用户名: 密码: 验证码:
水环境中ZnO纳米颗粒对大肠杆菌的毒性及影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工纳米颗粒已广泛应用在工业和生活各个领域,它们在生产、运输、使用及处理过程中不可避免地进入环境,从而对生态环境产生一定风险。本文研究了水中ZnO、TiO2.Al2O3和SiO2等典型氧化物纳米颗粒对大肠杆菌的毒性效应,探讨了水化学性质、共存纳米颗粒和表面活性剂对ZnO纳米颗粒(nano-ZnO)毒性的影响及机理。论文取得了以下主要结果:
     (1)初步探明了ZnO、TiO2、Al2O3和SiO:纳米颗粒对水中大肠杆菌的毒性效应和机理。超纯水中纳米颗粒对大肠杆菌的毒性大小为ZnO>TiO2(锐钛矿相)、Al2O3>SiO2、TiO2(金红石相)(无毒性)。Nano-ZnO的毒性主要来自其释放的锌离子;而锐钛矿相nano-TiO2和nano-Al2O3的毒性主要与颗粒自身和细菌间的化学或物理作用有关。
     (2)揭示了水化学性质对nano-ZnO大肠杆菌毒性的影响及其机理。不同培养基中Hano-ZnO毒性主要取决于游离Zn2+浓度和细菌对毒性的抵抗力,培养基成分和溶液渗透压分别影响游离Zn2+浓度和细菌的耐毒能力;磷酸根和有机物可显著降低游离Zn2+浓度,而等渗(0.85%NaCl、PBS)和富营养(MD、LB)条件可增强细菌耐毒能力,导致不同培养基中nano-ZnO毒性的差异。模拟天然水中nano-ZnO对大肠杆菌的毒性除由游离Zn2+浓度控制外,还受Ca2+、Mg2+的影响;pH、离子强度、阴离子和天然有机质(如胡敏酸和富里酸)均可影响nano-ZnO的溶解度以及游离Zn2+浓度,而Ca2+、Mg2+可与Zn2+竞争细胞的毒性位点,降低游离Zn2+毒性。
     (3)阐明了水中共存纳米颗粒和表面活性剂对nano-ZnO大肠杆菌毒性的影响及机理。未观察到nano-TiO2或nano-Al2O3对nano-ZnO毒性的影响。阴离子表面活性剂SDBS不仅可降低水中游离Zn2+浓度,还可降低水中Ca2+和Mg2+浓度,导致不同SDBS浓度时nano-ZnO毒性的差异。非离子表面活性剂Tween 80对nano-ZnO溶解和毒性影响不大。生物表面活性剂Saponins(皂角苷)可以与锌离子络合,从而降低nano-ZnO对大肠杆菌的毒性。
Engineered nanoparticles have been widely applied in many areas of industry and life. They are increasingly released into the environment during their production, transportation, use and treatment, which may bring uncertain risk to the eco-environment. In this paper, the toxicities of oxide nanoparticles such as ZnO, TiO2, Al2O3, and SiO2 to Escherichia coli (E. coli) were investigated, and then the effects and underlying mechanisms of water chemistry, coexisting nanoparticles and surfactants on the toxicity of ZnO nanoparticles were discussed. The main results were as follows:
     (1) The toxicities and mechanisms of oxide nanoparticles such as ZnO, TiO2, Al2O3, and SiO2 to E. coli were explored. Nano-ZnO showed the highest toxicity, and then nano-TiO2 (anatase) and nano-Al2O3, and nano-SiO2 and nano-TiO2 (rutile) showed no toxicity. The toxicity of nano-ZnO was mainly from the released zinc ions, and the toxicity of nano-TiO2 and nano-Al2O3 was related to the chemical or physical interaction between nanoparticles and bacterial cells.
     (2) The influence mechanisms of water chemistry on the toxicity of nano-ZnO to E. coli were clarified. The toxicity of nano-ZnO in culture media showed that the toxicity mainly depended on the concentration of free zinc ions and the tolerant ability of bacteria to the toxicants. The PO43- and organic complexes in the media could decrease the concentration of free zinc ions, and the isotonic (0.85% NaCl, PBS) and rich nutrient conditions (MD, LB) could enhance the tolerance ability of bacteria to toxicants, which both mitigated the toxicity of nano-ZnO. The toxicity of water qualities of nano-ZnO to E. coli demonstrated that the toxicity of nano-ZnO depended on not only the concentration of free zinc ions but also the concentration of Ca2+ or Mg2+. The influence mechanism was different for various water qualities. Ionic strength, pH, anions, and natural organic matters such as humic acid and fulvic acid could influence the toxicities through effecting on the dissolution of nano-ZnO and the concentration of free zinc ions. Ca2+ or Mg2+ alleviated the toxicity via competing with Zn2+ for the toxic sites of cells.
     (3) The effects of coexisting nanoparticles and surfactants on the toxicity of nano-ZnO to E. coli were studied. Nano-TiO2 (anatase) or nano-Al2O3 had no influence on the toxicity of nano-ZnO. SDBS could reduce the concentration of free Zn2+, Ca2+, and Mg2+, which influenced the toxicity of nano-ZnO. Tween 80 had little influence on the dissolution and toxicity of nano-ZnO, and Saponins could complex with zinc ions, which decreased the bioavailability of zinc ions, and thus decreased the toxicity of nano-ZnO to E. coli.
引文
[1]Handy, R. D.; von der Kammer, F.; Lead, J. R.; Hassellov, M.; Owen, R.; Crane, M., The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology,2008,17(4):287-314.
    [2]http://www.nanotechproject.org/inventories/consumer/analysis_draft/.2011.
    [3]McWilliams, A. Global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes-Focus on Europe. http://www.bccresearch.com/report.2012.
    [4]Service, R. F., American Chemical Society meeting:Nanomaterials show signs of toxicity. Science,2003,300(5617):243.
    [5]Brumfiel, G., Nanotechnology:A little knowledge. Nature,2003,424(6946): 246-248.
    [6]Nel, A.; Xia, T.; Madler, L.; Li, N., Toxic potential of materials at the nanolevel. Science,2006,311(5761):622-627.
    [7]Priestly, B. G.; Harford, A. J.; Sim, M. R., Nanotechnology:a promising new technology-but how safe? Medical Journal of Australia,2007,186(4):187-188.
    [8]Powell, M. C.; Griffin, M. P. A.; Tai, S., Bottom-up risk regulation? How nanotechnology risk knowledge gaps challenge federal and state environmental agencies. Environmental Management,2008,42(3):426-443.
    [9]Landsiedel, R.; Ma-Hock, L.; Kroll, A.; Hahn, D.; Schnekenburger, J.; Wiench, K.; Wohlleben, W., Testing Metal-Oxide Nanomaterials for Human Safety. Advanced Materials,2010,22(24):2601-2627.
    [10]Som, C.; Wick, P.; Krug, H.; Nowack, B., Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environment International, 2011,37(6):1131-1142.
    [11]Teow, Y.; Asharani, P. V.; Hande, M. P.; Valiyaveettil, S., Health impact and safety of engineered nanomaterials. Chemical Communications,2011,47(25): 7025-7038.
    [12]汪冰;丰伟悦;赵宇亮;邢更妹;柴之芳;王海芳;贾光,纳米材料生物效应 及其毒理学研究进展.中国科学(B辑化学),2005,(01):1-10.
    [13]赵宇亮;柴之芳,纳米生物效应研究进展.中国科学院院刊,2005,(03):194-199.
    [14]赵宇亮;白春礼,纳米安全性:纳米材料的生物效应.世界科学技术,2005,(04):104-107.
    [15]赵宇亮;赵峰;叶昶,纳米尺度物质的生物环境效应与纳米安全性.中国基础科学,2005,(02):19-23.
    [16]朱小山;朱琳,人工纳米材料生物效应研究进展.安全与环境学报,2005,(04):86-90.
    [17]Long, T. C.; Tajuba, J.; Sama, P.; Saleh, N.; Swartz, C.; Parker, J.; Hester, S.; Lowry, G. V.; Veronesi, B., Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental Health Perspectives,2007,115(11):1631-1637.
    [18]Warheit, D. B.; Sayes, C. M.; Reed, K. L., Nanoscale and fine zinc oxide particles: Can in vitro assays accurately forecast lung hazards following inhalation exposures? Environmental Science & Technology,2009,43(20):7939-7945.
    [19]Simon, A.; Reynaud, C.; Mayne, M.; Herlin, N.; Desqueyroux, H.; Gouget, B.; Carriere, M., Cytotoxicity of metal oxide nanoparticles and multiwalled carbon nanotubes to lung, kidney and liver cells. In Metal Ions in Biology and Medicine, Vol 10,2008; Vol.10, pp 310-314.
    [20]Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Wiesner, M. R.; Nel, A. E., Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters,2006,6(8):1794-1807.
    [21]Gerloff, K.; Albrecht, C.; Boots, A. W.; Forster, I.; Schins, R. P. F., Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology,2009,3(4):355-364.
    [22]Lin, D. H.; Xing, B. S., Phytotoxicity of nanoparticles:Inhibition of seed germination and root growth. Environmental Pollution,2007,150(2):243-250.
    [23]Lin, D. H.; Xing, B. S., Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology,2008, 42(15):5580-5585.
    [24]Stampoulis, D.; Sinha, S. K.; White, J. C., Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology,2009, 43(24): 9473-9479.
    [25]Aruoja, V.; Dubourguier, H. C.; Kasemets, K.; Kahru, A., Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment,2009,407(4):1461-1468.
    [26]Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S., Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):The importance of particle solubility. Environmental Science & Technology,2007,41(24): 8484-8490.
    [27]Hund-Rinke, K.; Simon, M., Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environmental Science and Pollution Research,2006,13(4):225-232.
    [28]Ji, J.; Long, Z. F.; Lin, D. H., Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal,2010,170(2-3):525-530.
    [29]Peng, X. H.; Palma, S.; Fisher, N. S.; Wong, S. S., Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology,2011, 102(3-4):186-196.
    [30]Sadiq, I. M.; Dalai, S.; Chandrasekaran, N.; Mukherjee, A., Ecotoxicity study of titania (TiO2) NPs on two microalgae species:Scenedesmus sp and Chlorella sp. Ecotoxicology and Environmental Safety,2011,74(5):1180-1187.
    [31]Wang, Z. Y.; Li, J.; Zhao, J.; Xing, B. S., Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environmental Science & Technology,2011, 45(14):6032-6040.
    [32]Wong, S. W. Y; Leung, P. T. Y.; Djurisic, A. B.; Leung, K. M. Y, Toxicities of nano zinc oxide to five marine organisms:Influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry,2009,396(2):609-618.
    [33]Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H. C.; Kahru, A., Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere,2008, 71(7):1308-1316.
    [34]Zhu, X. S.; Chang, Y.; Chen, Y. S., Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere,2009,78(3):V-215.
    [35]Blinova, I.; Ivask, A.; Heinlaan, M.; Mortimer, M.; Kahru, A., Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution,2009, 158(1):41-47.
    [36]George, S.; Xia, T. A.; Rallo, R.; Zhao, Y.; Ji, Z. X.; Lin, S. J.; Wang, X.; Zhang, H. Y.; France, B.; Schoenfeld, D.; Damoiseaux, R.; Liu, R.; Lin, S.; Bradley, K. A.; Cohen, Y.; Nal, A. E., Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano,2011,5(3):1805-1817.
    [37]Johnston, B. D.; Scown, T. M.; Moger, J.; Cumberland, S. A.; Baalousha, M.; Linge, K.; van Aerle, R.; Jarvis, K.; Lead, J. R.; Tyler, C. R., Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environmental Science & Technology,2010,44(3):1144-1151.
    [38]Zhu, X. S.; Zhu, L.; Duan, Z. H.; Qi, R. Q.; Li, Y.; Lang, Y P., Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2008, 43(3):278-284.
    [39]Kahru, A.; Dubourguier, H. C., From ecotoxicology to nanoecotoxicology. Toxicology,2010,269(2-3):105-119.
    [40]You, J.; Zhang, Y. Y; Hu, Z. Q., Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids and Surfaces B-Biointerfaces,2011, 85(2): 161-167.
    [41]Baek, Y. W.; An, Y J., Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of the Total Environment,2011,409(8):1603-1608.
    [42]Adams, L. K.; Lyon, D. Y.; Alvarez, P. J. J., Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research,2006, 40(19): 3527-3532.
    [43]Agency, U. S. E. P., Nanotechnology White Paper-External Review Draft.2005.
    [44]白春礼,纳米科技及其发展前景.科学通报,2001,(02):89-92.
    [45]Jiang, W.; Mashayekhi, H.; Xing, B. S., Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution,2009,157(5): 1619-1625.
    [46]Li, M. H.; Pokhrel, S.; Jin, X.; Madler, L.; Damoiseaux, R.; Hoek, E. M. V., Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environmental Science & Technology,2011, 45(2):755-761.
    [47]Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M. F.; Fievet, F., Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters,2006,6(4):866-870.
    [48]Reddy, K. M.; Feris, K.; Bell, J.; Wingett, D. G.; Hanley, C.; Punnoose, A., Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters,2007,90(21):213902-1-213902-3.
    [49]Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D., Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research,2007,9(3):479-489.
    [50]Zhang, L. L.; Jiang, Y. H.; Ding, Y L.; Daskalakis, N.; Jeuken, L.; Povey, M.; O'Neill, A. J.; York, D. W., Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research,2010,12(5):1625-1636.
    [51]Feris, K.; Otto, C.; Tinker, J.; Wingett, D.; Punnoose, A.; Thurber, A.; Kongara, M.; Sabetian, M.; Quinn, B.; Hanna, C.; Pink, D., Electrostatic Interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir,2009,26(6):4429-4436.
    [52]Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z. Q.; Lin, M., Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology,2009,107(4):1193-1201.
    [53]Wu, B.; Wang, Y.; Lee, Y. H.; Horst, A.; Wang, Z. P.; Chen, D. R.; Sureshkumar, R.; Tang, Y. J. J., Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environmental Science & Technology,2010,44(4): 1484-1489.
    [54]Zeyons, O.; Thill, A.; Chauvat, F.; Menguy, N.; Cassier-Chauvat, C.; Orear, C. Daraspe, J.; Auffan, M.; Rose, J.; Spalla, O., Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology, 2009,3(4):284-295.
    [55]Thill, A.; Zeyons, O.; Spalla, O.; Chauvat, F.; Rose, J.; Auffan, M.; Flank, A. M., Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environmental Science & Technology, 2006, 40(19):6151-6156.
    [56]Neal, A. L., What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology,2008,17(5):362-371.
    [57]Chang, Q. Y.; Yan, L. Z.; Chen, M. X.; He, H.; Qu, J. H., Bactericidal mechanism of Ag/Al2O3 against Escherichia coli. Langmuir,2007,23(22):11197-11199.
    [58]Zhang, L.; Jiang, Y.; Ding, Y.; Daskalakis, N.; Jeuken, L.; Povey, M.; O'Neill, A. J.; York, D. W., Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research,2010,12(5):1625-1636.
    [59]Choi, O.; Hu, Z. Q., Role of reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles. Journal of Environmental Engineering-Asce,2009,135(12):1365-1370.
    [60]Choi, O.; Hu, Z. Q., Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science & Technology, 2008, 42(12):4583-4588.
    [61]Lyon, D. Y.; Brunet, L.; Hinkal, G. W.; Wiesner, M. R.; Alvarez, P. J. J., Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Letters,2008,8(5):1539-1543.
    [62]Fang, X. H.; Yu, R.; Li, B. Q.; Somasundaran, P.; Chandran, K., Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. Journal of Colloid and Interface Science,2010,348(2):329-334.
    [63]Kumar, A.; Pandey, A. K.; Singh, S. S.; Shanker, R.; Dhawan, A., Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere,2011,83(8):1124-1132.
    [64]Aillon, K. L.; Xie, Y.; El-Gendy, N.; Berkland, C. J.; Forrest, M. L., Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews,2009,61(6):457-466.
    [65]Ju-Nam, Y.; Lead, J. R., Manufactured nanoparticles:An overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment,2008,400(1-3):396-414.
    [66]Nair, S.; Sasidharan, A.; Rani, V. V. D.; Menon, D.; Nair, S.; Manzoor, K.; Raina, S., Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science-Materials in Medicine,2009,20:235-241.
    [67]Adams, L. K.; Lyon, D. Y.; McIntosh, A.; Alvarez, P. J. J., Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Science and Technology,2006,54(11-12):327-334.
    [68]Jiang, J.; Oberdorster, G.; Elder, A.; Gelein, R.; Mercer, P.; Biswas, P., Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology,2008, 2(1):33-42.
    [69]Simon-Deckers, A.; Loo, S.; Mayne-L'Hermite, M.; Herlin-Boime, N.; Menguy, N.; Reynaud, C.; Gouget, B.; Carriere, M., Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environmental Science & Technology,2009,43(21): 8423-8429.
    [70]Borm, P.; Klaessig, F. C.; Landry, T. D.; Moudgil, B.; Pauluhn, J.; Thomas, K.; Trottier, R.; Wood, S., Research strategies for safety evaluation of nanomaterials, Part Ⅴ: Role of dissolution in biological fate and effects of nanoscale particles. Toxicological Sciences,2006,90(1):23-32.
    [71]Bian, S.-W.; Mudunkotuwa, I. A.; Rupasinghe, T.; Grassian, V. H., Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments:Influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir,2011,27(10): 6059-6068.
    [72]Sinha, R.; Karan, R.; Sinha, A.; Khare, S. K., Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresource Technology,2010,102(2):1516-1520.
    [73]Jiang, J.; Oberdorster, G.; Biswas, P., Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research,2009,11(1):77-89.
    [74]Santore, R. C.; Mathew, R.; Paquin, P. R.; DiToro, D., Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comparative Biochemistry and Physiology Part C,2002, 133(1-2):271-285.
    [75]De Schamphelaere, K. C.; Janssen, C. R., A biotic ligand model predicting acute copper toxicity for Daphnia magna:The effects of calcium, magnesium, sodium, potassium, and pH. Environmental Science & Technology 2002,36(1):48-54.
    [76]Sun, H. W.; Zhang, X. Z.; Zhang, Z. Y.; Chen, Y. S.; Crittenden, J. C., Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite. Environmental Pollutution,2009,157(4):1165-1170.
    [77]Zhu, X. S.; Zhou, J.; Cai, Z. H., TiO2 nanoparticles in the marine environment: impact on the toxicity of Tributyltin to Abalone (Haliotis diver sicolor supertexta) embryos. Environmental Science & Technology,2011,45(8):3753-3758.
    [78]Wang, H. H.; Wick, R. L.; Xing, B. S., Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution,2009,157(4):1171-1177.
    [79]Xia, T. A.; Zhao, Y.; Sager, T.; George, S.; Pokhrel, S.; Li, N.; Schoenfeld, D.; Meng, H. A.; Lin, S. J.; Wang, X.; Wang, M. Y.; Ji, Z. X.; Zink, J. I.; Madler, L.; Castranova, V.; Lin, S.; Nel, A. E., Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano,2011,5(2):1223-1235.
    [80]Bai, W.; Zhang, Z. Y.; Tian, W. J.; He, X.; Ma, Y. H.; Zhao, Y. L.; Chai, Z. F., Toxicity of zinc oxide nanoparticles to zebrafish embryo:a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research,2010,12(5): 1645-1654.
    [81]Ji, Z. X.; Jin, X.; George, S.; Xia, T. A.; Meng, H. A.; Wang, X.; Suarez, E.; Zhang, H. Y.; Hoek, E. M. V.; Godwin, H.; Nel, A. E.; Zink, J. I., Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environmental Science & Technology,2010,44(19):7309-7314.
    [82]Jin, X.; Li, M. H.; Wang, J. W.; Marambio-Jones, C.; Peng, F. B.; Huang, X. F.; Damoiseaux, R.; Hoek, E. M. V., High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media:Influence of specific ions. Environmental Science & Technology,2010,44(19):7321-7328.
    [83]Hall, L. W.; Anderson, R. D., The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Critical Reviews in Toxicology,1995,25(4): 281-346.
    [84]Moberly, J. G.; Staven, A.; Sani, R. K.; Peyton, B. M., Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp isolated from heavy-metal-contaminated sediments. Environmental Science & Technology, 2010,44(19):7302-7308.
    [85]ISO 14887, Sample preparation-dispersing procedures for powders in liquids. 2000.
    [86]Degen, A.; Kosec, M., Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. Journal of the European Ceramic Society,2000,20(6): 667-673.
    [87]Zhao, Y. J.; Xing, W. H.; Xu, N. P.; Wong, F. S., Effects of inorganic electrolytes on zeta potentials of ceramic microfiltration membranes. Separation and Purification Technology,2005, 42(2):117-121.
    [88]Huang, Z.; Zheng, X.; Yan, D.; Yin, G.; Liao, X.; Kang, Y.; Yao, Y.; Huang, D.; Hao, B., Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 2008,24(8):4140-4144.
    [89]Wahab, R.; Ansari, S. G.; Kim, Y. S.; Dar, M. A.; Shin, H. S., Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. Journal of Alloys and Compounds,2008,461(1-2):66-71.
    [90]Yang, K.; Lin, D. H.; Xing, B. S., Interactions of humic acid with nanosized inorganic oxides. Langmuir,2009,25(6):3571-3576.
    [91]Qian, G. R.; Xu, X.; Sun, W. M.; Xu, Y. F.; Liu, Q., Preparation, characterization, and stability of calcium zinc hydrophosphate. Materials Research Bulletin,2008, 43(12):3463-3473.
    [92]Brown, P. L.; Markich, S. J., Evaluation of the free ion activity model of metal-organism interaction:extension of the conceptual model. Aquatic Toxicology,2000,51(2):177-194.
    [93]Vercauteren, K.; Blust, R., Bioavailability of dissolved zinc to the common mussel Mytilus edulis in complexing environments. Marine Ecology-Progress Series,1996,137(1-3):123-132.
    [94]EPA, Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms.2002.
    [95]Xia, T.; Kovochich, M.; Liong, M.; Madler, L.; Gilbert, B.; Shi, H. B.; Yeh, J. I.; Zink, J. I.; Nel, A. E., Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano,2008,2(10):2121-2134.
    [96]Di Toro, D. M.; Allen, H. E.; Bergman, H. L.; Meyer, J. S.; Paquin, P. R.; Santore, R. C., Biotic ligand model of the acute toxicity of metals.1. Technical basis. Environmental Toxicology and Chemistry,2001,20(10):2383-2396.
    [97]Heijerick, D. G.; De Schamphelaere, K. A. C.; Van Sprang, P. A.; Janssen, C. R., Development of a chronic zinc biotic ligand model for Daphnia magna. Ecotoxicology and Environmental Safety,2005,62(1):1-10.
    [98]Clifford, M.; McGeer, J. C., Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters. Aquatic Toxicology,2009,91(1): 26-32.
    [99]Heijerick, D. G.; De Schamphelaere, K. A. C.; Janssen, C. R., Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology,2002,133(1-2):207-218.
    [100]Song, S.; Zhu, L.; Zhou, W., Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant. Environmental Pollution,2008,156(3):1368-1370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700