Surface topography and biocompatibility, Biomedical Materials Research in the far east, Printed in Japan by Kobunshi Kankokai Inc, 1997,3.
    [138] Larsson C, et al. Bone response to surface modified titanium implants: studies on eletropolished implants with different oxide thickness and morphology, Biomaterials, 1994, 15: 1062.
    [139] Beyer D, et al. Reduced protein absorbtion on plastics via direct palsma deposition of triethelene glycol monoallyl ether, J Biomed Mater Res, 1997, 36: 181.
    [140] Ko T M, et al. Biomaterials, 1993; 14: 657.
    [141]G.M. Palatianos, M.K. Dewanjee, W. Smith, S. Novak, L.C. Hsu, M. Kapadvanjwala, G.N. Sfakianakis and G.A. Kaiser, Platelet preservation during cardiopulmonary bypass with iloprost and Duraflo-II heparin-coated surfaces. ASAIO Trans 37 (1991), pp. 620–622.
    [142]H. Horimoto, K. Kondo, K. Asada and S. Sasaki, Heparin-coated cardiopulmonary bypass circuits in coronary bypass surgery. Artif Organs 20 (1996), pp. 936–940.
    [143]H. te Velthuis, P.G. Jansen, C.E. Hack, L. Eijsman and C.R.H. Wildevuur, Specific complement inhibition with heparin-coated extracorporeal circuits. Ann Thorac Surg 61 (1996), pp. 1153–1157.
    [144] E. Ruckenstein , A.Banties. Int (J). J.Artif. Organ.,1989,12:390-406
    [145]Amiji I C,Tak T M,Choi J G. Sulfonated polyether-sulfone by heterogeneous method and its membraneperformances[J].J of Appl Polym Sci,1999,74(8):2046~2055.
    [146]Merril dirk,Guiver Michael,Staude Eberhard. Static protein adsorption ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes[J].J Membrane Sci,1999,158(1):63~75
    [147]Han, Porter, Roger S, Sulfonation of a polyethersulfone in concentrated sulfuric acid. Proceedings of the ACS Division of Polymeric Materials Science and
    
    
    Engineering.1992 ,v 67 Aug 23-27
    [148]ItoY.,SisidoM.,ImanishiY..J.Biomed.Mater.Res..1986.20:1157
    [149]Borowiec JW, Sulfonation of a polyethersulfone in concentrated sulfuric acid. Proceedings of the ACS Division of Polymeric Materials Science and Engineering.1992 ,v 67 Aug 23-27
    [150]王秀芬、王浩、曹传宝,等. 等离子体引发聚乙烯表面肝素化及其生物相容性[J].北京理工大学学报, 1999;19(3):384-389
    [151]R.W. Farndale, D.J. Buttle and A.J. Barret , Improved quantitation and discrimination of sulphate glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883 (1986), pp. 173–177.
    [152]W. Lemm , Test for dynamic stress and strain. In: S. Dawids, Editor, Test procedures for the blood compatibility of biomaterials, Kluwer Academic Publishers, Dordrecht (1993), pp.
    [153]H. te Velthuis, P.G. Jansen, C.E. Hack, L. Eijsman and C.R.H. Wildevuur, Specific complement inhibition with heparin-coated extracorporeal circuits. Ann Thorac Surg 61 (1996), pp. 1153–1157.
    [154]M. Ranucci, S. Cirri, D. Conti, A. Ditta, A. Boncilli, A. Frigiola and L. Menicanti, Beneficial effects of Duraflo II heparin-coated circuits on postperfusion lung dysfunction. Ann Thorac Surg 61 (1996), pp. 76–81.
    [155]G.M. Palatianos, M.K. Dewanjee, W. Smith, S. Novak, L.C. Hsu, M. Kapadvanjwala, G.N. Sfakianakis and G.A. Kaiser, Platelet preservation during cardiopulmonary bypass with iloprost and Duraflo-II heparin-coated surfaces. ASAIO Trans 37 (1991), pp. 620–622.
    [156]H. Horimoto, K. Kondo, K. Asada and S. Sasaki, Heparin-coated cardiopulmonary bypass circuits in coronary bypass surgery. Artif Organs 20 (1996), pp. 936–940.
    [157]程青、王国斌.生物材料血液相容性评价研究进展[J].上海生物医学工程.2001,22(3):31~33
    [158]G. Mino and S. Kaizerman , The new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J Polym Sci 31 122 (1985), pp. 242–243.
    [159]N.A. Peppas and E.W. Merill , Development of semicrystalline PVA networks for biomedical applications. J Biomed Mater Res 11 (1977), pp. 423–434.
    [160]R.W. Farndale, D.J. Buttle and A.J. Barret , Improved quantitation and
    
    
    discrimination of sulphate glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883 (1986), pp. 173–177.
    [161]R.H. West, A.J. Paul, S. Hibbert, P. Cahalan, L. Cahalan, M. Verhoeven, M. Hendriks and B. Fouache , Correlation of the surface chemistries of polymer bioactive coatings with their biological performances. J Mater Sci: Mater Med 6 (1995), pp. 63–67.
    [162]Roger N, et al. Investation of blood compatibility of titannium modified by plasma source ion implantation, proceeding of 5th World Biomaterials Congress, 1996, Tornto, Canada, 706.
    [163]O. Moen, E. Fosse, V. Brockmeier, C. Andersson, T.E. Mollnes, K. Hogasen and P. Venge, Disparity in blood activation by two different heparin-coated cardiopulmonary bypass systems. Ann Thorac Surg 60 (1995), pp. 1317–1323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700