用户名: 密码: 验证码:
纳米材料的制备及其在电化学生物传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器作为一种新型的分析手段,具有选择性好、灵敏度高、分析速度快、成本低、能在复杂体系中进行在线连续监测等优点,已被广泛应用于临床医学、环境监测、食品等领域。纳米材料具有优良的物理、化学、电催化性能以及良好的生物相容性,将纳米材料应用于生物传感器的制备可以明显提高传感器的响应性能。本文制备了多种不同形貌的纳米材料,并将这些纳米材料用作电极修饰材料或酶的固定化材料以构建生物传感界面,所制备的传感器对相应的待测物质均表现出较高的灵敏度、较低的检测下限和较快的响应速度。具体结果如下:
     碳纳米管(CNTs)具有大的比表面积、优良的导电性能和化学稳定性,能很好地促进电活性分子的电子传递,提高响应速率,是一种理想的电极修饰材料。首先用混酸对MWCNTs进行氧化处理,一方面可以截断MWCNTs,降低长径比,使其更容易地固定在电极表面,另一方面可以在其末端和侧壁引入大量羧基等功能团,使其能起到固定其他聚电解质或生物分子的作用。
     以羧基化MWCNTs为增效材料,以层层自组装技术将胆碱氧化酶(ChOx)和聚二烯丙基二甲基氯化铵(PDDA)交替组装制备(PDDA/ChOx)n复合酶膜,并以(PAA/PVS)3为选择透过性膜构建传感界面。分别研究了MWCNTs和(PAA/PVS)3修饰Pt电极的电化学特征以及复合酶膜的电化学行为。实验结果表明:在所制备的1~10层自组装复合薄膜中,(PDDA/ChOx)8修饰电极性能最优。在工作电位为+0.6 V vs. Ag/AgCl时,实现了对胆碱的无干扰检测,检测的线性范围为0.75μM~0.15mM,灵敏度为10.89μA/mM,检测下限为0.3μM(S/N=3),并表现出良好的稳定性,且MWCNTs的加入提高了传感器的响应灵敏度,降低了检测下限,缩短了响应时间。
     以共价修饰法将纳米金(GNp)负载于羧基化MWCNTs上,制备MWCNTs-GNp纳米复合材料。利用TEM、EDX、UV-Vis等手段对其微观形貌和元素组成进行了表征,并以之为酶的固定化载体吸附ChOx,将MWCNTs-GNp与ChOx的共混物分散于PDDA中,构建MWCNTs-GNp-ChOx-PDDA复合酶膜修饰Pt电极的传感界面。研究了MWCNTs-GNp修饰电极的电化学特征以及复合酶膜的电化学行为。所制备的胆碱传感器在+0.35 V vs. Ag/AgCl时,对胆碱检测的线性范围为0.001~0.5mM,灵敏度为12.97μA/mM,检测下限为0.3μM(S/N=3)。其响应灵敏度分别是单独使用GNp和MWCNTs的3倍和2倍,GNp和MWCNTs的结合表现出一定的增强效应。
     在不使用任何模板和催化剂的条件下,以硝酸银为银源,通过控制硝酸银溶液的浓度,利用电化学沉积法在GC电极表面合成了类球形和树枝状的纳米银。利用SEM、TEM、XRD等手段对其微观形貌和物质组成进行了表征,并以树枝状纳米银修饰GC电极为传感界面,研究了纳米银自身的电化学特征及其对过氧化氢的催化行为。结果表明,树枝状纳米银对过氧化氢具有很好的电催化还原活性,在-0.2 V vs. Ag/AgCl电位下,实现了对过氧化氢的灵敏响应,线性范围为0.005~12mM,灵敏度为7.39μA/mM,检测下限为0.5μM(S/N=3),而且有效降低了溶解氧和其他电活性物质的干扰。
     根据”晶种催化作用机理”,利用L-半胱氨酸诱导合成了直径约200nm的银纳米线。利用SEM、TEM、XRD、UV-Vis等手段对其微观形貌和物质组成进行了表征。将此银纳米线修饰于Pt电极构建传感界面,研究了银纳米线的电化学特征以及银纳米线对过氧化氢的催化行为。所制备的银纳米线可在-0.2 V vs.Ag/AgCl电位下催化过氧化氢的还原,而且还原反应受过氧化氢的扩散控制,反应机理符合电子转移反应和化学反应均不可逆的非均相催化机理。实验还发现,将电极在PBS中循环伏安扫描可以提高传感器的响应灵敏度,这可能是由于扫描后增大了银纳米线的表面积,同时活性位点增多造成的。循环扫描50次后,传感器对过氧化氢检测的线性范围为0.5μM~30 mM,灵敏度为9.45μA/mM,检测下限0.2μM(S/N=3)。
     在优化银纳米线制备方法的基础上,制备出产量更高的银纳米线,利用SEM、TEM对其微观形貌进行了表征,并将银纳米线修饰在Pt电极表面构建传感界面,应用到对溶液中氯、溴、碘离子的检测。根据卤化银氧化还原电位的不同,银纳米线修饰电极可以对共存的三种卤素离子同时检测。利用循环伏安法研究了修饰电极对三种离子的电化学行为。电极对氯、溴、碘离子检测的线性范围分别为200μM~20 mM、50μM~20 mM和50μM~20 mM,明显要比单独检测时的线性范围窄,表明三种卤素离子同时存在时,互相之间存在竞争干扰。灵敏度分别为0.059μA/mM、0.042μA/mM和0.032μA/mM,优于已报道的同类电极的检测灵敏度。
     铂的纳米化是提高铂催化剂催化效率的一种重要方法,本论文通过简单的液相化学还原法,以硼氢化钠为还原剂,以聚乙烯醇为保护剂,在水溶液中还原氯铂酸钾,制备了稳定性良好的铂纳米颗粒。利用TEM、XRD等手段对其微观形貌和物质组成进行了表征。将铂纳米颗粒修饰于GC电极构建传感界面,利用循环伏安法研究了其对过氧化氢和甲醇的电催化性能,结果表明铂纳米颗粒修饰电极在甲醇溶液中表现出较好的电催化活性,且在0V电位下能够催化过氧化氢的还原。
As a new kind of analytical tool, biosensors which have the characteristics of good selectivity, high sensitivity, fast response, low cost and continuous on-line detection in complex system, have been widely applied in the clinical diagnosis, environmental monitoring, and food control etc. Because of the good physical, chemical, electrocatalytic and biocompatibility properties of nano-materials, applying nano-materials for the fabrication of biosensors will greatly improve the performance of the resulting biosensors. In this thesis, many nano-materials with different morphologies were synthesized using different methods and were applied on the surface of electrodes as modified materials or enzyme immobilizing matrix for the preparation of biosensing interface. The resulting biosensors exhibited high sensitivity, low detection limit and fast response to the corresponding substance, validating the enhancing effect of nano-materials on biosensors'performance. The main results are as follows:
     Carbon nanotubes (CNTs) represent a new kind of promising carbon material for the modification of electrode owing to the unique electrical properties such as high surface-to-volume ratio, excellent electric ability and high chemical stability. Multi-walled carbon nanotubes (MWCNTs) were firstly treated with a mixture of concentrated sulfuric and nitric acid, which could shorten the chain lengths of CNTs, thereby enabling them to be immobilized easily and stably on an electrode. In addition, carboxylic acid groups could be introduced in the ends and side walls of CNTs during the acid treatment, which can interact with positively charged polyelectrolytes or biomolecules.
     Amperometric choline biosensors based on MWCNTs and layer-by-layer (LBL) assembled multilayer films composed of poly(diallyldimethylammonium chloride)(PDDA) and choline oxidase (ChOx) were constructed, also a polymer film of (PAA/PVS)3 to be used as a permselective layer. MWCNTs was characterized by transmission electron microscopy (TEM), and properties of the resulting choline biosensors were measured by electrochemical measurements. Among the resulting biosensors, MWCNTs/(PAA/PVS)3/(PDDA/ChOx)8 based choline biosensor was the best. At the applied potential of+0.6 V vs. Ag/AgCl, the biosensor showed a linear range of 0.75μM~0.15 mM, with a sensitivity of 10.89μA/mM, and a detection limit of 0.3μM (S/N=3). Moreover, it exhibited good suppression of interference as well as long-term stability, and MWCNTs played the roles of electron transfer promoting and response speeding, thereby improved the properties of the sensor.
     MWCNTs-gold nanoparticles (GNp) nanohybride was synthesized and used as an enzyme matrix to immobilize ChOx. PDDA was employed to disperse the mixture of MWCNTs-GNp-ChOx and also used a binder material to electrostatically adsorbe the enzyme. A novel choline biosensor based on the nanocomposite film composed of ChOx, MWCNTs, GNp and PDDA was developed. The microscopic structure and composition of the MWCNTs-GNp hybride were characterized by TEM, energy dispersive X-ray spectroscopy (EDX) and UV-visible asorbance spectroscopy (UV-Vis), and properties of the resulting choline biosensors were monitored by electrochemical measurements. At the applied potential of+0.35 V vs. Ag/AgCl, it showed a linear range of 0.001~0.5 mM, with the sensitivity of 12.97μA/mM, and a detection limit of 0.3μM (S/N=3). Moreover, the biosensor with the nanohybride of MWCNTs-GNp exhibited significant improvement of sensitivity, which was 3 times and 2 times of biosensors with GNp only and MWCNTs only, respectively.
     Shaped silver nanoparticles (Ag NPs) with like-spheres and well-defined dendrites were fabricated on glassy carbon (GC) electrodes by the direct electrodeposition process from an aqueous solution of AgNO3 in the presence of no template or catalyst, and the shape of Ag NPs was AgNO3 concentration-dependent. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and TEM were employed to characterize Ag NPs. The electrochemical behaviors of the silver dendrites and its reduction catalytic activity towards hydrogen peroxide were investigated by electrochemical measurements. At the applied potential of-0.2 V vs. Ag/AgCl, it showed a linear range of 0.005~12 mM, with a sensitivity of 7.39μA/mM, and a detection limit of 0.5μM (S/N=3), meanwhile, eliminating the interference from solved oxygen and other electric active species.
     Silver nanowires (Ag NWs) with diameter of 200 nm were synthesized by an L-cysteine-assisted poly (vinyl pyrrolidone) (PVP)-mediated polyol route. A novel strategy for fabricating a hydrogen peroxide sensor was developed by direct drop-casting Ag NWs on Pt electrode. UV-Vis, XRD, SEM and TEM were employed to investigate the prepared Ag NWs. The electrochemical properties of Ag NWs and the sensor were characterized by electrochemical measurements. It was found that the sensitivity of the modified electrode would be greatly enhanced after cyclic scan in phosphate buffer solution (PBS), which might be due to the enlarged surface areas and the increased active sites of Ag NWs during the scan. After scanned for 50 cycles, at the applied potential of-0.2 V vs. Ag/AgCl, the resulting sensor showed a linear range of 0.5μM~30 mM, with the sensitivity of 9.45μA/mM, the detection limit of 0.2μM (S/N=3). Furthermore, the sensor exhibited good anti-interference, reproducibility and long-term stability.
     Based on optimization of Ag NWs synthesis method, by casting the prepared Ag NWs on Pt electrode, a new kind of sensing interface was fabricated for determination of chloride, bromide and iodide in solution. Because of the well-separated redox potential, chloride, bromide and iodide could be simultaneously monitored in a mixture. The electrochemical properties of Ag NWs towards the three kinds of ions were investigated by cyclic voltammetry. By measuring the oxidation peak currents of the respective silver halides, the calibration graph was linear from 200μM~20 mM for chloride,50μM~20 mM for bromide and 50μM~20 mM for iodide, which was narrower than the linear range in single determination. And the sensitivity was 0.059μA/mM,0.042μA/mM and 0.032μA/mM for chloride, bromide and iodide, respectively.
     It is a significant way to make platinum as nanomaterials to improve its catalytic efficiency. In this thesis, NaHB4 as the reductant, polyvinyl alcohol (PVA) as the stabilizer, the PVA-protected spherical Pt nanoparticles (Pt NPs) were prepared by a reduction method in aqueous solution. The as-prepared Pt NPs were characterized by XRD and TEM, and a new kind of sensing interface was developed by drop-casting the Pt NPs on GC electrode. Cyclic voltammetry was employed to investigate the electrocatalytic activity of Pt NPs towards methanol and hydrogen peroxide. The results demonstrated that the modified electrode exhibited sensitive response for the electro-oxidation of methanol and good catalytic activity to the reduction of hydrogen peroxide, which could be monitored at 0 V vs. Ag/AgCl with good sensitivity.
引文
[1]汪尔康主编.21世纪的分析化学.北京:科学出版社,2001
    [2]Turner A P F. Biochemistry:Biosensors-sense and sensitivity. Science,2000,290:1315~ 1317
    [3]刘向阳.生物传感器在医疗领域的应用.医疗保健器具,2008,108(2):29~30
    [4]Hirst E R, Yuan Y J, Xu W L. Bond-rupture immunosensors—A review. Biosens Bioelectron,2008,23:1759~1768
    [5]Tothill I E. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol,2009,20:55~ 62
    [6]Zeng H, Wang H, Chen F P, et al. Development of quartz-crystal-microbalance-based immunosensor array for clinical immunophenotyping of acute leukemias. Anal Biochem, 2006,351(1):69~76
    [7]刘仲敏,林兴兵,杨生玉主编.现代应用生物技术.北京:化学工业出版社,2004
    [8]Gomes S A S S, Nogueira J M F, Rebelo M J F. An amperometric biosensor for polyphenolic compounds in red wine. Biosens Bioelectron,2004,20:1211~1216
    [9]Volpe E, Cappelli G, GrassiM et al. Gene expression profiling of human macrophages at late time of infection with mycobacterium tuberculosis. Immunology,2006,118(4):449~460
    [10]陈继冰.生物传感器在食品安全检测中的应用与研究进展.食品研究与开发,2009,30(1):180~183
    [11]Halamek J, Hepel M, Skladal P. Investigati on of highly sensitive piezoelectric immunosens or for 2,4-dichlorophenoxyacetic acid. Biosens Bioelectron,2001,16:253~260
    [12]Andreescu S, Noguer T, Magearu V, et al. Screen-printed electrode based on AchE for the detection of pesticides in presence of organic solvents. Talanta,2002,57:169~176
    [13]Timur S, Anik U, Odaci D, et al. Development of a microbial biosens or based on carbon nanotube (CNT) modified electrodes. Electrochem Commun,2007,9(8):1810~1815
    [14]Mirkin C A, Niemeyer C M编著,马光辉,苏志国,王平主译.纳米生物技术——概念、应用和前景,北京:化学工业出版社,2007
    [15]Goodsell D S著,张文雄,张鹏,王文雅等译.生物纳米技术——来自自然的启示,北京:化学工业出版社.2006
    [16]陈忠斌主编.生物芯片技术.北京:化学工业出版社.2005
    [17]王平著.人工嗅觉与人工味觉.第2版.北京:科学出版社.2007
    [18]Lei C X, Wang H, Shen G L, et al. Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose. Electroanalysis,2004,16(9):736~740.
    [19]Vamvakaki V, Tsagaraki K, Chaniotakis N. Carbon nanofiber-based glucose biosensor. Analytical Chemistry,2006,78(15):5538~5542
    [20]Qu F L, Yang M H, Shen G L, et al. Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosens Bioelectron,2007,22:1749~1755
    [21]Adam K, Wanekaya, Wilfred C, et al. Nanowire-based electrochemical biosensors. Electroanalysis,2006,18:533~550
    [22]Wu S, Zhao H T, Ju H X, et al. Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem Commun,2006,8: 1197~1203
    [23]Clark L C, Lyon C. Electrode system for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci,1962,102:29~45
    [24]Updike S J, Hicks G P. The enzyme electrode. Nature,1967,214(92):986-988
    [25]Guilbault G G, Montalvo J. A urea specific enzyme electrode. J Am Chem Soc,1969,91: 2164~2165
    [26]From the website of YSI company, www. ysi. com.
    [27]Divies C. Remarks on ethanol oxidation by an "Acetobacter xylinum" microbial electrode. Ann Microbiol,1975,126(2):175~186
    [28]Rechnitz G A, Kobos R K, Riechel S J, et al. A bio-selective membrane electrode prepared with living baterial cells. Anal Chim Acta,1977,94:357~365
    [29]Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors. Biotechnol Bioeng,1977,19:1535-1547
    [30]Janata J, Moss S D, Johnson C C. Selective chemical sensitive field effect transducers. USPatent 4020830,1977
    [31]Caras S, Janata J. Field effect transistor sensitive to penicillin. Anal Chem,1980,52:1935~ 1937
    [32]Liedberg B, Nylander C, Lundstrm I. Development of an optical waveguide interferometric immunosensor. Sens Actuators B,1983,4:299~304
    [33]From the website, www. pharmacia. ca.
    [34]Cass A E G, Francis D G, Hill H A O. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem,1984,56:667~671
    [35]Lei C X, Wang H, Shen G L, et al. Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose. Electroanalysis,2004,16(9):736~740
    [36]Luo X L, Morrin A, Killard A J, et al. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis,2006,18:319~326
    [37]Wanekaya A K, Chen W, Myung N V, et al. Nanowire based electrochemical biosensors, Electroanalysis,2006,18:533~550
    [38]Rajendra N G, Vinod K G, Chatterjee S. Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode. Talanta, 2008,76:662~668
    [39]陈守文主编.酶工程.北京:科学出版社,2008,208~216
    [40]孙莹莹,赵爽,杨微微,等.基于层-层自反应的葡萄糖氧化酶有序多层膜电极.高等学校化学报,2006,27(5):839~844
    [41]FuYZ, Yuan R, Tang D P, et al. Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloid Surf. B:Biointerfaces,2005,40:61~66
    [42]干宁,葛从辛.多巴胺修饰自组装金电极作为生物传感器测定核酸.分析试验室,2006,25(2):55~58
    [43]黎雪莲,袁若,蔡雅琴,等.基于多层酶/纳米金固定甲胎蛋白免疫传感器的研究.化学学报,2006,64(4):325~330
    [44]Liu Y, Qu X H, Guo H W, et al. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens Bioelectron,2006,21:2195~2201
    [45]Arkhypova V N, Dzyadevych S V, Soldatkin A P, et al. Multibio-sensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta,2001,55:919~ 927
    [46]刘长春,崔大付.电化学传感器及其在芯片实验室中的应用.传感器技术(Journal of Transducer Technology),2003,22(7):1~6
    [47]Tatsumi H, Katano H, Ikeda T. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Anal Biochem,2006, 357:257~261
    [48]Perez J P H, Lopez M S P, Lopez-Cabarcos E et al. Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosens Bioelectron,2006,22(3):429~439
    [49]Nikolelis D P, Krull U J. Establishment and control of artificial ion-conductive zones for lipid-membrane biosensor development. Anal. Chim. Acta,1992,257(2):239~245
    [50]Zhylyak G A, Dzyadevich S V, Korpan Y I, et al. Application of urease conductometric biosensor for heavy-metal ion determination. Sens. Actuators, B, Chem,1995,24:145~ 148
    [51]Kandimalla V B, Tripathi V S, Ju H X. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials,2006, 27:1167~1174
    [52]Qiu J D, Deng M Q, Liang R P, et al. Ferrocene-modified multiwalled carbon nanotubes as building block for construction of reagentless enzyme-based biosensors. Sens. Actuators, B, Chem,2008,135:181~187
    [53]Park S, Boo H, Chung T D. Review:Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta,2006,556:46~57
    [54]Zayats M, Katz E, Willner I. Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD Cofactor monolayer. J Am Chem Soc,2002,124:2120~2121
    [55]吴宝艳.新型生物传感器活性界面的构建及其评价:[博士学位论文].天津:南开大学,2007
    [56]Decher G, Hong J D, Ber B G. Buildup of ultrathin multilayer films by a self-assembly process:Ⅱ.Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surface. Phys Chem,1991,95:1430~1434
    [57]Baur J W, Kim S, Balanada P B. Thin film hight emitting devices based on sequentially adsorbed multilayers of water soluble poly(p-phenylene). Adv Mater,1998,10:1452~1455
    [58]Qu F L, Yang M H, Jiang J H, et al. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal Biochem,2005,344:108~114
    [59]Decher G, Lehr B, Lowack K, et al. New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens Bioelectron, 1994,9:677~684
    [60]Onda M, Lvov Y, Ariga K, et al. Sequential actions of glucose oxidase and peroxidase in molecular films assembled layer-by-layer alternate adsorption. Biotechnol Bioeng,1996, 51:161~167
    [61]Narvaez A, Suarez G, Popescu I C, et al. Reagentless biosensors based on self-deposited redox polyelectrolyte-oxidoreductases architectures. Biosens Bioelectron,2000,15:43~ 52
    [62]Xie H, Zhang C, Gao Z. Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode. Anal Chem,2004,76: 1611~1617
    [63]Zhao W, Xu J J, Chen H Y. Extended-range glucose biosensor via layer-by-layer assembly incorporating gold nanoparticles. Front Biosci,2005,10:1060~1069
    [64]Wu B, Hou S, Yin F, et al. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modefied Pt electrode. Biosens Bioelectron,2007,22(6):838~844
    [65]Lvov Y, Decher G, Suldorukov G. Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules,1993,26(20):5396~ 5399
    [66]Chen Q, Kobayashi Y, Takeshita H, et al. Avidin-biotin system-based enzyme multilayer membranes for biosensor applications:optimization of loading of choline esterase and choline oxidase in the bienzyme membrane for acetylcholine biosensors. Electroanalysis, 1998,10:94~97
    [67]Hoshi T, Saiki H, Tsuchiya C, et al. Selective permeation of hydrogen peroxide through polyelectrolyte multiplayer films and its use for amperometric biosensors. Anal Chem, 2001,73:5310~5315
    [68]Hoshi T, Saiki H, Anzai J. Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta,2003,63:363~368
    [69]赵紫霞.用于生物传感器的氧化还原酶蛋白固定化技术研究:[博士学位论文].天津:南开大学,2009
    [70]史海滨.静电层层自组装技术构建新型生物传感器的研究:[博士学位论文].天津:南开大学,2006
    [71]Itaya K, Shoji N, Uchida I. Catalysis of the reduction of molecular oxygen to water at Prussian Blue modified electrodes. J Am Chem Soc,1984,106(12):3423~3429
    [72]Neff V D. Representative reaction mechanisms for redox electrochromic materials include those for Prussian Blue (ferric ferrocyanide). J Electrochem Soc,1978,125(6):886~887
    [73]Karyakin A A, Karyakina E E, Gorton L. Prussian blue as artificial enzyme peroxidase in respect to electrocatalysis:stabilization and the mechanism of action. Electrochem Comm, 1999,1(2):78~82
    [74]Dostal A, Meyer B, Scholz F, et al. Electrochemical study of microcrystalline solid prussian blue particles mechanically attached to graphite and gold electrodes electrochemically Induced latticereconstruction. J Phys Chem,1995,99:2096~2103
    [75]李彤,姚子华.普鲁士蓝修饰电极结合硅溶胶-凝胶技术制备高灵敏葡萄糖传感器.分析化学,2004,32(2):237~240
    [76]Moscone D, D'Ottavi D, Compagnone D, et al. Construction and analytical characterization of Prussian-Blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors.Anal Chem,2001,73:2529~2535
    [77]Song Z, Huang J D, Wu B Y, et al. Amperometric aqueous sol-gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode. Sens. Actuators, B, Chem,2006,115:626~633
    [78]Qu F L, Yang M H, Shen G L, et al. Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosens Bioelectron,2007,22:1749~1755
    [79]Shi H b, Song Z, Huang J D, et al. Effects of the type of polycation in the coating films prepared by a layer-by-layer deposition technique on the properties of amperometric choline sensors. Sens. Actuators, B, Chem,2005,109:341~347
    [80]Wu B Y, Hou S H, Yu M, et al. Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications. Mater. Sci. Eng.C,2009,29:346~349
    [81]Wang B Q, Dong S.J. Sol-gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film. Talanta,2000,51:565~572
    [82]Shobha D R, Jeykumari, Narayanan S S. Functionalized carbon nanotube-bienzyme biocomposite for amperometric sensing. Carbon,2009,47:957~966
    [83]Chu X, Duan D X, Shen G L, et al. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta,2007,71:2040~2047
    [84]白春礼.纳米科技现在与未来.四川科技出版社,2001.
    [85]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002
    [86]杨坤.基于一维纳米结构的电化学传感器研究:[博士学位论文].北京:中国科学院理化技术研究所,2008
    [87]宋昭.纳米级结构表面修饰技术构建胆碱生物传感器的研究:[硕士学位论文].天津:南开大学,2006
    [88]You T Y, Niwa O, Tomita M, et al. Characterization of platinum nanoparticle-embedded carbonfilm electrode and its detection of hydrogen peroxide. Anal Chem,2003,75:2080-2085
    [89]Song Y H, Cui K, Wang L, et al. The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor. Nanotechnology,2009,20:1~8
    [90]Ding Y F, Jin G P, Yin J G. Electrodeposition of silver nanoparticles on MWCNT film electrodes for hydrogen peroxide sensing. Chin J Chem,2007,25:1094~1098
    [91]Cui K, Song Y H, Yao Y, et al. A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem Commun,2008,10:663~667
    [92]Wang G F, Wei Y, Zhang W, et al. Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites. Microchimica Acta,2010,168:87~92
    [93]Chakraborty S, Raj C R. Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2. Biosens Bioelectron,2009,24(11):3264~3268
    [94]Zhang X J, Wang G F, Zhang W, et al. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens Bioelectron,2009,24(11):3395~3398
    [95]Bai Y, Sun Y Y, Sun C Q. Pt-Pb nanowire array electrode for enzyme-free glucose detection. Biosens Bioelectron,2008,24(4):579~585
    [96]Bai Y, Yang W W, Sun Y, et al. Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sens. Actuators, B, Chem,2008,134(2):471~476
    [97]Jena B K, Raj C R. Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chemistry-a European Journal,2006,12(10):2702~2708
    [98]Xiao F, Zhao F Q, Zhang Y F, et al. Ultrasonic electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors. J Phys Chem C,2009,113:849~855
    [99]Guascito M R, Filippo E, Malitesta C, et al. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide. Biosens Bioelectron,2008,24: 1057~1063
    [100]He X S, Hu C G, Liu H, et al. Building Ag nanoparticle 3D catalyst via Na2Ti307 nanowires for the detection of hydrogen peroxide. Sens. Actuators, B, Chem,2010,144(1): 289~294
    [101]Rong L Q, Yang C, Qian Q Y, et al. Study of the nonenzymatic glucose sensor based on highly dis persed Pt nanoparticles supported on carbon nanotubes. Talanta,2007,72: 819~824
    [102]Li L H, Zhang W D. Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim Acta,2008, 163:305~311
    [103]Meng L, Jin J, Zhang T H, et al. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybride nanostructures. Anal Chem,2009,81: 7271~7280
    [104]Shen Q M, Jiang L P, Zhang H, et al. Three-dimensional dendritic pt nanostructures: sonoelectrochemical synthesis and elelctrochemical application. J Phys Chem C,2008,112: 16385~16392
    [105]Birringer R, Gleiter H, Klein H P. et al. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Phys Lett,1984,102A(8):365~369
    [106]袁爱华,汪萍,沈小平.一维纳米结构材料制备方法的研究进展.化学研究与应用,2006,18(2):122~128
    [107]Alivisatos A P, Barbara P F, Casleman A W. et al. From molecules to materail:current trends and future directions. Adv Mater,1998,10(16):1297~1336
    [108]缪煜清,刘仲明,官建国.纳米科技在生物传感器中的应用.传感器技术(Journal of Transducer Technology),2002,21(11):61-64
    [109]张德阳.纳米生物材料学.北京:化学工业出版社,2005:4~5.
    [110]Zhao W, Sun S X, Xu J J, et al. Electrochemical identification of the property of peripheral nerve fiber based on a biocompatible polymer film via in situ incorporating gold nanoparticles. Anal Chem,2008,80(10):3769~3776
    [111]Azamian B R, Davis J J, Coleman K S, et al. Bioelectrochemical single-walled carbon nanotubes. J Am Chem Soc,2002,124:12664~12665
    [112]Huang J D, Yang Y, Shi H B, et al. Multi-walled carbon nanotubes-based glucose biosensor prepared by a layer-by-layer technique. Mater. Sci. Eng. C,2006,26:113~117
    [113]Lin Y H, Lu F, Tu Y, et al. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. NanoLett,2004,4(2):191~195
    [114]Sotiropoulou S, Chaniotakis N A. Carbon nanotube array-based biosensor. Anal Bioanal Chem,2003,375:103~105
    [115]Wen Z H, Ci S Q, Li J. Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose. J Phys Chem C,2009,113:13482~13487
    [116]Wu B Y, Shi H H, Yin F, et al. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens Bioelectron,2007,22:2854~2860
    [117]曹萌,丁克强,王庆飞,等.甲醇在纳米铂修饰的铂电极上的电化学氧化.河北师范大学学报,2007,31(5):642~644
    [118]Luo J, Maye M M, Kariuki N N, et al. Electrocatalytic oxidation of methanol: carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol. Catalysis Today,2005,99:291~297
    [119]Guo D J, Li H L. Electrocatalytic oxidation of methanol on Pt modified single-walled carbon nanotubes. Power Sources,2006,160:44~49
    [120]Cai H, Wang Y Q, HePG, et al. Studies on an electrochemical DNA biosensor based on gold nanoparticle-labeled DNA probe. Chem J Chinese U,2003,24:1390~1394
    [121]Zhang F H, Cho S S, Yang S H et al. Gold nanoparticle-based mediatorless biosensor prepared on microporous electrode. Electroanalysis,2006,18:217~222
    [122]Yang W, Yang C, Sun M, et al. Green synthesis of nanowire-like Pt nanostructures and their catalytic properties. Talanta,2009,78:557~564
    [123]Zhang M G, Smith A, Gorski W. Carbon nanotube chitosan system for electrochemical sensing based on dehydrogenaseenzymes. Anal Chem,2004,76:5045~5050
    [124]Li J P, Yu Q L, Peng T Z. Electrocatalytic oxidation of hydrogen peroxide and cysteine at a glassy carbon electrode modified with platinum nanoparticle-deposited carbon nanotubes. Analytical Sciences,2005,21:377~381
    [125]Hrapovic S, Liu Y L, Male K B, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem,76,4:1083~1088
    [126]Xiao Y, Patolsky F, Katz E, et al. "Plugging into enzymes":nanowiring of redox enzymes by a gold nanoparticle. Science,2003,299:1877~1881
    [127]Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed,2004,43:2113~2117
    [128]Leite F L, Riul Jr A, Hermann P S P. Mapping of adhesion forces on soil minerals in air and water atomic force spectroscopy (AFS). J Adhes Sci Technol,2003,17:2141~2156
    [129]肖寒,吴金玲,陈旭,等.辣根过氧化物酶在MnO2纳米片薄膜中的直接电化学与电催化行为.科学通报,2007,52(19):2255~2259
    [130]Zhao J, Zhu X L, Li T, et al. Self-assembled multilayer of gold nanoparticles for amplified electrochemical detection of cytochrome c. Analyst,2008,133:1242~1245
    [131]Zhang M G, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J Am Chem Soc,2005,127(7):2058~2059
    [132]扎热木·萨迪克,都颖,徐静娟,等.纳米材料在电化学生物传感器中的应用.分析科学学报,2009,25(2):217~222
    [133]Xu J J, Zhao W, Luo X L, et al. A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chem Commun,2005,6:792~794
    [134]Bai Y H, Du Y, Xu J J, et al. Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem Commun,2007,9:2611~ 2616
    [135]Holm P I, Ueland P M, Kvalheim G, et al. Determination of choline, betain, and dimethylglycine in plasma by high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem,2003,49(2):286-294
    [136]Cornford E M, Braun L D, Oldendorf W H. Carrier mediated blood-brain barrier transport of choline and certain choline analogs. J Neurochem,1978,30:299-308
    [137]Rinne J O, Myllykyla T, Lonnberg P. The biochemical basis of neuropharma-cology.6th ed. New York:Oxford University Press,1991. Chapter 8.
    [138]Coyle C T, Price D L, DeLong M R. Alzheimers disease:a disorder of cortical cholinergic innervation. Science,1983,219:1184~1190
    [139]Rinne J 0, Myllykyla T, Lonnberg P, et al. A postmortem study of brain nicotinic receptors in parkinsons and alzheimers disease. Brain Res,1991,547:167~170
    [140]Hoang J V, Gadda G. Trapping choline oxidase in a nonfunctional conformation by Freezing at low pH. Proteins:structure, function and bioinformatics,2007,66:611~620
    [141]Fan F, Ghanem M, Cloning G G. Sequence analysis and purification of choline oxidase from Arthrobacter globiformis:a bacterial enzyme involved in osmotic stress tolerance. Arch Biochem Biophys,2004,421:149~158
    [142]Campanella L, Tomassetti M, Sammartino M P. Enzyme sensor for the determination of choline-containing phospholipids in some biological fluids. Analyst,1988,113:77~88
    [143]冯德荣,孙士青,朱思荣,等.胆碱氧化酶电极生物传感器研究.生物工程学报,1997,13(2):190~194
    [144]陈峻,林祥钦,陈宗海,等.铂黑修饰酶电极测定胆碱.分析科学学报,2000,128(9):1066~1069
    [145]Doretti L, Ferrara D, Gattolin P, et al. Covalently immobilized enzymes on biocompatible polymers for amperometric sensor applications. Biosens Biolectron,1996,11:365~373
    [146]Xue H G, Shen Z Q. Bioelectrochemical response and kinetics of choline oxidase entrapped in polyaniline-polyacrylonitrile composite film. Chinese J Chem,2002,20: 784~788
    [147]Garguilo M G, Michael A C. Optimization of amperometric microsensors for monitoring choline in the extracellular fluid of brain tissue. Anal Chim Acta,1995,307:291~299
    [148]Shimomura T, Itoh T, Sumiya T, et al. Amperometric determination of choline with enzyme immobilized in a hybrid mesoporous membrane. Talanta,2009,78(1):217~220
    [149]Campanella L, Tomassetti M, Sammartino M P. An enzyme sensor for determination of acetylcholine and choline in rat brain extracts. Anal Lett,1989,22:1389~1402
    [150]Rahman M A, Park D S, Shim Y B. A performance comparison of choline biosensors: anodic or cathodic detections of H2O2 generated by enzyme immobilized on a conducting polymer. Biosens Bioelectron,2004,19:1565~1571
    [151]Bharadwaj S, Montazeri R, Haynie D T. Direct determination of the thermodynamics of polyelectrolyte complexation and implications thereof for electrostatic layer-by-layer assembly of multilayer films. Langmuir,2006,22(14):6093~6101
    [152]Ferreyra N F, Forzani E S, Teijelo M L, et al. Unraveling the spatial distribution of immunoglobulins, enzymes and polyelectrolytes within layer-by-layer self-assembled multilayers. Langmuir,2006,22(21):8931~8938
    [153]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56~58
    [154]Bumsu K, Park H, Sigmund W M. Electrostatic interactions between shortened multiwall carbon nanotubes and polyelectrolytes. Langmuir 2003,19:2525~2527
    [155]Zou Y G, Xiang C L, Sun L X, et al. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosens Bioelectron,2008,23:1010~1016
    [156]Kang X H, Mai Z B, Zou X Y, et al. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glssy carbon electrode modified with gold-platinum alloy nanparticles/multiwall carbon nantubes. Anal Biochem,2007,369:71~79
    [157]杨钰,史海滨,吴宝艳,等.层层累积技术制备基于纳米碳管的葡萄糖生物传感器.传感器与微系统,2006,25(1):13~15
    [158]Marty J L, Sode K, Karube I. Amperometric determination of choline and acetylcholine with enzymes immobilized in a photocross-linkable polymer. Anal Chim Acta,1989,228: 49~53
    [159]Ikuta S, Imamura S, Misaki H, et al. Purification and characterization of choline oxidase from Arthrobacter globiformis.J Biochem,1977,82:1741~1749
    [160]Marazuela M D, Moreno-Bondi M C. Determination of choline-containing phospholipids in serum with a fiber-optic biosensor. Anal Chim Acta,1998,374:19~29
    [161]Wang Y Y, Wang X Y, Wu B Y, et al. Dispersion of single-walled carbon nanotubes in poly(diallyldimethylammonium chloride) for preparation of a glucose biosensor. Sens. Actuators, B, Chem,2008,130:809~815
    [162]Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem,1980,52: 1198~1205
    [163]Ohta-Fukuyama M, Miyake Y, Emi S, et al. Identification and properties of the prosthetic group of choline oxidase from Alcaligenes sp.J Biochem,1980,88:197~203
    [164]Qiu J D, Deng M Q, Liang R P, et al. Ferrocene-modified multiwalled carbon nanotubes as building block for construction of reagentless enzyme-based biosensors. Sens. Actuators, B,Chem,2008,135:181-187
    [165]Zhu N N, Chang Z, He P G. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Anal Chim Acta,2005,545:21~26
    [166]Guo D J, Li H L. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon,2005,43:1259~1264
    [167]Huang J S, Liu Y, Hou H Q, et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens Bioelectron,2008,24:632~637
    [168]Kang X H, Mai Z B, Zou X Y, et al. Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid. Talanta,2008, 74:879~886
    [169]Pang X Y, He D M, Luo S L, et al. An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens. Actuators, B,Chem,2009,137:134~138
    [170]Zhao K, Zhuang S Q, Chang Z, et al. Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis,2007,19(10): 1069~1074
    [171]Hicks J F, Zamborini F P, Osisek A et al. The dynamics of electron self-exchang between nanoparticles. J Am Chem Soc,2001,123(29):7048~7053
    [172]Shipway A N, Lahav M, Willer 1. Nanostructured gold colloid electrodes. Adv Mater, 2000,12(13):993~998
    [173]Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J Am Chem Soc,1996,118:1154~1157
    [174]Ellis A V, Vijayamohanan K, Goswami R, et al. Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano Lett,2003,3:279~282
    [175]Kim B, Sigmund W M. Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir,2004,20:8239~8242
    [176]Sainsbury T, Stolarczyk J, Fitzmaurice D. An experimental and theoretical study of the self-assembly of gold nanoparticles at the surface of functionalized multiwalled carbon nanotubes. J Phys Chem B,2005,109:16310~16325
    [177]Yao Y L, Shiu K K. Direct electrochemistry of glucose oxidase at carbon nanotube-gold colloid modified electrode with poly(diallyldimethylammonium chloride) coating. Electroanalysis,2008,20:1542~1548
    [178]Alexeyeva N, Tammeveski K. Electroreduction of oxygen on gold nanoparticle/PDDA-MWCNT nanocomposites in acid solution. Anal Chim Acta,2008, 618:140~146
    [179]Xu H, Zeng L P, Xing S J, et al. Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(Ⅱ). Electrochem Commun,2008,10:1839~1843
    [180]Li F H, Wang Z H, Shan C S, et al. Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application. Biosens Bioelectron,2009,24:1765-1770
    [181]Liu J, Rinzler AG, Dai H, et al. Fullerene Pipes. Science,1998,280:1253~1256
    [182]Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science,1998,282:95~98
    [183]Moghaddam M J, Taylor S, Gao M, et al. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett,2004,4:89~93.
    [184]Hammond P T. Recent explorations in electrostatic multilayer thin film assembly. Curr Opin Colloid Interface Sci,1999,4:430~442
    [185]Gero D. Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science, 1997,277(5330):1232~1237
    [186]Chen H J, Wang Y L, Wang Y Z, et al. One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer,2006,47:763~766
    [187]Anzai J, Guo B, T Osa. Quartz-crystal microbalance and cyclic voltammetric studies of the adsorption behaviour of serum albumin on self-assembled thiol monolayers possessing different hydrophobicity and polarity. Bioelectrochem Bioenerg,1996,40:35~40
    [188]Yu Y, Ying P Q, Jin G. Competitive adsorption between bovine serum albumin and collagen observed by atomic force microscope. Chinese Chem Lett,2004,15:1465~1468
    [189]Bonomo R C F, Minim LA, Coimbra J S R, et al. Hydrophobic interaction adsorption of whey proteins:effect of temperature and salt concentration and thermodynamic analysis. J Chromatogr B,2006,844:6~14
    [190]Schuvailo O N, Dzyadevych S V, El'skaya A V, et al. Carbon fibre-based microbiosensors for in vivo measurements of acetylcholine and choline. Biosens Bioelectron,2005,21:87~ 94
    [191]Wang H C, Wang X S, Zhang X Q, et al. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron,2009,25:142~146
    [192]Yang M H, Qu F L, Lu Y S, et al. Platinum nanowire nanbelectrode array for the fabrication of biosensors. Biomaterials,2006,27(35):5944~5950
    [193]Zhao Z X, Wang H C, Qin X, et al. Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing. Colloid Surf. B:Biointerfaces,2009, 71(1):102~106
    [194]宋昭,黄加栋,史海滨,等.基于layer-by-layer技术构建胆碱检测生物传感器酶电极的研究.高技术通讯,2007,17(1):49~53
    [195]Shi H B, Yang Y, Huang J D, et al. Amperometric choline biosensors prepared by Layer-by-layer deposition of choline oxidase on the Prussian blue-modified platinum electrode. Talanta,2006,70:852~858
    [196]廖学红,朱俊杰,邱晓峰,等.类球形和树枝状纳米银的超声电化学制备.南京大学学报(自然科学),2002,38(1):119~123
    [197]Garrell R L Surface-enhanced Raman-spectroscopy. Anal Chem,1989,61:401~418
    [198]李亚栋,贺蕴普,钱逸泰.银纳米粒子的制备及其表面特性研究.化学物理学报,1992,12(4):465~470
    [199]林丽,仇佩虹,杨丽珠,等.纳米银粒子修饰电极法测定血红蛋白.分析化学,2006,34(1):31~34
    [200]钟金栋,夏雪山,张若愚,等.纳米银材料抗菌效果研究及其安全性初步评价.昆明理工大学学报(理工版),2005,30(15):91~93
    [201]朱红军,朱骊.复合型(Ag+Ag2O)防集聚纳米银抗菌非织造布及工业化生产工艺. CN1379146A,2002-11-13,
    [202]Ahmadi T S, Wang Z L, Henglein A, et al. Shape-controlled synthesis of colloidal platinum nanoparticles. Science,1996,272:1924~1926
    [203]Zhu J J, Liu S W, Palchik O, et al. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir,2000,16:6396~6399
    [204]Xiao J P, Xie Y, Tang R, et al. Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv Mater,2001,13:1887~1891
    [205]Qiu R, Zhang X L, Qiao R, et al. CuNi Dendritic material:Synthesis, mechanism discussion and appliacation as glucose sensor. Chem Mater,2007,19:4171~4180
    [206]Yasuji S, Dougherty A, Gollun J P. Dentritic and fractal patterns in electrolytic metal deposits. J Phys Rev Lett,1986,56:1260~1263
    [207]Zhou Y, Yu S H, Wang C Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv Mater,1999,11: 850~ 852
    [208]Wang X Q, Hideaki I, Kensuke N, et al. Tetrathiafulvalene-assisted formation of silver dendritic Nanostructures in acetonitrile. Chem Commun,2002,1300~1301
    [209]Wang S Z, Xin H W. Fractal and dendritic growth of metallic Ag aggregated from different Kinds of γ-Irradiated Solutions. J Phys Chem B,2000,104:5681~5685
    [210]Jacob B, Garik P. The formation of pat terns in non-equilibrium growth. Nature,1990, 343:523~528
    [211]Meakin P. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett,1983,51:1119~1122
    [212]Kolb M, Botet R, Jullien R. Scaling of kinetically growing clusters. Phys Rev Lett,1983, 51:1123~1126
    [213]Meng H, Shen P K. Novel Pt-free catalyst for oxygen electroreduction. Electrochem Commun,2006,8:588~594
    [214]Chen J Y, Wiley B J, Xia Y N. One-dimensional nanostructures of metals:large-scale synthesis and some potential applications. Langmuir,2007,23:4120~4129
    [215]Zhang M N, Yan Y M, Gong K P, et al. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction. Langmuir,2004, 20:8781~8785
    [216]Welch C M, Banks C E, Simm A O, et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem,2005,382:12~21
    [217]Karyakin A A, Karyakina E E, Gorton L. Amperometric biosensor for glutamate using Prussian Blue-based "artificial peroxldase" as a transducer for hydrogen peroxide. Anal Chem,2000,72(7):1720~1723
    [218]Jia J B, Wang B Q, Wu AG, et al. A method to construct a third-generation horseradish peroxidase biosensor:Self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem,2002,74(9):2217~2223
    [219]Chiu M H, Cheng W L, Muthuraman G, et al. A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples. Biosens Bioelectron,2009, 24(10):3008~3013
    [220]Tripathi V S, Kandimalla V B, Ju H X. Amperometric biosensor for hydrogen peroxide based on ferrocence-bovine serum albumin and multiwall carbon nanotube modified ormosil composite. Biosens Bioelectron,2006,21:1529~1535
    [221]Delvaux M, Walcarius A, Demoustier-Champagne S. Electrocatylitic H2O2 amperometric detection using gold nanotube electrode ensembles. Anal Chim Acta,2004,525:221~230
    [222]Liu S Q, Ju H X Renewable reagentless hydrogen peroxide sensor based on direct electrontransfer of HRP immobilized on colloidal gold-modified electrode. Anal Biochem, 2002,307:110~116
    [223]Kaft A K M, Wu G S, Chen A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron,2008,24:566~571
    [224]Wang B, Zhang J J, Pan Z Y, et al. A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film. Biosens Bioelectron,2009,24:1141~1145
    [225]Chakraborty S, Raj C R. Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2. Biosens Bioelectron,2009,3264~3268
    [226]Karyakin A A,Puganova E A, Bolashov I A, et al. Angew Chem Int Ed,2007,46:7678~ 7680
    [227]Karyakin A A, Puganova E A, Budashov I A, et al. Prussian blue based nanoelectrode arrays for H2O2 detection. Anal Chem,2004,76:474~478
    [228]Wang J H, Naser N, Angnes L, et al. Metal-dispersed carbon paste electrodes. Anal Chem, 1992,64:1285~1288
    [229]Welch C M, Banks C E, Simm A O. Silver nanoparticles assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem,2005,382:12~21
    [230]Guascito M R, Filippo E, Malitesta C, et al. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide. Biosens Bioelectron,2008,24:1057~ 1063
    [231]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:the Influence of size, shape and dielectric environment. J Phys Chem B,2003,107(3):668~ 677
    [232]Sun Y G, Yin Y D, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(Vinyl Pyrrolidone). Chem Mater,2002,14(11):4736~4745
    [233]Sosa I O, Noguez C, Barrera R G. Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B,2003,107(26):6269~6275
    [234]Chen C, Wang L, Yu H J, et al. Mophology-controlled sythesis of silver nanostructures via a seed catalysis process. Nanotechnology,2007,18:115612~115618
    [235]Sun Y G, Mayers B T, Herricks T, et al. Polyol synthesis of uniform silver nanowires:a plausible growth mechanism and the supporting eEvidence. Nano Lett,2003,3(7):955~ 960
    [236]Chen S L, Wu B L, Cha C S. Application of time-resolved EQCM to the study of the mechanism of silver(Ⅰ) oxide formation on a polycrystalline silver electrode in alkaline solution J Electroanal Chem,1996,416:53~59
    [237]Chen S L, Wu B L, Cha C S. The time-resolved EQCM and study of the kinetics of silver (I) oxide formation on a polycrystalline silver electrode in alkaline solution. J Electroanal Chem,1997,420:111-118
    [238]Lutzenkirchen-Hecht D, Strehblow H H. Anodic silver (Ⅱ) oxides investigated by combined electrochemistry, ex situ XPS and in situ X-ray absorption spectroscoy. Surf Interface Anal,2009,41:820~829
    [239]Maillard F, Eikerling M, Cherstiouk O V, et al. Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation:the role of surface mobility. Faraday Discuss, 2004,125:357-377
    [240]Lian W P, Wang L, Song Y H, et al. A hydrogen peroxide sensor based on electrochemically roughened silver electrodes. Electrochim Acta,2009,54:4334~4339
    [241]Andrieuxa C P, Saveanta J M. Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem, 1978,93(2):163~168
    [242]Nicholson R S, Shain I. Theory of stationary electrode polarography single scan and cyclic methods applied to reversible, irreversible and kinetic systems. Anal Chem,1964,36(14): 706~723
    [243]Zhao W, Wang H C, Qin X, et al. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta,2009,80(2):1029~1033
    [244]Sucman E, Bednar J. Determination of chlorides in meat products with ion-selective electrode using the batch injection technique. Electroanalysis,2003,15(10):866~871
    [245]Arai K, Kusu F, Noguchi N, et al. Selective determiantion of chloride and bromide ions in serum by cyclic voltammetry. Anal Biochem,1996,240:109~113
    [246]Chiu M, Cheng W, Muthuraman G, et al. A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples. Biosen Bioelectron,2009,24:3008~ 3013
    [247]Parham H, Zargar B. Simultaneous coulometric determination of iodide, bromide and chloride in mixture by automated cpupling of constant current chronopotentiometry and square wave voltammetry. Anal Chim Acta,2002,464:115~122
    [248]Michalitsch R, Palmer B J, Laibinis P E. Formation of a more noble underpotentially deposited silver layer on gold by the adsorption of chloride. Langmuir,2000,16:6533~ 6540
    [249]Michalitsch R, Laibinis P E. Adsorption-mediated electrochemical sensing of halides. Angew Chem Int Ed,2001,40(5):941~944
    [250]Michalitsch R, Laibinis P E. Electrochemical detection of chloride by underpotentially deposited silver films on polycrystalline gold. Anal Chem,2004,76:5911~5917
    [251]Im S H, Lee Y T, Wiley B, et al. Large-scale synthesis of silver nanocubes:the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed,2005,44:2154~ 2157
    [252]Chen J, Herricks T, Geissler M, et al. Single crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J Am Chem Soc,2004, 126:10854~10855
    [253]Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Lett,2002,2:165~168
    [254]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science,2002, 298:2176~2179
    [255]Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater,2002,14:833~837
    [256]Sun Y, Yin Y, Mayers B, et al. Uniform silver nanowires can be synthesized by reducting AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater,2002,14:4736~4745
    [257]C. Ducamp-Sanguesa, R. Herrera-Urbina, Figlarz M. Synthesis and characterization of fine and monodisperse silver particles of uniform shape. Journal of Solid State Chemistry,1992, 100(2):272~280
    [258]Zhang W J, Chen P, Gao Q S, et al. High-concentration preparation of silver nanowires: restraning in situ nitric acidic etching by steel-assisted polyol method. Chem Mater,2008, 20:1699~1704
    [259]Chen C, Wang L, Jiang G H, et al. The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology,2006,17:466~474
    [260]Chen C, Wang L, Yu H J, et al. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnology,2007,18(115):6~12
    [261]Im S H, Lee Y T, Wiley B, et al. Large-scale synthesis of silver nanocubes:the role of HCl in promoting cube perfection and monodispersity. Angew Chem,2005,117:2192~ 2195
    [262]Henglein A. Colloidal silver nanoparticles:photochemical preparation and interaction with O2, CC14 and some metal ions. Chem Mater,1998,10:444~450
    [263]Zhang L D, Mou J M. The Science of Nano materials. ShengYang:LiaoMing Science and Technolody,1994,1~6
    [264]He S T, Xie S S, Yao J N, et al. Self-assembled two-dimensional superlattice of Au-Ag alloy nanocrystals. Appl Phys Lett,2002,81:150~152
    [265]Doering W E, Nie M S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced raman scattering. Anal Chem,2003,75:6171~6176
    [266]Sun S, Zeng H. Size-controlled synthesis of magnetite-nanoparticles. J Am Chem Soc, 2002,124:8204~8205
    [267]Grubisha D S, Liper R J, Park H Y, et al. Femtomolar detection of prostate-specific antigen: an immunoassy based on surface-enhanced raman scattering and immuno-gold labels. Anal Chem,2003,75:5936~5943
    [268]Kostelansky C N, Pietron J J, Chen M S, et al. Triarylphosphine-stabilized platinum nanoparticles in three-dimensional nanostructured films as active electrocatalysts. J Phys Chem B,2006,110(43):21487~21496
    [269]Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging:Sensitivity of plasmon response to size, shape and metal composition. J Phys Chem B,2006,110(39): 19220~19225
    [270]Tsai Y C, Hsu P C, Lin Y W, et al. Silver nanoparticles in multiwalled carbon nanotube-Nafion for surface-enhanced Raman scattering chemical sensor. Sens Actuat, B, Chemical,2009,138:5~8
    [271]Yu W Y, Liu H F, Liu M H, et al. Selective hydrogenation of citronellal tocitronellol over polymer-stabilized noblemetalcolloids. Reactive & Fuctional Polymers,2000,44:21~29
    [272]Narayanan R, EL-Sayed M A. Effect of Catalysis on the Stability of MetallicN anoparticle:Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles. J Am Chem Soc,2003,125:8340~8347
    [273]Zhao G Y, Xu C L, Guo D J, et al. Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation. Appl Surf Sci,2007,253:3242~3246
    [274]Ingelsten H H, Beziat J C, Bergkvist K, et al. Deposition of plat inum nanopart icles, synthesized in water-in -oil microemulsions on alumina supports. Langmuir,2002,18: 1811~1818
    [275]Adlim M, Bakar M A, Liew K Y, et al. Sythesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J Mol Catal A:Chem,2004,212: 141~149
    [276]丁收年,卢业举,金葆康.一种纳米铂水溶胶的制备及其在电化学上的应用.安徽大学学报自然科学版,2002,26(3):74~78
    [277]Zhong Y, Xu C L, Kong L B, et al. Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method. Appl Surf Sci,2008,255:3388~ 3393
    [278]Choi S M, Kim J H, Jung J Y, et al. Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation. Electrochimica Acta,2008,53:5804~5811
    [279]Koshizaki N, Narazak A, Sasaki T. Preparation of nanocrystalline titania thin film by pulsed laser deposition at room temperature. Appl Surf Sci,2002,197:629~627
    [280]Hikosaka K, Kim J, Kajita M, et al. Platinum nanoparticles have an activity similar to mitochondrial NADH:ubiquinone oxidoreductase. Colloid Surf. B:Biointerfaces,2008, 66:195~200
    [281]Hamann C H, Hamnett A, Vielstich W. Electrochemistry,2nd ed, Wiley-VCH, Weinheim, (Chapter 4),1998,
    [282]Chou J, Jayaraman S, Ranasinghe A D, et al. Efficient electrocatalyst utilization: electrochemical deposition of Pt nanoparticles using nafion membrane as a template. J Phys Chem B,2006,110(21):7119~7121
    [283]Day T M, Unwin P R, Wilson N R, et al. Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J Am Chem Soc, 2005,127(30):10639~10647
    [284]Chen Z, Xu L, Li W, et al. Polyaniline nanofibers supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology,2006,17:5254~5259
    [285]Yang G W, GaoGY, Zhao G Y, et al. Effective adhesion of Pt nanoparticles on thiolated multi-walled carbon nanotubes and their use for fabricating electrocatalysts. Carbon,2007, 45:3036~3041
    [286]Mu Y, Liang H, Hu J, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B,2005,109:22212~ 22216
    [287]Oncel N, Vanbeek W J, Huijiben J, et al. Diffusion and binding of CO on Pt nanowires. Surface Science,2006,600:4690~4693
    [288]Banks C E, Crossle Y A, Compton R G, et al. Carbon nanotubes contain metal impurities which are responsible for the "Electrocatalysis" seen at some nanotube-modified electrodes. Angew Chen Int Ed,2006,45:2533~2537
    [289]Honda K, Yoshimura M, Rao T N, et al. Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes. J Electroanal Chem,2001,514:35~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700