用户名: 密码: 验证码:
东亚针刺菝葜的系统发育学及亲缘地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针刺菝葜复合群(Smilax hispida group)属百合目(Liliales)菝葜科(Smilaceae)菝葜属的单系类群,为多年生攀援木本单子叶植物,其特征为纸质或草质基部心形的叶片以及具有上疏下密的针状刺,主要包括6个种,呈现东亚-北美间断分布模式。东亚的针刺菝葜包括短梗菝葜(S. scobinicaulis C.H. Wright)和华东菝葜(S. sieboldii Miq.)2个种,广泛分布于中国-日本-韩国的南温带至亚热带的阔叶林下,是一个很有研究价值的类群。
     本研究基于核基因组核糖体内转录间隔区(ITS)和at103片段以及叶绿体基因组trnL-trnF, ycf6-trnC, rpl16, rbcL, matk片段,基于分子系统学及亲缘地理学理论对东亚针刺菝葜进行了系统发育研究,结合形态学特征对两个种的种间界限进行了界定。同时基于3个片段(ITS、trnL-trn、 ycf6-trnC)单倍型变异,对两个种的亲缘地理学进行了研究,分析了各自的群体遗传多样性和遗传结构,并结合生态位模型以及第四纪地质及气候等因素探讨了这2个种在东亚中高海拔落叶林下在冰期-间冰期(冰后期)间的群体动态历史。主要研究结果如下:
     1)东亚针刺菝葜的系统发育关系界定
     基于2个核基因片段(ITS、at103)及5个叶绿体片段(trnL-trnF, ycf6-trnC, rpl16, rbcL, matk)联合数据构建的系统发育树表明东亚的2个针刺菝葜种是单系类群,与美洲的针刺菝葜种构成姐妹类群,并位于菝葜科系统发育树的新大陆分支上。东亚针刺菝葜2个种虽然为邻域分布且形态相似,但分子水平上种间界限明显,已经形成2个完全独立的种。形态学统计表明华东菝葜具有至少与叶柄等长的总果梗而短梗菝葜的总果梗仅叶柄1/2长。根据本文采样点的分布,东亚针刺菝葜分布区以太行山东侧-大别山-幕府山东侧一线为界形成了2个种,以西为短梗菝葜的分布区,以东为华东菝葜分布区。基于BEAST计算认为这2个种由美洲大陆迁入东亚的时间在中新世晚期(约11.07mya),此后异域分化形成2个种并各自独立演化,各自分化形成的时间大约是3.32mya(华东菝葜)以及4.77mya(短梗菝葜)。
     2)东亚针刺菝葜的遗传多样性分析
     基于ITS数据以及2个叶绿体片段(trnL-trnF, ycf6-trnC)对东亚针刺菝葜2个种进行了遗传多样性分析,表明2个种的群体遗传多样性丰富(h=0.899;π=2.35×10-3)。AMOVA分析揭示东亚的针刺菝葜类群的遗传多样性主要存在于种间,其次每个种内的多态性主要存在于不同谱系之间,而群体内的遗传变异较小,揭示了东亚针刺菝葜类群在扩散过程中经历了遗传漂变。
     3)东亚针刺菝葜的群体动态历史推测
     根据对ITS区域及叶绿体双片段联合数据的单倍型网络图及SAMOVA分析,认为在分布区内存在3个谱系(北部谱系,西南谱系以及东南谱系)。结合生态位模型证据,推测短梗菝葜3个谱系的形成是受到在4.77mya分化成种后青藏高原隆起以及分布区域内大山、峡谷的影响,并在此后各自演化。湖北神农架群体(HBSN)具有4个叶绿体单倍型(其中H8、H9为HBSN特有)以及3个ITS泛单倍型(其中G6、G7为HBSN特有),具有较高的单倍型多样性。鉴于HBSN群体具有多个谱系的衍生单倍型,为该群体很可能是由于各个谱系扩张的次生接触形成。
     华东菝葜的单倍型网络图分析揭示浙江天目山群体(ZJTM)具有丰富的单倍型多态性(3个叶绿体单倍型及1个ITS泛单倍型)并具有祖先单倍型(H1和G1)、特有单倍型(H19和H20),因此认为浙江天目山群体可能是华东菝葜的冰期避难所。基于叶绿体联合数据的SAMOVA分析认为,华东菝葜也可分为三个谱系,即中国东南谱系,日本谱系以及韩国-中国东北谱系。各谱系由于受冰期-间冰期的海平面高度交替变化影响,在上新世中期(3.32mya)发生生境片段化而产生,并独自演化。生态位模型重建显示末次盛冰期时华东菝葜的分布区域退缩到中国东南部及日本南部的小范围地区,推测华东菝葜可能在冰期时退缩到中国东南部或日本南部,并在冰期后重新扩散。依据日本南部与韩国群体出现的ITS泛单倍型G14与G17的高度相似性推测华东菝葜日本谱系与韩国-中国东北谱系在末次盛冰期时可能存在短暂的基因交流。
     4)东亚针刺菝葜种间基因交流
     基于叶绿体单倍型H7在短梗菝葜北部谱系的散布现象以及ITS数据支持具有单倍型H7的群体(SCEM、SXMH、HBSN)确实为短梗菝葜,认为短梗菝葜中仍保留有华东菝葜的祖先多态性或两个种存在古代基因交流。此外,通过ITS群体数据与叶绿体片段序列的群体数据的比较,在大别山一带两个种的分布重叠区(AHTT)检测到次生接触,并观察到有杂交后代的存在,认为华东菝葜与短梗菝葜近期可能发生了基因渐渗。
Smilax hispida group (Smilacaceae, Liliales) are climbing vines, with herbaceous, heart-shaped leaves, and prominent blackish needlelike prickles on the stem. There are six species in this group showing an Eastern Asia-North America disjuct distribution. Two of the species (S. scobinicaulis C.H. Wright and S. sieboldii Miq.) are found in eastern Asia (referred to S. sieboldii comlex in this research), widely distributed in southern-temperate and subtropical deciduous forests of China, Korea and Japan at an altitude range of1000-2000m and100-1000m respectively. Morphology similarity and parapatric distribution makes it difficult to identify these two species.
     The present study generated DNA sequence data from two nuclear DNA (ITS and at103) and five chloroplast DNA (trnL-trnF, ycf6-trnC, rpl16, rbcL, matk) regions to address the species boundary of the complex. Sequence data from three regions of them (ITS、trnL-trnF、ycf6-trnC) were used to address the phylogeographic pattern of the species complex. Species boundary and population genetic diversity were assessed using phylogenetic analysis and GSI, as well as morphology. Demographic simulation in glacial-interglacial period was carried out in combination with the morphology, paleogeology, paleoclimatology and ecological nichle modeling to estimate the interspecies gene flow and glacial-interglacial distribution of the complex. The main conclusions are listed blow.
     1) Phylogenetic analysis of S. sieboldii Group in Eastern Asia
     Phylograms were obtained from maximum parsimony, maximum likelihood and Bayesian analysis of combined data set (ITS/at103/trnL-trnF/ycf6-trnC/rpl16/rbcL/matk) of S. sieboldii group. S. sieboldii comlex was showed to be monophyletic and sister to the North-American species in&hispida group, and was located in the New World clade in the phylogenetic tree of Smilacaceae. Despite the parapatric distribution and high morphologic similarity, speciation appears to have completed in this comlex and the geographic boundary of these two species lies in the eastern-Taihang Mountain, Dabie Mountain and eastern-Mufu Mountain. According to the morphological statistics, the peduncle of S. sieboldii is equal to or longer than the petiole while in S. scobinicaulis the peduncle is only half of the petiole length. The time of the Asian S. hispida lineage dispersed into East-Asia was estimated to the late Miocene (ca.11.07mya) based on results from BEAST analysis. The lineage then quickly diversified via allopatric speciation and subsequently evolved independently.
     2) Population Genetic Diversity Analysis of S. sieboldii Group
     Population genetic diversity was evaluated using ITS and2cpDNA sequnces (trnL-trnF/ycf6-trnC). The results showed high genetic diversity within S. sieboldii group (h=0.899; π=2.35×10"3). Most variation was observed between the two species while the rest mainly existed between different groups identified by AMOVA analysis. One reasonable explanation for this phenomemon was that the genetic drift have contributed to the low genetic diversity within population and genetic isolation between populations following the founder effect during the dispersal of S. sieboldii group.
     3)Phylogeographic pattern of S. sieboldii group
     Three lineages (the North lineage, the Southwest lineage, and the Southeast lineage) were identified in S. scobinicaulis populations according to haplo-/generaltype network analysis and SAMOVA analysis. With the simulation of ecological nichle modeling (ENM), the uplift of Qinghai-Tibet Plateau (QTP) and the existence of abundant mountains and deep valleys were the main cause of the lineage formation within S. scobinicaulis after speciation (ca.4.77mya). High haplo-/generaltype diversity was observed within HBSN population which located in Shennongjia area and prossessed4cpDNA haplotypes and3ITS generaltypes. With the possession of derived haplo-/generaltype from different lineages, HBSN population was less likely to be the refuge of S. scobinicaulis rather than the result of expasion and secondary contact of different lineages.
     Network analysis of S. sieboldii has revealed high haplo-/generaltype diversity and glacial refuge of S. sieboldii, with two ancestral haplo-/generaltype (H1and G1) and two unique haplotype (H19and H20). Based on SAMOVA analysis, there were three lineages within S. sieboldii (the Southeast China lineage, the Japan lineage, the Northeast China-Korea lineage). Sea level fluctuations throughout the inter-/postglacial cycles had lead to the fragmentation of S. sieboldii populations, during mid Pliocene (ca.3.32mya). According to ENM, S. sieboldii had retreated to southeast part of China and a very small region south of Japan during Last Glacial Maxium (LGM), and then recolonized to Japan, Korea and northeast of China. Temperate gene flow may exist between Korea and southern Japan during LGM, with the exsistence of1bp-differed generaltype G14and G17.
     4) Gene flow between S. scobinicaulis and S. sieboldii
     The random distribution of haplotype H7within Northern lineage of S. scobinicaulis suggested ancient geneflow between two species or the presence of ncestral polymorphism in S. scobinicaulis. Hybridization of the two species likely have occurred in Mt. Dabie region. One individual of S. sieboldii (AHTT2) collected in this region may have hybridized with S. scobinicaulis of generaltype G1and G11and has the haplotype of H2which is the ancestral haplotype of S. scobinicaulis.
引文
Anderson R.P., Gomez-Laverde M., Peterson A.T., Geographical distribution of spiny pocket mice in South America:insights from predictive ecological models, Global Ecology and Biogeography,11,2002, P131-141.
    Avise J. C., Molecular markers, natural history and evolution, Chapman and Hall, 1994.
    Avise J.C., The history and purview of phylogeography:a personal reflection, Molecular Ecology,1998,7, P371-379.
    Avise J.C., Arnold J., Ball R.M., Berminghan E., Lamb T. Neigel J.E., Reeb C.A., Saunders N.C., Intraspecific Phylogeography:The Mitochondrial DNA Bridge Between Population Genetics and Systematics, Annual Review of Ecology and Systematics,18,1987, P489-522
    Brumfield R.T., Beerli P., Nickerson D.A., Edwards S.V., Single nucleotide polymorphisms (SNPs) as markers in phylogeography, Trends Ecol. Evol,2003, 18(5),P249-256.
    Cameron K. M., Fu C. X., A nuclear rDNA phylogeny of Smilax (Smilacaceae), Aliso, 22,2006, P598-605.
    Chen S. C., Zhang X. P., Ni S. F., The systematic value of pollen morphology in Smilacaceae, Plant Syst Evol,259(1),2006, P19-37.
    Chen X.Q., Koyama T., Smilax, Flora of China,24,2000, P 96-115.
    Cummings M. P., Neel M. C., Shaw K. L., A genealogical approach to quantifying lineage divergence, Evolution,62(9),2008, P2411-2422.
    Doyle J., DNA protocols for plants-CTAB total DNA isolation, Molecular techniques in taxonomy,1991, P283-293.
    Du F.K., Petit R.J., Liu J.Q., More introgression with less gene flow:chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers, Molecular Ecology,18(7),2009, P1396-1407.
    Excoffier L., AMOVA:Analysis of molecular variance (version 1.55), Genetics and Biometry Laboratory, University of Geneva,1993
    Farris J. S., Kallersjo M., Kluge A. G., Testing significance of incongruence, Cladistics,10(3),1994, P315-319.
    Fay M. F., Swensen S. M., Chase M. W., Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae), Kew Bulletin,1997, P111-120.
    Fu C. X., Kong H. H., Qiu Y. X., Molecular phylogeny of the East Asian-North American disjunct Smilax sect, Nemexia (Smilacaceae), InternationalJournal of Plant Sciences,166(2),2005, P301-309.
    Golding G., The detection of deleterious selection using ancestors inferred from a phylogenetic history, Genet Res,49(01),1987, P71-82.
    Gong W., Chen C., Dobes C., Fu C.X., Koch M.A., Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion, Molecular Phylogenetics and Evolution,48(3),2008, P1094-1105.
    Hamrick J.L., Godt M.J.W., Allozyme diversity in plant species (eds. by A. H. D. Brown, M. T. Clegg, A. L. Kahler and B. S. Weir), Plant Population Genetics, Breeding and Genetic Resources,1990, P43-63.
    Herrera C. M., Fruit variation and competition for dispersers in natural populations of Smilax aspera, Oikos,1981, P51-58.
    Hewitt G.M., Some genetic consequences of ice ages and their role in divergence and speciation, Biological Journal of the Linnean Society,58,1996, P247-276.
    Holder M., Lewis P. O., Phylogeny estimation:traditional and Bayesian approaches, Nat Rev Genet,4(4),2003, P275-284.
    Huelsenbeck J. P., Ronquist F., MRBAYES:Bayesian inference of phylogenetic trees, Bioinformatics,17(8),2001, P754-755.
    Huson D. H., Richter D. C., Rausch C., Dendroscope-An interactive viewer for large phylogenetic trees, BMC Bioinformatics,8,2007, P460-465.
    Kingman J.F.C., The coalescent, Stochastic Processes and their Applications,1982, 13,P235-248.
    Kimura M., Molecular evolutionary clock and the neutral theory, Jouranl of Molecular Evolution,26(1-2),1987, P24-33.
    Kimura M., Paleography of Ryukyu Islands, Tropics,2000,10, P5-24.
    Koch M. A., Matschinger M., Evolution and genetic differentiation among relatives of Arabidopsis thaliana, Proceedings of the National Academy of Sciences,104,15, 2007, P6272-6277.
    Koch M. A., Wernisch M., Schmickl R., Arabidopsis thaliana's wild relatives:an updated overview on systematics, taxonomy and evolution, Taxon,57(3),2008, P933-943.
    Koyama T., Materials toward a Monograph of the Genus Smilax. Quart J. Taiwan Mus,13,1960, P1-61.
    Leathwick J.R.,Are New Zealands Nothofagus species in equilibrium with their environment? Journal of Vegetation Science,3,1998, P157-164.
    Li E.X., Sun Y., Qiu Y.X., Guo J.T., Comes H.P., Fu C.X., Phylogeography of two East Asian species in Croomia (Stemonaceae) inferred from chloroplast DNA and ISSR fingerprinting variation, Mol. Phylogenet, Evol.49,2008, P702-714.
    Li M., Wunder J., Bissoli G., Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species, Cladistics,24(5),2008, P727-745.
    Li P., Qi Z.C., Chen S.C., Smilax ligneoriparia sp. nov.:A link between herbaceous and woody Smilax (Smilacaceae) based on morphology, karyotype and molecular phylogenetic data, Taxon,60(4),2011, P1104-1112.
    Librado P., Rozas J., DnaSP v5:a software for comprehensive analysis of DNA polymorphism data, Bioinformatics,25(11),2009, P1451-1452.
    Lihova J., Kudoh H., Marhold K., Genetic structure and phylogeography of a temperate-boreal herb, Cardamine scutata (Brassicaceae), in northeast Asia inferred from AFLPs and cpDNA haplotypes, Am J Bot,97(6),2010, P1058-1070.
    Maskas S. D., Cruzan M. B., Patterns of intraspecific diversification in the Piriqueta caroliniana complex in southeastern North America and the Bahamas, Evolution, 54(3),2000, P815-827.
    Miller M. A., Pfeiffer W., Schwartz T., Creating the CIPRES Science Gateway for inference of large phylogenetic trees, IEEE,2010, P1-8
    Moxon E. R., Wills C., DNA microsatellites:agents of evolution?, Sci Am,280(1), 1999, P94-99.
    Norton J. F., The eastern and western migration into North America of Smilax, J Wash Acad Sci,6,1916, P281-283.
    Nybom H., Comparison of different nuclear DNA markers for estimating intraspecific genetic dversity in plants, Molecular Ecology,13,2004, P1143-1155.
    Nybom N., Bartish I., On the genealogy of large populations, Perspect Plant Ecology, 3,2002,P93-114.
    Oshida T., Abramov A., Yanagawa H., Phylogeography of the Russian flying squirrel (Pteromys volans):implication of refugia theory in arboreal small mammal of Eurasia, Mol Ecol,14(4),2005, P1191-1196.
    Park Y. C., Kitade O., Schwarz M., Intraspecific molecular phylogeny, genetic variation and phylogeography of Reticulitermes speratus (Isoptera: Rhinotermitidae), Mol Cells,21(1),2006, P89-103.
    Petit R.J., Csaikl U.M., Bordacs S., Chloroplast DNA variation in European white oaks:phylogeography and patterns of diversity based on data from over 2600 populations, Forest Ecology Management,156,2002, P5-26.
    Pfeiffer W., Stamatakis A., Hybrid MPI/Pthreads parallelization of the RAxML phylogenetics code, IEEE,2010, PI-8
    Pieter V., Rene H., Marjo B., Martin R., Theo van de L., Miranda H., Adrie F.s, Jerina P., Johan P., Martin K., Marc Z., AFLP:a new technique for DNA fingerprinting, Nucleic Acids Research,23(21),1995, P4407-4414.
    Qi Z.C., Li P., Zhao Y.P., Chen S.C., Chen G.C., Cameron K.M., Fu C.X., Molecular Phylogeny and Distributed Patterns of a Cosmopolitan Greenbrier family Smilacaceae (Liliales),2011, to be submitted.
    Qian H., Ricklefs R.E., Large-scale processes and the Asian bias in species diversity of temperate plants, Nature,407,2000, P180-182.
    Qiu Y.X., Fu C.X., Comes H.P., Plant molecular phylogeography in China and adjacent regions:Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora, Molecular Phylogenetics and Evolution,59(1),2011, P225-244.
    Qiu Y.X., Sun Y., Zong M., Zhang X.P., Lee J., Murata J., Fu C.X., Comes H.P., Molecular phylogeography of East Asian Kirengeshoma in relation to Quaternary climate change and land-bridge configurations, New Phytol.,183, 2009, P480-495.
    Qiu Y.X., Qi X.S., Jin X.F., Tao X.Y., Fu C.X., Naiki A., Comes H.P., Population genetic structure, phylogeography, and demographic history of Platycrater arguta (Hydrangeaceae) endemic to East China and South Japan, inferred from chloroplast DNA sequence variation. Taxon 58,2009, P1226-1241.
    Rogers A. R., Genetic evidence for a Pleistocene population explosion, Evolution, 1995, P608-615.
    Rogers A. R., Harpending H., Population growth makes waves in the distribution of pairwise genetic differences, Mol Biol Evol, Science Press,9(3),1992, P552-569.
    Roswitha S., Marte J., Marcus K., The evolutionary history of the Arabidopsis lyrata complex:a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier, BMC Evolutionary Biology,10,2010, P98-116.
    Schaal B.A., Haywood D.A., Olsen K.M., Rauscher J.T., Smith W.A., Phylogeographic studies in plants:problems and prospects, Molecular Ecology, 1998,7,465-474.
    Schneider S., Excoffier L., Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA, Genetics,152(3),1999, P1079-1089.
    Shaw J., Lickey E. B., Beck J. T., The tortoise and the hare Ⅱ:relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis, Am J Bot, 92(1),2005, P142-166.
    Shaw J., Lickey E. B., Schilling E. E., Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III, Am J Bot,94(3),2007, P275-288.
    Sikes D. S., Lewis P. O., PAUPRat:PAUP* implementation of the parsimony ratchet, 2001.
    Silva M.N., Patton J.L., Amazonian Phylogeography:mtDNA Sequence Variation in Arboreal Echimyid Rodents (Caviomorpha), Molecular Phylogenetics and Evolution,2(3).1993, P243-255.
    Small R. L.,Ryburn J. A.,Cronn R. C., The tortoise and the hare:choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group, Am JBot,85(9),1998, P1301-1315.
    Swofford D. L., PAUP*:phylogenetic analysis using parsimony, version 4.0 b10, 2003.
    Tajima F., The Effect of Change in Population Size on DNA Polymorphism, Genetics, 123(3),1989,P597-601.
    Takahara H., Sugita S., Harrison S. P., Pollen-based reconstructions of Japanese biomes at 0,6000 and 18,000 14C yr BP, J Biogeogr,2000, P665-683.
    Takahashi K., Terai Y., Nishida M., Okada M., Phylogenetic Relationships and Ancient Incomplete Lineage Sorting Among Cichlid Fishes in Lake Tanganyika as Revealed by Analysis of the Insertion of Retroposons, Molecular Biology and Evolution,18(11),2001, P2057-2066.
    Ujiie H., Geological history of the Ryukyu Island Arc., Nature of Okinawa; Geomorphology and geology,1990, P251-255.
    Ujiie H., Nakamura T., Temporary change of flowing route of the Kuroshio Current into the Ryukyu Trough since the latest glacier period, Chikyu Monthly,18, 1996,P524-530.
    Ujiie H., Tanaka Y., Ono T., Late quaternary paleoceanographic record from the middle Ryukyu Trench slope, northwest Pacific. Marine Micropaleontology,18, 1991.P115-128.
    Wiens J.J., Donghue M.J., Historical biogeography, ecology and species richness. Trends, Ecology and Evolution,18,2004, P639-644.
    Wilke T., R. Schulthei, Albrecht C., As Time Goes by:A Simple Fool's Guide to Molecular Clock Approaches in Invertebrates*, Am Malacol Bull,27(1/2),2009, P25-45.
    Xia X., Xie Z., DAMBE:software package for data analysis in molecular biology and evolution, J Hered,92(4),2001, P371.
    Xia X., Xie Z., Salemi M., An index of substitution saturation and its application, Mol Phylogenet Evol,26(1),2003, P1-7.
    Yang S.J., Dong H.L., Lei F.M., Phylogeography of regional fauna on the Tibetan Plateau:a review, Prog. Nat. Sci,19,2009, P789-799.
    Yu G., Chen X., Ni J., Palaeovegetation of China:a pollen data-based synthesis for the mid-Holocene and last glacial maximum, JBiogeogr,2000, P635-664.
    Zhao Y.P., Ma W.W., Dai Q.Y., Qi Z.C., Li P., Cameron K.M., Xiang Q.Y., Fu C.X., Species delineation, phylogenetic relationship, and biogeographic divergence of Smilax hispida group-application of GSI and incongruence between cpDNA and nuclear DNA data, to be submitted.
    曹伯勋,地貌学及第四纪地质学,中国地质大学出版社,1995.
    陈光村,菝葜科的分子系统学研究及生物地理学初探,浙江大学硕士论文,2007.
    陈士超,赛尼,傅承新,菝葜科种皮微结构特征及其分类学意义,植物分类学报,45(001),2007,P52-68.
    丁宝章,王遂义,河南植物志,河南科学技术出版社,1998.
    傅承新,沈朝栋,钟国庆,洪德元,菝葜属7个种的染色体数目,武汉植物学研究,10(4),1992,P381-382.
    管毕才,特有濒危植物八角莲保护遗传学与分子亲缘地理学研究,浙江大学博士论文,2008.
    贺士元,河北植物志,河北科学技术出版社,1991.
    黄爱军,沈朝栋,傅承新,菝葜属13个种的染色体数目,武汉植物学研究,15(3),1997,P279-280.
    孔航辉,王艾丽,李重求,傅承新,菝葜属和肖菝葜属的核型变异和系统演化研究,植物分类学报,45(3),2007,P257-273.
    李吉均,文世宣,张青松,王富葆,郑本兴,李炳元,青藏高原隆起的时代、幅度和形式的探讨,中国科学,6,1979,P608-616.
    林泉,王景祥,方云亿,浙江植物志,浙江科学技术出版社,1993.
    刘美华,长柄水青冈种群遗传结构和系统地理学研究,华东师范大学博士论文,2008.
    刘逸慧,基于叶绿体DNA (cpDNA)序列变异的连香树属的亲缘地理学研究。浙江大学硕士论文,2010.
    钱啸虎,王学文,李书春,安徽植物志,中国展望出版社,1992.
    饶开永,长江三峡地质遗迹类型及成因的构造初步分析,科技创业月刊,1,2010,P296-297.
    沈浪,陈小勇,李媛媛,生物冰期避难所与冰期后的重新扩散,生态学报,22(11),2002,P1983-1990.
    施雅风,在争议中前进的中国第四纪冰川研究,中国第四纪冰川冰缘学术讨论会文集,1982,P1-8.
    施雅风,李吉均,李炳元,青藏高原晚新生代隆升与环境变化,广东科技出版社,1998.
    汪发缵,唐进,中国植物志,科学出版社,北京,1978.
    王光玉,台湾产菝葜属植物之分类研究,台湾中兴大学硕士论文,1997,P110-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700