用户名: 密码: 验证码:
纳米氧化铝致斜生栅藻(Scenedesmusobliquus)生态毒性效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米技术的快速发展给全世界带来了重大影响。纳米科技已成为当今世界高新技术的基础和前沿领域之一。纳米颗粒(NPs)由于具有表面效应、小尺寸效应、量子尺寸效应等不同于传统材料的优良性质,在人类生活的各个方面应用广泛。其中纳米A1203是一种很有前途的新型材料,与人类生活有着很密切的联系,例如用作工程材料、光学材料、化学材料、生物材料、耐热材料、磁材料、核材料等,应用价值很高。但是近年来随着纳米科技的产业化和NPs大量进入环境中,生态系统的平衡和稳定被打破,尤其是水环境遭到严重的污染和破坏。目前已有一些学者研究了NPs的毒理学效应,但研究大多集中在C60、SWCNT、MWCNT和其它纳米金属氧化物(例如纳米ZnO、TiO2、Si02)上,关于纳米A1203的环境毒理学效应的研究还很少,尤其是纳米A1203的水生毒理效应的研究数据几乎没有。因此为了研究纳米A1203对环境的致毒效应,本实验选取了斜生栅藻(Scenedesmus obliquus)作为受试生物,分别从纳米A1203对斜生栅藻的生长抑制效应、光合毒性效应和氧化损伤效应三个方面来探讨纳米A1203的毒性与暴露浓度、暴露时间等的关系,为纳米A1203的生物安全评价积累一些数据。
     通过预试验的摸索,纳米A1203的染毒终浓度设置为0,12.5,25,50,100mg/L。研究结果如下:
     1.生长抑制实验结果表明,随着纳米A1203浓度升高,斜生栅藻细胞数目下降,生长相对抑制率增加,ECso值随纳米A1203暴露时间的延长而逐渐降低,说明纳米A1203对斜生栅藻的生长产生了抑制效应。
     2.光合毒性实验结果表明,高浓度(≥50mg/L)的纳米A1203可引起斜生栅藻光合色素含量下降,吸收光谱在可见光区没有吸收峰,CO2吸收量减少,净光合速率下降,说明当纳米A1203达到一定浓度时(≥50mg/L),对斜生栅藻产生了光合毒性效应。
     3.氧化损伤实验结果表明,高浓度(≥50mg/L)的纳米A1203可引起斜生栅藻细胞内·O2-和H2O2含量升高,SOD、CAT和POD活性降低,MDA含量升高,说明当纳米A1203达到一定浓度时(≥50mg/L),对斜生栅藻产生了氧化损伤效应。
     所有实验结果表明,当纳米A1203达到一定浓度时(≥50mg/L),能够对斜生栅藻产生生态毒性效应。
In recent years, the rapid development of nanotechnology has brought significant impact to the world. Nanotechnology has become the basis of today's high-tech and front area of the world. Due to the special nature of surface effect, small size effect and quantum size effect, nanoparticles (NPs) are very different from traditional materials, and they are widely used in various aspects of daily life. As a promising new material among them, nano-Al2O3closely contacts with daily life. The range of its applications is wide, such as engineering materials, optical materials, chemical materials, biological materials, refractory materials, magnetic materials, nuclear materials and so on. But in recent years, with nanotechnology industrialization and the emission of NPs into environment, ecological balance and stability have been broken, especially the water environment has been destroyed and polluted seriously. At present, some studies have already been taken on toxicological effect of NPs, but most of them are focused on C6o, SWCNT, MWCNT and other metal oxide (e.g. nano-ZnO, TiO2, SiO2). The toxicology effects of nano-Al2O3is of few data, especially its aquatic toxicological effect. Therefore, In order to study the environmental toxicity of nano-Al2O3, Scenedesmus obliquus was used to study the relationship between toxicity induced by nano-Al2O3and exposure concentration, time, from three aspects-growth inhibition effect, photosynthetic toxicity and oxidative damage. This preliminary data could be used to support a thorough ecological safety assessment of nano-Al2O3.
     According to the results of pre-experiment, final concentrations of nano-Al2O3were set to0,12.5,25,50,100mg/L. The results are as follows:
     1. The results of inhibition growth show that with nano-Al2O3concentration increased, cell numbers decreased, relative suppression rate increased, value of EC50decreased as nano-Al2O3exposure time increased. It suggested that nano-Al2O3could induce growth inhibition effect to Scenedesmus obliquus.
     2. The results of photosynthetic toxicity show that under high concentrations (≥50mg/L) of nano-Al2O3exposure, photosynthetic pigment contents decreased, absorption spectrum changed with no absorption peak in the visible region, the absorption of CO2decreased, net photosynthetic rate decreased. It suggested that when reaches a certain concentration (≥50mg/L), nano-Al2O3could induce photosynthetic toxicity to Scenedesmus obliquus.
     3. The results of oxidative damage show that under high concentrations (≥50mg/L) of nano-Al2O3exposure,· O2-and H2O2contents increased, SOD, CAT and POD activities decreased, MDA content increased, It suggested that when reaches a certain concentration (≥50mg/L), nano-Al2O3could induce oxidative damage to Scenedesmus obliquus.
     All the results show that, when reaches a certain concentration (≥50mg/L), nano-Al2O3could induce ecological toxicity to Scenedesmus obliquus.
引文
[1]Mark R. Wiesner, Greg V. Lowry, Pedro Alvarez, et al. Assessing the risks of manufactured nanomaterials[J]. Environmental Science and Technology,2006, 40(14):4336-4345.
    [2]Won Hyuk Suh, Kenneth S. Suslick, Galen D. Stucky, et al. Nanotechnology, nanotoxicology, and neuroscience[J]. Progress in Neurobiology,2009,87(3):133-170.
    [3]白伟,张程程,姜文君,等.纳米材料的环境行为及其毒理学研究进展[J].生态毒理学报,2009,4(2):174-182.
    [4]袭著革,林治卿.纳米尺度物质对生态环境的影响及其生物安全性的研究进展与展望[J].生态毒理学报,2006,1(3):203-208.
    [5]Norbert Englert. Fine particles and human health-a review of epidemiological studies[J]. Toxicology Letters,2004,149(1):235-242.
    [6]Jamie R. Lead, Kevin J. Wilkinson. Aquatic colloids and nanoparticles:current knowledge and future trends[J]. Environmental Chemistry,2006,3(3):159-171.
    [7]Nicholas S. Wigginton, Kelly L. Haus, Michael F. Hochella Jr. Aquatic environmental nanoparticles [J]. Journal of Environmental Monitoring,2007,9(12): 1306-1316.
    [8]Miriam E Gerlofs-Nijland, A John F Boere, Daan LAC Leseman, et al. Effects of particulate matter on the pulmonary and vascular system:time course in spontaneously hypertensive rats[J]. Particle and Fibre Toxicology,2005,2:2.
    [9]Ken Donaldson, Lang Tran, Luis A Jimenez, et al. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure[J]. Particle and Fibre Toxicology,2005,2:10.
    [10]Andre Nel, Tian Xia, Lutz Madler, et al. Toxic potential of materials at the nanolevel[J]. Science,2006,311(5761):622-627.
    [11]R. J. Aitken, M. Q. Chaudhry, A. B. A. Boxall, et al. Manufacture and use of nanomaterials:current status in the UK and global trends[J]. Occupational Medicine, 2006,56(5):300-306.
    [12]李嘉,尹衍升,张金升,等.纳米材料的分类及基本结构效应[J].现代技术陶瓷,2003,24(2):26-30.
    [13]张秀荣.纳米材料的分类及其物理性能[J].现代物理知识,2003,14(3):24-25。
    [14]http://songshuhui.net/forum/redirect.php?fid=6&tid=4511&goto=nextnewset.
    [15]张莉芹,袁泽喜.纳米技术和纳米材料的发展及其应用[J].武汉科技大学学报 (自然科学版),2003,26(3):234-238.
    [16]Gunter Oberdorster, Eva Oberdorster, Jan Oberdorster. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles [J]. Environmental Health Perspectives,2005,113(7):823-839.
    [17]杨玉芬,陈清如.纳米材料的基本特征与纳米科技的发展[J].中国粉体技术,2002,8(3):22-27.
    [18]朱小山,朱琳.人工纳米材料生物效应研究进展[J].安全与环境学报,2005,5(4):86-90.
    [19]叶飞.纳米材料的发展与应用[J].安庆师范学院学报(自然科学版),2004,10(4):27-28.
    [20]http://www.bioon.com/organization/institute/504219.shtml.
    [21]Robert F. Service. Nanomaterials show signs of toxicity[J]. Science,2003,300 (5617):243.
    [22]Satoshi Utsunomiya, Keld A. Jensen, Gerald J. Keeler, et al. Direct identification of trace metals in fine and ultrafine particles in the detroit urban atmo sphere [J]. Environmental Science & Technology,2004,38(8):2289-2297.
    [23]Kevin L. Dreher. Health and environmental impact of nanotechnology:toxicological assessment of manufactured nanoparticles[J]. Toxicological Sciences,2004,77(1): 3-5.
    [24]Maynard A, Rejeski D. Too small to overlook[J]. Nature,2009,460:174.
    [25]王震宇,赵建,李娜,等.人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J].环境科学,2010,31(6):1409-1418.
    [26]Adams L K, Lyon D Y, Alvarez P J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions [J]. Water Research,2006,40(19):3527-3532.
    [27]A. Baun, S. N. S(?)rensen, R. F. Rasmussen, et al. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C6o[J]. Aquatic Toxicology,2008,86(3):379-387.
    [28]Xiaoshan Zhu, Lin Zhu, Zhenghua Duan, et al. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish(Danio rerio) early developmental stage[J]. Journal of Environmental Science and Health,2008,43(3): 278-284.
    [29]Thomas C. Long, Navid Saleh, Robert D. Tilton, et al. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity[J]. Environmental Science & Technology, 2006,40(14):4346-4352.
    [30]Yang Zhang, Yongsheng Chen, Paul Westerhoff, et al. Stability of commercial metal oxide nanoparticles in water[J]. Water Research,2008,42(8-9):2204-2212.
    [31]O. Celebi, C. Uzum, T. Shahwan, et al. A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron[J]. Journal of Hazardous Materials,2007,148(3):761-767.
    [32]Xuezhi Zhang, Hongwen Sun, Zhiyan Zhang, et al. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles [J]. Chemosphere, 2007,67(1):160-166.
    [33]Shosaku Kashiwada. Distribution of nanoparticles in the see-through medaka (Oryzias latipes)[J]. Environmental Health Perspectives,2006,114(11):1697-1702.
    [34]Gillian Federici, Benjamin J. Shaw, Richard D. Handy. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss):gill injury, oxidative stress, and other physiological effects[J]. Aquatic Toxicology,2007,84(4):415-430.
    [35]Aaron P. Roberts, Andrew S. Mount, Brandon Seda, et al. In vivo biomodification of lipid-coated carbon nanotubes by daphnia magna[J]. Environmental Science &Technology,2007,41(8):3025-3029.
    [36]朱小山,朱琳,田胜艳,等.三种碳纳米材料对水生生物的毒性效应[J].中国环境科学,2008,28(3):269-273.
    [37]张学治,孙红文,张稚妍.鲤鱼对纳米二氧化钛的生物富集[J].环境科学,2006,27(8):1631-1635.
    [38]Hoon Hyung, John D. Fortner, Joseph B. Hughes, et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase[J]. Environmental Science &Technology,2007,41(1):179-184.
    [39]汤鸿霄.环境纳米污染物与微界面水质过程[J].环境科学学报,2003,23(2):146-155.
    [40]Geoff Brumfiel. Nanotechnology:a little knowledge[J]. Nature,2003,424(6946): 246-248.
    [41]Zhonghua Tong, Marianne Bischoff, Loring Nies, et al. Impact of fullerene (C60) on a soil microbial community[J]. Environmental Science & Technology,2007,41(8): 2985-2991.
    [42]Pratim Biswas, Changyu Wu. Nanoparticles and the environment[J]. Journal of Air & Waste Management Association,2005,55:1411-1418.
    [43]Preining O. The physical nature of very, very small particles and its impact on their behavior[J]. Journal of Aerosol Science,1998,29(5-6):481-495.
    [44]丁玲,刘鹏,李世迁.纳米材料毒性和安全性研究进展[J].材料导报,2010,24(3):29-32.
    [45]D. B. Warheit, B. R. Laurence, K. L. Reed, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats[J]. Toxicological Sciences,2004, 77(1):117-125.
    [46]Jiangxue Wang, Guoqiang Zhou, Chunying Chen, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration[J]. Toxicology Letters,2007,168(2):176-185.
    [47]Ediberto Bermudez, James B. Mangum, Brian A. Wong, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles[J]. Toxicological Sciences,2004,77(2):347-357.
    [48]Zhen Chen, Huan Meng, Gengmei Xing, et al. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation:nanotoxicity has susceptible population[J]. Environmental Science & Technology,2008,42(23): 8985-8992.
    [49]Delina Y. Lyon, Lena Brunet, George W. Hinkal, et al. Antibacterial activity of fullerene water suspensions (nC6o) is not due to ROS-mediated damage[J]. Nano Letters,2008,8(5):1539-1543.
    [50]Jiasong Fang, Delina Y. Lyon, Mark R. Wiesner, et al. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior[J]. Environmental Science & Technology,2007,41(7):2636-2642.
    [51]Seoktae Kang, Moshe Herzberg, Debora F. Rodrigues, et al. Antibacterial effects of carbon nanotubes:size does matter[J]. Langmuir,2008,24(13):6409-6413.
    [52]Jin Miyawaki, Masako Yudasaka, Takeshi Azami, et al. Toxicity of single-walled carbon nanohorns[J]. ACS Nano,2008,2(2):213-226.
    [53]Wei Jiang, Hamid Mashayekhi, Baoshan Xing. Bacterial toxicity comparison between nano-and micro-scaled oxide particles[J]. Environmental Pollution,2009, 157(5):1619-1625.
    [54]Jayesh P. Rupareliaa, Arup Kumar Chatterjee, Siddhartha P. Duttagupta, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles[J]. Acta Biomaterialia,2008,4(3):707-716.
    [55]Ki-Young Yoon, Jeong Hoon Byeon, Jae-Hong Park, et al. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles[J]. Science of The Total Environment,2007,373(2-3):572-575.
    [56]Okkyoung Choi, Zhiqiang Hu. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J]. Environmental Science & Technology, 2008,42(12):4583-4588.
    [57]J. A. Kloepfer, R. E. Mielke, J. L. Nadeau. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms [J]. Applied and Environment Microbiology,2005,71(5):2548-2557.
    [58]Wen-Li Du, Shan-Shan Niu, Ying-Lei Xu, et al. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions[J]. Carbohydrate Polymers,2009,75(3):385-389.
    [59]Zhilong Shi, K. G. Neoh, E. T. Kang, et al. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles [J]. Biomaterials,2006, 27(11):2440-2449.
    [60]Sarah B. Lovern, Rebecca Klaper. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles [J]. Environmental Toxicology and Chemistry,2006,25(4):1132-1137.
    [61]朱小山,朱琳,郎宇鹏,等.人工纳米材料富勒烯(C60)低剂量长期暴露对鲫鱼的氧化伤害[J].环境科学,2008,29(4):855-861.
    [62]Ryan C. Templeton, P. Lee Ferguson, Kate M. Washburn, et al. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod[J]. Environmental Science & Technology,2006,40(23):7387-7393.
    [63]Elijah J. Petersen, Qingguo Huang, Walter J. Weber. Ecological uptake and depuration of carbon nanotubes by lumbriculus variegates[J]. Environmental Health Perspectives,2008,116(4):496-500.
    [64]Robert J. Griffitt, Jing Luo, Jie Gao, et al. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms[J]. Environmental Toxicology and Chemistry,2008,27(9):1972-1978.
    [65]Stephen J. Klaine, Pedro J. J. Alvarez, Graeme E. Batley, et al. Nanomaterials in the environment:behavior, fate, bioavailability and effects[J]. Environmental Toxicology and Chemistry,2008,27(9):1825-1851.
    [66]F. Gagne, J. Auclair, P. Turcotte, et al. Ecotoxicity of CdTe quantum dots to freshwater mussels:impacts on immune system, oxidative stress and genotoxicity[J]. Aquatic Toxicology,2008,86(3):333-340.
    [67]Tisha C. King-Heiden, Paige N. Wiecinski, Andrew N. Mangham, et al. Quantum dot nanotoxicity assessment using the zebrafish embryo [J]. Environmental Science & Technology,2009,43(5):1605-1611.
    [68]Jiangxin Wang, Xuezhi Zhang, Yongsheng Chen, et al. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii[J]. Chemosphere,2008,73(7):1121-1128.
    [69]Villem Aruoja, Henri-Charles Dubourguier, Kaja Kasemets, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science of the Total Environment,2009,407(4):1461-1468.
    [70]傅凤,刘振乾,陈传红.纳米铜粉对浮游植物生长的影响[J].生态科学,2007,26(2):126-130.
    [71]Alexandra Henneberger, Wojciech Zareba, Angela Ibald-Mulli, et al. Repolarization changes induced by air pollution in ischemic heart disease patients [J]. Environmental Health Perspective,2005,113(4):440-446.
    [72]S. von Klot, G. Wolke, T. Tuch, et al. Increased asthma medication use in association with ambient fine and ultrafine particles[J]. European Respiratory Journal,2002, 20(3):691-702.
    [73]梁长华.纳米NiO对小球藻的生物毒性及致毒机制研究[D].大连海事大学,2010.
    [74]http://www.seajetsci.cn/?p=911&akst_action=share-this
    [75]http://mts1.tmu.edu.tw/study/KAOLAB/KAOSH/%E6%B0%A7%E5%8C%96%E5 %A3%93%E5%8A%9B.html
    [76]http://cn.diytrade.com/china/pd/2920980/%E7%BA%B3%E7%B 1%B3%E6%B0% A7%E5%8C%96%E9%93%9D.html
    [77]高希.纳米氧化铝的制备[D].北京化工大学,2008.
    [78]谢艳,李宗芸,冯琳,等.藻类毒物检测方法及其应用研究进展[J].环境科学与技术,2008,31(12):77-83.
    [79]http://blog.sciencenet.cn/home.php?mod=space&uid=79442&do=blog&id=278752
    [80]熊丽,吴振斌,况琪军,等.氯氰菊酯对斜生栅藻的毒性研究[J].水生生物学报,2002,26(1):66-72.
    [81]胡芹芹,熊丽,田裴秀子,等.邻苯二甲酸二丁酯(DBP)对斜生栅藻的致毒效应研究[J].生态毒理学报,2008,3(1):87-92.
    [82]杜青平,黄彩娜,贾晓珊.1,2,4-三氯苯对斜生栅藻的毒性效应及其机制研究[J].农业环境科学学报,2007,26(4):1375-1379.
    [83]黄国兰,戴树桂,孙红文,等.有机污染物对藻类毒性的测定[J].环境化学,1994,13(3):259-262.
    [84]徐克章.红外线CO2气体分析仪法测定植物光合速率与呼吸速率(植物生理学)[M].中国农业出版社,2007.
    [85]王雪青,苗惠,翟燕.微藻细胞破碎方法的研究[J].天津科技大学学报,2007,22(1):21-25.
    [86]曲春香,沈颂东,王雪峰,等.用考马斯亮蓝测定植物粗提液中可溶性蛋白质含量方法的研究[J].苏州大学学报(自然科学版),2006,22(2):82-85.
    [87]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,(6):55-57.
    [88]刘小为,陈忠林,沈吉敏,等.硫酸钛光度法测定O3/H2O2体系中低浓度H2O2[J].中国给水排水,2010,(16):126-129.
    [89]江晶.萘对斜生栅藻(Scenedesmus obliquus)和铜绿微囊藻(Microcystis aeruginosa)毒性效应研究[D].东北师范大学,2010.
    [90]李仕飞,刘世同,周建平,等.分光光度法测定植物过氧化氢酶活性的研究[J].安徽农学通报,2007,13(2):72-73.
    [91]聂湘平,蓝崇钰,林里,等.多氯联苯对蛋白核小球藻和斜生栅藻生长影响的研究[J].中山大学学报(自然科学版),2002,41(1):68-71.
    [92]熊道文,李政,方涛,等.纳米材料的水生态毒理学研究进展[J].环境污染与防治,2009,31(4):71-77.
    [93]I. Mohammed Sadiq, Sunandan Pakrashi, N. Chandrasekaran, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp.[J]. Journal of Nanoparticle Research,2011,13: 3287-3299.
    [94]Randall S. Alberte, Alan L. Friedman, Darel L. Gustafson, et al. Light-harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a/c and chlorophyll a/fucoxanthin pigment-protein complexes [J]. Biochimica et Biophysica Acta,1981,635(2):304-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700