用户名: 密码: 验证码:
红螯光壳螯虾亲虾脂类营养需求及脂肪酸结合蛋白的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用水生动物营养学、生物化学、分子生物学和生物光子学等研究手段,较为系统和深入的研究了不同脂肪源饲料对雌性红螯光壳螯虾相关营养生理学参数的影响,并在此基础上从饲料的胆固醇添加量入手,研究了胆固醇在提高其生长和生殖性能方面的作用,初步阐明了脂类营养对红螯光壳螯虾生长和生殖的调节功能。同时有针对性地利用分子生物学和生物光子学对与红螯光壳螯虾脂类摄取和代谢有关的脂肪酸结合蛋白FABP进行深入研究,以期阐明脂肪对其生长和生殖调控的机理。研究成果不仅对红螯光壳螯虾的亲体培育及优化红螯光壳螯虾人工饲料的配置具有重要的现实指导意义,也为虾蟹类营养学调控的深入研究提供理论依据。
     1.不同脂肪源饲料对雌性红鳌光壳螯虾生长及组织生化组成的影响
     取平均体重为19.25±0.72g雌性红螯光壳螯虾,以鱼油、花生油、豆油和猪油作为脂肪源配制4种粗蛋白含量为33%,粗脂肪为8.5%的饲料,并以商业饲料作为对照投喂60天,研究不同脂肪源条件对雌性红螯光壳螯虾亲虾生长及组织生化组成的影响。结果显示:不同脂肪源饲料对雌性红螯光壳螯虾亲虾的增重、特殊生长率、存活率、饲料系数均有显著影响,而在本实验中对GSI无显著影响。其中以豆油作为脂肪源的饲料投喂的亲虾在增重、存活率等指标上均显著优于其他各组。在基本生化组成上,除了花生油组亲虾在肌肉和肝胰腺中脂肪和蛋白含量上略低外,其余各组无显著差异。在脂肪酸组成上,肌肉中主要的脂肪酸为c16:0, c18:0, c18:1n9, c18:2n6 and c20:5n3,在肝胰腺中为c16:0,c18:ln9,c18:2n6,肌肉中的c20:5n-3 (EPA)含量显著高于肝胰腺。不同饲料组对肝胰腺中的脂肪酸组成影响非常显著,饲料中SFA/MUFA/PUFA的比例直接影响了肝胰腺中脂肪酸的组成。各组肌肉脂肪酸的SFA/PUFA占总脂的比率没有显著的差异,仅MUFA有一定差异,其中第5组的的MUFA含量在总脂中所占比例最小。结果显示,在粗蛋白含量为33%,粗脂肪为8.5%条件下采用豆油作为脂肪源较适于此阶段的雌性红螯光壳螯虾生长。
     2.不同脂肪源饲料对雌性红鳌光壳螯虾消化酶活力以及Vg基因表达的影响
     在以不同脂肪源饲料投喂60天后,通过对雌性红螯光壳螯虾亲虾肝胰腺中消化酶活力以及卵黄蛋白源Vg基因的表达量的检测,研究不同脂肪源饲料对雌性亲虾的影响。结果显示消化酶活力受到不同脂肪源的影响,其中鱼油组、豆油组和商业饲料组脂肪酶活力显著高于花生油组和猪油组,但三者间无显著性差异;胰蛋白酶则以鱼油组、花生油组和豆油组较高,猪油组和商业饲料组相对较底;不同脂肪源饲料对淀粉酶活力影响相对较小,除花生油组略高外,其余各组无显著性差异,在纤维素酶活力上,除猪油组显著较低外,其余各组无显著差异。总体上讲,豆油组各消化酶活力均较好。虽然不同脂肪源组亲虾在GSI上没有显著差异,在肝胰腺Vg表达量上则有显著差异。其中豆油组投喂的亲虾最高的Vg表达量暗示了豆油较好的促卵巢成熟效果。结合生长指、消化酶活力和Vg表达,结果显示在本实验条件下以豆油作为脂肪源较适于雌性亲虾生长及生殖。
     3.不同胆固醇含量饲料对红鳌光壳螫虾雌虾生长及生殖的影响
     取平均体重为19.53+1.03g雌性红螯光壳螯虾,以0%、0.25%、0.5%、0.75%、1%胆固醇添加量配置5种粗蛋白含量为34%,粗脂肪为8.5%的饲料投喂60天。通过对不同实验组雌性红螯光壳螯虾亲虾的基本生长指标、脂肪酸组成、消化酶活力以及Vg表达量的研究,通过非线性回归来寻找此阶段雌性红螯光壳螯虾的胆固醇最适添加量。结果显示不同胆固醇添加量对肌肉和肝胰腺脂肪酸组成影响不显著,但对其基本生长指标、消化酶活力以及Vg表达均有显著影响。其中未添加组在增重、存活率等生长指标,脂肪酶、胰蛋白酶活力以及Vg表达量上均比添加胆固醇组低。在添加胆固醇的组别中,0.25%及0.5%的胆固醇添加组亲虾在增重率、SGR、存活率等生长指标,脂肪酶、胰蛋白酶活力以及Vg表达量上均显示出较好的效果,而高添加量组(1%)虽然在Vg表达量上最高,但在其他指标上则显示出对生长的抑制作用。对增重、SGR、存活率、FCR以及脂肪酶和胰蛋白酶活力的回归分析结果显示,此阶段雌虾胆固醇最适添加量为0.55%。因此,在雌性红螯光壳螯虾卵黄发生的中后期,可将胆固醇添加量增至0.75%以满足其卵巢快速发育期需求。
     4.红螯光壳螯虾Cq-FABP基因的克隆和序列特征分析
     通过兼并引物PCR获得部分片段后,采用RACE技术成功的克隆了红螯光壳螯虾脂肪酸结合蛋白FABP基因的全长cDNA序列。该序列全长772bp,包含一个82bp的5’-UTR区域和一个291bp的3’-UTR区域,开放阅读框长399bp,编码132个氨基酸。通过生物信息学方法对其二级、三级结构预测结果显示该蛋白具有FABP典型的特征:10个β折叠和2个α螺旋,并通过β折叠和α螺旋形成能够容纳疏水配基的桶装结构。同源性比对结果显示红螯光壳螯虾脂肪酸结合蛋白Cq-FABP与通讯螯虾具有最高的同源性,为90.9%;与其他已知的甲壳类十足目种类的同源性则相对较低,和中华绒螯蟹、克氏原螯虾、刀额新对虾、凡纳滨对虾以及斑节对虾FABP的同源性分别为56.8%、56.8%、53.8%、55.3%和53.8%。而与人类多种FABP的比对结果显示Cq-FABP与人类脑型脂肪酸结合蛋白B-FABP具有最高的同源性,为40.9%,与心型和肌肉型FABP的同源性次之,为38.6%,这也暗示了其可能具有功能的多样性。系统进化结果也显示红螯光壳螯虾FABP虽然与其他甲壳类十足日FABP同属于一簇,但其与通讯螯虾同属与一个分支,其他十足目种类则属于另一分支。
     5.红螯光壳螯虾Cq-FABP基因的表达特征分析
     采用实时定量PCR技术研究了红螯光壳螯虾Cq-FABP基因在不同组织中的表达以及受不同脂肪源饲料影响后在肝胰腺中的表达量变化,均以β-actin作为内参。结果发现虽然在多个组织中均检测到Cq-FABP表达,但主要在肝胰腺组织中表达。在肠中也有少量表达,但表达量仅为肝胰腺腺中的1/70,在卵巢、触角腺、血淋巴、腮、胃和精巢中也有极微量的表达,但在肌肉中几乎无表达。由于其表达量最高的在肝胰腺组织,其次在肠,暗示了Cq-FABP的功能可能主要涉及脂肪酸的摄取和利用。以不同脂肪源饲料投喂的亲虾肝胰腺中Cq-FABP的表达量与脂肪源中的长链脂肪酸比例呈正比,但长链脂肪酸比例较为接近的花生油和豆油组表达量却较低。根据豆油组的亲虾的生长情况及的Vg高表达量推测可能与Cq-FABP的表达有关,而Cq-FABP与人B-FABP的最高同源性也暗示了不同的脂肪酸可能可以通过调节Cq-FABP的方式参与到信号调控中。
     6. Cq-FABP蛋白的表达纯化及与脂肪酸结合特性的研究
     将红螯光壳螯虾脂肪酸结合蛋白Cq-FABP基因重组入原核表达载体pET15b后,成功表达并纯化了15kDa的Cq-FABP,并采用了多种荧光检测技术研究了不同脂肪源饲料中的主要脂肪酸与红螯光壳螯虾Cq-FABP的结合特性。利用ANS作为荧光标记,分别通过稳态荧光发射光谱、荧光共振能量转移(FRET)和时间分辨荧光研究了脂肪酸与Cq-FABP的结合。结果显示ANS除了能结合在Cq-FABP的脂肪酸结合位点外,还能结合在蛋白的其他位置。稳态荧光光谱结果显示Cq-FABP与棕榈酸(PA)、油酸(OA)、亚油酸(LA)、二十二碳五烯酸(EPA)和二十二碳六烯酸(DHA)的平衡解离常数Kd分别为1.1、2.4、3.1、2.9和5.8μM,Trp与ANS间的FRET效率约为10%;时间分辨荧光结果显示5μMCq-FABP在Buffer B中色氨酸残基的平均荧光寿命(τm)值约为3.04 ns,在ANS200μM时τm值缩短至2.00 ns,在加入足量的PA替代脂肪酸结合位点上的ANS后τm值恢复至2.33 ns,时间分辨荧光测得的FRET效率也在10%左右,与稳态荧光FRET结果相同。采用BODIPY C16与多种脂肪酸进行竞争性滴定,通过稳态荧光异向性检测获得的PA、OA、LA、EPA和DHA Kd值分别为1.8、2.7、3.8、3.7和7.2μM。结果显示Cq-FABP与脂肪酸亲和力与脂肪酸碳链长度和构型相关,碳链越长亲和力越差,弯曲型的脂肪酸的亲和力较高。Cq-FABP与脂肪酸的亲和力差异进一步证实了我们之前的推测:豆油组较高的Vg表达量可能是由于亚油酸通过控制FABP表达量的变化间接参与了基因表达的调控。
Since its introduction in China in 1992, demand for the red claw crayfish (Cherax quadricarinatus), a popular commercial aquaculture crustacean species, has increased dramatically due to its large size and positive marketing potential. In China, red claws are often fed commercial prawn feeds which despite their high price fail to meet the nutritional demands of the red claw. Feed is often one of highest costs in an aquaculture enterprise, and though diets that promote red claw growth is of growing interest to producers, little attention has been placed on developing adequate diets for maturing broodstock. Thus, nutritionally tailored and economical feed formulations are needed for red claws in aquaculture. In current study, the effects of four dietary lipid sources on growth and gonad maturation of pre-adult red claws were evaluated first. The effects of different cholesterol levels in feed were evaluated by the same way. To investigate the modulation function of different fatty acids, the fatty acid binding protein Cq-FABP was cloned and expressed. Some bio-photonics approaches were employed to study the ligands binding properties of Cq-FABP.
     1. Effect of different dietary lipid sources on growth and biochemical composition of pre-adult female Cherax quadricarinatus
     The effects of four dietary lipid sources (fish oil, peanut oil, soybean oil, pork lard) on growth and biochemical composition of pre-adult female red claw crayfish, Cherax quadricarinatus, were evaluated. Performance was evaluated by weight gain, specific growth rate (SGR), survival, feed conversion ratio (FCR), gonadosomatic index (GSI) and fatty acid composition. The proportion ofsaturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and poly-unsaturated fatty acids (PUFA) in hepatopancreas varied as a result of lipid source, while differences in muscle were limited to MUFA levels. The optimal growth observed in red claws receiving the soybean oil diet. Conversely, diets high in EPA (20:5n3) and DHA (22:6n3) produced suboptimal results, suggesting that the importance of maturation diets with high EPA and DHA content may be exaggerated. As the dietary lipid requirements of growing and reproductively active red claw crayfish were satisfied by a plant oil that contained high levels of 18-carbon unsaturated fatty acids, soybean oil may be an economic alternative to the expensive lipid-fortified feed currently utilized by the aquaculture industry.
     2. Effect of different dietary lipid sources on digestive enzyme activities and Vg expression of pre-adult female Cherax quadricarinatus
     The effects of four dietary lipid sources (fish oil, peanut oil, soybean oil, pork lard) on digestive enzyme activities and Vg expresson of pre-adult female red claw crayfish, Cherax quadricarinatus, were evaluated. The activities of digestive enzymes were influenced by different dietary lipid sources, differed significantly. The soybean oil group has a higher activities than those from the other treatments. The low activities in red claws receiving the diet 4 possibly reflecting a lack of essential fatty acids in pork lard. Since GSI increases slowly at the onset of ovarian maturation, differences in dietary lipid sources did not alter GSI in present study, while the change in the hepatopancreatic Vg expression is significant. The Vg expression, with peak expression observed in red claws receiving the soybean oil diet, indicated that the fatty acids in soybean oil may have the function on stimulating the gonad maturation.
     3. Effect of different dietary cholesterol levels on growth and reproduction of female pre-adult Cherax quadricarinatus
     The effect of dietary cholesterol level on growth and reproduction performance of female pre-adult red claw crayfish Cherax quadricarinatus was evaluated over a 60-day culture period. Five experimental diets, supplemented with 0%,0.25%,0.50%, 0.75% and 1.00% cholesterol were evaluated. The growth performance, digestive enzyme activities and Vg expression in hepatopancreas were measured. A quadratic equation was used for regression analysis which was used to determine the digestive enzyme activities response to the dietary cholesterol level. The results showed that the female red claw crayfish fed with the dietary cholesterol ranged from 0.25-0.50% had better weight gain, SGR, survival rate, and FCR, and higher Lipase and Trypsin activities than those from the other treatments. The regression results from the growth performance and the digestive enzyme activities showed that the optimum cholesterol content was 0.55%. Female red claw crayfish fed with the diet without cholesterol supplementation had the lowest growth, digestive enzyme activities and the Vg expression. Though the group 5 (1% cholesterol) had the highest Vg expression, consider the overall performance, the recommended dietary cholesterol level for optimum growth and gonad maturation for female red claw crayfish under these environmental conditions was 0.55%. During rapid gonadal development phase in female C. quadricarinatus, a 0.75% cholesterol diet was recommended.
     4. Molecular cloning and sequence analysis of the fatty acid binding protein (Cq-FABP) gene in female red claw crayfish Cherax quadricarinatus
     A cDNA encoding red claw crayfish fatty acid binding protein (Cq-FABP) gene was cloned by using rapid amplification of cDNA ends (RACE). The full length cDNA was 772 bp, containing a 82 bp 5'-UTR region, a 291bp 3'-UTR region and a 399bp ORF region which encoded a 132 aa polypeptide. The secondary and tertiary structure assay showed that the Cq-FABP has 10β-strands and two a-helices, which is delimiting a cavity where the hydrophobic ligands are bound just as other FABPs. The deduced amino acids sequence of Cq-FABP sharing 90.9% homology with P.leniusculus and 56.8%,56.8%,53.8%,55.3%,53.8% with E.sinensis, P.clarkii, M.ensis, L.vannamei, P.monodon respectively. The homology with FABPs of human were lower, sharing 37.0%,35.4%,35.4%,38.6%,37.0%,40.9%,31.5%,38.6% homology with A-FABP, S-FABP, E-FABP, H-FABP, B-FABP, L-FABP, M-FABP, respectively. The high homology of Cq-FABP with B-FABP implied that they may have a close function on modulation of gene transcription. A NJ poylogenetic tree was also constructed based on reported FABPs amino acid sequences, results showed that the tree topology is agreement with traditional taxonomic relationships. The Decapoda species were in the same cluster, but the Cq-FABP together with the FABP from P.leniusculus were clustered in a different group with Decapoda species.
     5. Expression pattern of the fatty acid binding protein (Cq-FABP) gene in female red claw crayfish Cherax quadricarinatus
     A real-time qRT-PCR was employed to investigate the distribution of Cq-FABP in different tissues as well as to assess expression in hepatopancreas fed diets with different lipid sources. The beta-actin was used to normalize the Cq-FABP expression. Results showed that Cq-FABP was widely distributed, with the highest expression level in hepatopancreas, small amount of expression in intestine, detectable expression level in ovary, antennal gland, hemolymph, gills, stomach and testis, while expression was almost undetectable in muscle. The distribution manner indicated the possible function of Cq-FABP mainly involved in the intake and utilization of fatty acids. The Cq-FABP expression pattern in hepatopancreas with different lipid source diets treatment showed the influence of fatty acids on the Cq-FABP expression levels, the expression level seems relate to the amount of the long chain fatty acids in the diets, except the soybean oil group. Considering the good growth and high Vg expression level, the different expression pattern of Cq-FABP in soybean oil group implied the Cq-FABP may involved in gene modulation.
     6. Expression, purification and fatty acids binding properties of the recombinant Cq-FABP
     The Fragment contained the complete coding sequence of the Cq-FABP with NdeⅠand BamHⅠwas obtained by PCR, and an expression vector pET15b-His6-Cq-FABP has been constructed. The 15 kDa Cq-FABP protein was successfully expressed by the constructed Cq-FABP expression strain after the IPTG induction.
     Interaction of various fatty acids with recombinant Cq-FABP was studied by different fluorescence procedures. In order to characterize the binding of several non fluorescent fatty acids (the dominant fatty acid in different lipid source diets) to Cq-FABP, we first indirectly determined their apparent affinities by an equilibrium displacement approach using ANS by using the steady-state fluorescence emission spectra. After correction by both the inner filter effect and the "non specific" binding of ANS, the Kd of palmitic acid (PA) was calculated from linear regression plotted by a series of competitive titrations. Next, a fluorescence resonance energy transfer (FRET) assay was conducted to address the binding of palmitic acid (PA) to Cq-FABP. TheΔ%FRET values were measured both by the steady-state fluorescence measurements and time-resolved fluorescence measurements. By plotting both the fluorescence intensity parameter and the FRET efficiency parameter, the calculated Kd,PA values were compatible with the one determined by monitoring the ANS fluorescence. After comparing the R-square of the two procedures, the Kd values of other fatty acids were measured by the first one. Results showed that the Kd values for Palmitic acid (PA), Oleic acid (OA), linoleic acid (LA), Eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-Docosahexaenoic acid (DHA) were 1.1,2.4,3.1,2.9 and 5.8 respectively. Then the BODIPY-labeled fatty acids BODIPY C16 which does not have the "non-specific" with Cq-FABP was employed to measure the Kd values by steady-state fluorescence anisotropy based assay. The the Kd values for PA, OA, LA, EPA and DHA were 1.8,2.7,3.8,3.7 and 7.2 respectively, which were compatible with the value obtained by the previous procedure. Based on the Kd values of fatty acids, the Cq-FABP expression profile in the treatments with different lipid sources indicated that the high Vg expression may due to the LA, which may have the function of modulating the gene expression by the manner of regulating the Cq-FABP.
引文
1. Dall, W., D.M. Smith, L.E. Moore. Biochemical composition of some prey species of Penaeus esculentus Haswell (Penaeidae:Decapoda). Aquaculture,1991.96(2):p.151-166.
    2. Thomas, W.J. The setae of Austropotamobius pallipes (Crustacea:Astacidae). Journal of Zoology,1970.160(1):p.91-142.
    3. Holland, D.M. ed. Biology of freshwater crayfish.2002, Blackwell Science LTd:Oxford.
    4. Rui zhang, G., W. Peter Roy. Feeding ecology of the signal crayfish Pacifaslacus leniusculus in a British lowland river. Aquaculture,1998.169(3-4):p.177-193.
    5. Lee, P.G., N.J. Blake, G.E. Rodrick, A Quantitative analysis of digestive enzymes for the freshwater prawn Macrobrachium rosenbergii.1980, Blackwell Publishing Ltd. p.392-402.
    6. Budd, T.W., J.C. Lewis, M.L. Tracey. The filter-feeding apparatus in crayfish. Canadian Journal of Zoology,1978.56(4):p.695-707.
    7. Figueiredo, M.S.R.B., A.J. Anderson. Ontogenetic changes in digestive proteases and carbohydrases from the Australian freshwater crayfish, redclaw Cherax quadricarinatus (Crustacea, Decapoda, Parastacidae). Aquaculture Research,2003.34(13):p.1235-1239.
    8. Parkyn, S.M., C.F. Rabeni, K.J. Collier. Effects of crayfish (Paranephrops planifrons: Parastacidae) on in-stream processes and benthic faunas:A density manipulation experiment. New Zealand Journal of Marine and Freshwater Research,1997.31(5):p.685-692.
    9. Hill, A.M., D.M. Lodge. Diel Changes in Resource Demand:Competition and Predation in Species Replacement among Crayfishes. Ecology,1994.75(7):p.2118-2126.
    10. Xu, X.L., W.J. Ji, J.D. Castell, R.K. O'Dor. Essential fatty acid requirement of the Chinese prawn, Penaeus chinensis. Aquaculture,1994.127(1):p.29-40.
    11. Kayama, M., M. Hirata, A. Kanazawa, S. Tokiwa, M. Saito. Essential fatty acids in the diet of prawn — Ⅲ Lipid metabolism and fatty acid composition. Bulletin of the Japanese Society of Scientiffic Fisheries,1980.46:p.483-488.
    12. D'Abramo, L.R., Triacylglycerols and fatty acids., in Advances in World Aquaculture-Crustacean NUtrition 1997, World Aquaculture Society, Louisiana, MO. p.587.
    13. Wen, X.B., L.Q. Chen, Z.L. Zhou, C.X. Ai, G.Y. Deng. Reproduction response of Chinese mitten-handed crab (Eriocheir sinensis) fed different sources of dietary lipid. Comparative Biochemistry and Physiology Part A:Molecular and Integrative Physiology,2002.131(3):p. 675-681.
    14. Cavalli, R.O., P. Lavens, P. Sorgeloos. Performance of Macrobrachium rosenbergii broodstock fed diets with different fatty acid composition. Aquaculture,1999.179(1-4):p.387-402.
    15. Chien, Y.-H., W.-C. Shiau. The effects of dietary supplementation of algae and synthetic astaxanthin on body astaxanthin, survival, growth, and low dissolved oxygen stress resistance of kuruma prawn, Marsupenaeus japonicus Bate. Journal of Experimental Marine Biology and Ecology,2005.318(2):p.201-211.
    16. Gonzalez-Felix, M.L., D.M. Gatlin, A.L. Lawrence, M. Perez-Velazquez. Effect of dietary phospholipid on essential fatty acid requirements and tissue lipid composition of Litopenaeus vannamei juveniles. Aquaculture,2002.207(1-2):p.151-167.
    17. Cheng, Y., N. Du, W. Lai. Lipid composition in hepatopancreas of Chinese mitten crab Eriocheir sinensis at different stages. Acta Zoologica Sinica,1998.44(4):p.420-429.
    18. Mourente, G. In vitro metabolism of 14C-polyunsaturated fatty acids in midgut gland and ovary cells from Penaeus kerathurus Forskal at the beginning of sexual maturation. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1996. 115(2):p.255-266.
    19. Wouters, R., P. Lavens, J. Nieto, P. Sorgeloos. Penaeid shrimp broodstock nutrition:an updated review on research and development. Aquaculture,2001.202(1-2):p.1-21.
    20. Middleditch, B.S., S.R. Missler, H.B. Hines, J.P. McVey, A. Brown, D.G. Ward, A.L. Lawrence. Metabolic profiles of penaeid shrimp:dietary lipids and ovarian maturation. Journal of Chromatography A,1980.195(3):p.359-368.
    21. Teshima, S., A. Kanazawa, S. Koshio, K. Horinouchi. Lipid metabolism in destalked prawn Penaeus japonicus:induced maturation and accumulation of lipids in the ovaries. Nippon Suisan Gakkaishi,1988.54(7):p.1115-1122
    22. Xu, X.L., W.J. Ji, J.D. Castell, R.K. O'Dor. Influence of dietary lipid sources on fecundity, egg hatchability and fatty acid composition of Chinese prawn (Penaeus chinensis) broodstock. Aquaculture,1994.119(4):p.359-370.
    23. 李嘉尧,赵云龙,秦芬,徐晓倩.红螯光壳螯虾卵黄发生的超微结构研究.复旦学报(自然科学版),2007(06):p.987-991.
    24. Gong, H., A.L. Lawrence, D.M. Gatlin, D.H. Jiang, F. Zhang. Comparison of different types and levels of commercial soybean lecithin supplemented in semipurified diets for juvenile Litopenaeus vannamei Boone. Aquaculture Nutrition,2001.7(1):p.11-17.
    25. D'Abramo, L.R., C.E. Bordner, D.E. Conklin, N.A. Baum. Essentiality of Dietary Phosphatidylcholine for the Survival of Juvenile Lobsters. The Journal of Nutrition,1981. 111(3):p.425-431.
    26. Lochmann, R., W.R. McClain, D.M. Gatlin, Evaluation of Practical Feed Formulations and Dietary Supplements for Red Swamp Crayfish.1992, Blackwell Publishing Ltd. p.217-227.
    27. Thongrod, S., M. Boonyaratpalin. Cholesterol and lecithin requirement of juvenile banana shrimp, Penaeus merguiensis. Aquaculture,1998.161(1-4):p.315-321.
    28. Briggs, M.R.P., K. Jauncey, J.H. Brown. The cholesterol and lecithin requirements of juvenile prawn (Macrobrachium rosenbergii) fed semi-purified diets. Aquaculture,1988.70(1-2):p. 121-129.
    29. Cahu, C., J.C. Guillaume, G. St 閜 han, L. Chim. Influence of phospholipid and highly unsaturated fatty acids on spawning rate and egg and tissue composition in Penaeus vannamei fed semi-purified diets. Aquaculture,1994.126(1-2):p:159-170.
    30. Teshima, S., Phospholipids and sterols, in Crustacean NutritionAdvances in World Aquaculture vol.6, World Aquaculture Society, L.R. D'Abramo, Editor.1997, Baton Rouse: Louisiana.
    31. Hernandez, P.V., M.A. Olvera-Novoa, D.B. Rouse. Effect of dietary cholesterol on growth and survival of juvenile redclaw crayfish Cherax quadricarinatus under laboratory conditions. Aquaculture,2004.236(1-4):p.405-411.
    32. Sheen, S.-S. Dietary cholesterol requirement of juvenile mud crab Scylla serrata. Aquaculture, 2000.189(3-4):p.277-285.
    33. Cortes-Jacinto, E., H. Villarreal-Colmenares, L.E. Cruz-Suarez, R. Civera-Cerecedo, H. Nolasco-Soria, A. Hernandez-Llamas. Effect of different dietary protein and lipid levels on growth and survival of juvenile Australian redclaw crayfish, Cherax quadricarinatus (von Martens). Aquaculture Nutrition,2005.11(4):p.283-291.
    34. Garcia-Guerrero, M., H. Villarreal, I.S. Racotta. Effect of temperature on lipids, proteins, and carbohydrates levels during development from egg extrusion to juvenile stage of Cherax quadricarinatus (Decapoda:Parastacidae). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology,2003.135(1):p.147-154.
    35. Thompson, K.R., L.A. Muzinic, T.D. Christian, C.D. Webster, D.B. Rouse, Lukas Manomaitis. Effect on Growth, Survival, and Fatty Acid Composition of Australian Red Claw Crayfish Cherax quadricarinatus Fed Practical Diets With and Without Supplemental Lecithin and/or Cholesterol. Journal of the World Aquaculture Society,2003.34(1):p.1-10.
    36. K.R. Thompson, L.A.M., T.D. Christian, C.D. Webster, L. Manomaitis, D.B. Rouse,. Lecithin requirements of juvenile Australian red claw crayfish Cherax quadricarinatus. Aquaculture Nutrition,2003.9(4):p.223-230.
    37. Hernandez-Vergara, M.P., D.B. Rouse, M.A. Olvera-Novoa, D.A. Davis. Effects of dietary lipid level and source on growth and proximate composition of juvenile redclaw (Cherax quadricarinatus) reared under semi-intensive culture conditions. Aquaculture,2003.223(1-4): p.107-115.
    38. Thompson, K.R., T.J. Bailey, L.S. Metts, Y.J. Brady, C.D. Webster. Growth response and fatty acid composition of juvenile red claw crayfish (Cherax quadricarinatus) fed different sources of dietary lipid. Aquaculture Nutrition,2010.16(6):p.604-615.
    39. Rodriguez-Gonzalez, H., H. Villarreal, M. Garcia-Ulloa, A. Hernandez-Llamas. Dietary Lipid Requirements for Optimal Egg Quality of Redclaw Crayfish, Cherax quadricarinatus. Journal of the World Aquaculture Society,2009.40(4):p.531-539.
    40. Martino, R.C., J.E.P. Cyrino, L. Portz, L.C. Trugo. Effect of dietary lipid level on nutritional performance of the surubim, Pseudoplatystoma coruscans. Aquaculture,2002.209(1-4):p. 209-218.
    41. Wen, X., L. Chen, C. Ai, Z. Zhou, H. Jiang. Variation in lipid composition of Chinese mitten-handed crab, Eriocheir sinensis during ovarian maturation. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2001.130(1):p.95-104.
    42. Rosa, R., M. Nunes. Biochemical changes during the reproductive cycle of the deep-sea decapod Nephrops norvegicus on the south coast of Portugal. Marine Biology,2002.141(6):p. 1001-1009.
    43. Gurure, R.M., R.D. Moccia, J.L. Atkinson. Optimal protein requirements of young Arctic charr (Salvelinus alpinus) fed practical diets. Aquaculture Nutrition,1995.1(4):p.227-234.
    44. Cortes-Jacinto, E., H. Villarreal-Colmenares, R. Civera-Cerecedo, R. Martinez-Cordova. Effect of dietary protein level on growth and survival of juvenile freshwater crayfish Cherax quadricarinatus (Decapoda:Parastacidae). Aquaculture Nutrition,2003.9(4):p.207-213.
    45. Jones, P.L., S.S. Silva, B.D. Mitchell. The effect of dietary protein source on growth and carcass composition in juvenile Australian freshwater crayfish. Aquaculture International, 1996.4(4):p.361-376.
    46. Lim, C., W. Dominy. Evaluation of soybean meal as a replacement for marine animal protein in diets for shrimp (Penaeus vannamei). Aquaculture,1990.87(1):p.53-63.
    47. Meade, M.E., S.A. Watts, Weight Gain and Survival of Juvenile Australian Crayfish Cherax quadricarinatus Fed Formulated Feeds.1995, Blackwell Publishing Ltd. p.469-474.
    48. Anson, K.J., D.B. Rouse, Effects of Salinity on Hatching and Post-Hatch Survival of the Australian Red Claw Crayfish Cherax quadricarinatus.1994, Blackwell Publishing Ltd. p. 277-280.
    49. Thompson, K.R., L.S. Metts, L.A. Muzinic, S. Dasgupta, C.D. Webster. Effects of feeding practical diets containing different protein levels, with or without fish meal, on growth, survival, body composition and processing traits of male and female Australian red claw crayfish (Cherax quadricarinatus) grown in ponds. Aquaculture Nutrition,2006.12(3):p. 227-238.
    50. Garcia-Ulloa, G.M., H.M. Lopez-Chavarin, H. Rodriguez-Gonzalez, H. Villarreal-Colmenares. Growth of redclaw crayfish Cherax quadricarinatus (Von Martens 1868) (Decapoda: Parastacidae) juveniles fed isoproteic diets with partial or total substitution of fish meal by soya bean meal:preliminary study. Aquaculture Nutrition,2003.9(1):p.25-31.
    51. Muzinic, L.A., K.R. Thompson, A. Morris, C.D. Webster, D.B. Rouse, L. Manomaitis. Partial and total replacement of fish meal with soybean meal and brewer's grains with yeast in practical diets for Australian red claw crayfish Cherax quadricarinatus. Aquaculture,2004. 230(1-4):p.359-376.
    52. Thompson, K.R., L.A. Muzinic, L.S. Engler, S.-R. Morton, C.D. Webster, Effects of feeding practical diets containing various protein levels on growth, survival, body composition, and processing traits of Australian red claw crayfish (Cherax quadricarinatus) and on pond water quality.2004, Blackwell Science Ltd. p.659-668.
    53. Wouters, R., X. Piguave, L. Bastidas, J. Calderon, P. Sorgeloos. Ovarian maturation and haemolymphatic vitellogenin concentration of Pacific white shrimp Litopenaeus vannamei (Boone) fed increasing levels of total dietary lipids and HUFA. Aquaculture Research,2001. 32(7):p.573-582.
    54. Yao, J., Y. Zhao, Q. Wang, Z. Zhou, X. Hu, X. Duan, C. An. Biochemical compositions and digestive enzyme activities during the embryonic development of prawn, Macrobrachium rosenbergii. Aquaculture,2006.253(1-4):p.573-582.
    55. Shiau, S.-Y. Nutrient requirements of penaeid shrimps. Aquaculture,1998.164(1-4):p.77-93.
    56. Ahamed Ali, S. Evaluation of different carbohydrates in the diet of the prawn Penaeus indicus. Journal of Aquaculture in the Tropics,1993.8(1):p.13-23.
    57. Shiau, S.-Y., C.-Y. Peng. Utilization of different carbohydrates at different dietary protein levels in grass prawn, Penaeus monodon, reared in seawater. Aquaculture,1992.101(3-4):p. 241-250.
    58. D'Abramo, L.R., E.H. Robinson. Nutrition of crayfish. Rev. Aquat. Sci.,1989.1(4):p. 711-728.
    59. Xue, X.M., A.J. Anderson, N.A. Richardson, A.J. Anderson, G.P. Xue, P.B. Mather. Characterisation of cellulase activity in the digestive system of the redclaw crayfish (Cherax quadricarinatus). Aquaculture,1999.180(3-4):p.373-386.
    60. Byrne, K.A., S.A. Lehnert, S.E. Johnson, S.S. Moore. Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene,1999.239(2):p.317-324.
    61. Crawford, A.C., J.A. Kricker, A.J. Anderson, N.R. Richardson, P.B. Mather. Structure and function of a cellulase gene in redclaw crayfish, Cherax quadricarinatus. Gene,2004.340(2): p.267-274.
    62. Ana Pavasovic, N.A.R., Peter B Mather, Alex J Anderson,. Influence of insoluble dietary cellulose on digestive enzyme activity, feed digestibility and survival in the red claw crayfish, Cherax quadricarinatus (von Martens). Aquaculture Research,2006.37(1):p.25-32.
    63. Alava, V.R., A. Kanazawa, S. Teshima, S. Koshio. Effects of dietary vitamins A, E, and C on the ovarian development of Penaeus japonicus. Bulletin of the Japanese Society of Scientific Fisheries,1993.59(7):p.1235-1241.
    64. 艾春香,陈立侨,周忠良,G.Y. Deng,江洪波.维生素C、E对中华绒螯蟹生殖性能的影响.水产学报,2003.2003(01):p.62-68.
    65. Xu, J.Y., T.T. Wang, Y.F. Wang, Y. Peng. Effect of combined fish meal:soybean meal ratio, vitamin C and fish oil supplementations in diet on the growth and reproduction of red swamp crayfish, Procambarus clarkii (Crustacea:Decapoda). Aquaculture Research,2010.41:p. e252-e259.
    66. 吴桂玲,梁萌青,常青,王家林.维生素A、E对凡纳滨对虾受精率、孵化率及幼体存活率的影响.海洋水产研究,2008.2008(4):p.58-62.
    67. 李铭,董卫军,徐加元,王玉凤.维生素E对克氏原螯虾生殖的影响.水产学报,2007.2008(s1):p.65-68.
    68. Cahu, C.L., G. Cuzon, P. Quazuguel. Effect of highly unsaturated fatty acids, [alpha]-tocopherol and ascorbic acid in broodstock diet on egg composition and development of Penaeus indicus. Comparative Biochemistry and Physiology Part A:Physiology,1995. 112(3-4):p.417-424.
    69. Barim, O., M. Karatepe. The effects of pollution on the vitamins A, E, C, [beta]-carotene contents and oxidative stress of the freshwater crayfish, Astacus leptodactylus. Ecotoxicology and Environmental Safety,2009.73(2):p.138-142.
    70. Marco Agustin Linan-Cabello, R.M.-Z., Maximiliano Sanchez-Barajas, Alfredo Mena Herrera,. Effects of carotenoids and retinol in oocyte maturation of crayfish Cherax quadrucarinatus Aquaculture Research,2004.35(9):p.905-911.
    71. 罗文,王群,赵云龙,顾志敏,宓国强,黄鲜明,刘启文.维生素E对红螯螯虾(Cherax quadricarinatus)繁殖性能的影响.海洋与湖沼,2005.36(4):p.335-342.
    72. Wouters, R., L. GOMEZ, P. Lavens, J. CALDERON. Feeding enriched Artemia biomass to Penaeus vannamei broodstock:Its effect on reproductive performance and larval quality. Journal of Shellish Research,1999.18(2):p.651-656.
    73. Mantiri, D.M.H., G. Negre-Sadargues, G. Charmantier, J.-P. Trilles, J.-C.G. Milicua, R. Castillo. Nature and metabolism of carotenoid pigments during the embryogenesis of the European lobster Homarus gammarus (Linne 1758). Comparative Biochemistry and Physiology Part A:Physiology,1996.115(3):p.237-241.
    74. 杜少波,胡超群,沈琪.亲虾营养需求研究进展.热带海洋学报,2002.21(4):p.80-92.
    75. Harpaz, S., M. Rise, S. Arad, N. Gur. The effect of three carotenoid sources on growth and pigmentation of juvenile freshwater crayfish Cherax quadricarinatus. Aquaculture Nutrition, 1998.4(3):p.201-208.
    76. Wade, M.G., G. Van der Kraak, M.F. Gerrits, J.S. Ballantyne. Release and steroidogenic actions of polyunsaturated fatty acids in the goldfish testis. Biology of Reproduction,1994. 51(1):p.131-139.
    77. McMaster, M.E., G.J. Van Der Kraak, K.R. Munkittrick. An Epidemiological Evaluation of the Biochemical Basis for Steroid Hormonal Depressions in Fish Exposed to Industrial Wastes. Journal of Great Lakes Research,1996.22(2):p.153-171.
    78. Pankhurst, N.W., G.J. Purser, G. Van Der Kraak, P.M. Thomas, G.N.R. Forteath. Effect of holding temperature on ovulation, egg fertility, plasma levels of reproductive hormones and in vitro ovarian steroidogenesis in the rainbow trout Oncorhynchus mykiss. Aquaculture,1996. 146(3-4):p.277-290.
    79. Wolfrum, C., C.M. Borrmann, T. B 枚 rchers, F. Spener. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha-and gamma-mediated gene expression via liver fatty acid binding protein:A signaling path to the nucleus. Proceedings of the National Academy of Sciences,2001.98(5):p.2323-2328.
    80. Rao, M., J. Reddy. Peroxisomal beta-oxidation and steatohepatitis. Semin Liver Dis,2001. 21(1):p.43-55.
    81. Rodriguez., E.M., D.A. Medesani, M. Fingerman. Endocrine disruption in crustaceans due to pollutants:A review. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2007.146(4):p.661-671.
    82. Henrich, V.C., R. Rybczynski, L.I. Gilbert, L. Gerald. Peptide Hormones, Steroid Hormones, and Puffs:Mechanisms and Models in Insect Development, in Vitamins and Hormones.1998, Academic Press, p.73-125.
    83. Muhlia-Almazan, A., A. Sanchez-Paz, F. Garcia-Carreno, A.B. Peregrino-Uriarte, G. Yepiz-Plascencia. Starvation and diet composition affect mRNA levels of the high density-lipoprotein-[beta] glucan binding protein in the shrimp Litopenaeus vannamei. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2005. 142(2):p.209-216.
    84. Haunerland, N., J. Chisholm. Fatty acid binding protein in flight muscle of the locust Schistocerca gregaria. Biochim Biophys Acta 1990.1047:p.233-238.
    85. Levin, L., A. Ganoth, S. Amram, E. Nachliel, M. Gutman, Y. Tsfadia. Insight into the interaction sites between fatty acid binding proteins and their ligands. Journal of Molecular Modeling,2009.16(5):p.929-938.
    86. V.Matarese, L.S. R., D.W. Waggoner, D.A. Bernlohr. Intracellular fatty acid trafficking and the role of cytosolic lipid binding proteins. Progress in lipid research,1989.28(4):p.245-272.
    87. Veerkamp, J.H., R.A. Peeters, R.G.H.J. Maatman. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1991.1081(1):p.1-24.
    88. Banaszak, L., N. Winter, Z. Xu, D.A. Bernlohr, S. Cowan, A.T. Jones, J.T.E.F.M.R. C.B. Anfinsen, S.E. David. Lipid-Binding Proteins:A Family of Fatty Acid and Retinoid Transport Proteins, in Advances in Protein Chemistry.1994, Academic Press, p.89-151.
    89. Storch, J., B. Corsico. The Emerging Functions and Mechanisms of Mammalian Fatty Acid-Binding Proteins. Annual Review of Nutrition,2008.28:p.73-95.
    90. Di Pietro, S.M., B. Corsico, M. Perduca, H.L. Monaco, J.A. Santome. Structural and Biochemical Characterization of Toad Liver Fatty Acid-Binding Protein. Biochemistry,2003. 42(27):p.8192-8203.
    91. Jenkins, A.E., J.A. Hockenberry, T. Nguyen, D.A. Bernlohr. Testing of the Portal Hypothesis: Analysis of a V32G, F57G, K58G Mutant of the Fatty Acid Binding Protein of the Murine Adipocyte. Biochemistry,2002.41(6):p.2022-2027.
    92. Mihajlovic, M., T. Lazaridis, Modeling fatty acid delivery from intestinal fatty acid binding protein to a membrane.2007, Cold Spring Harbor Laboratory Press, p.2042-2055.
    93. Zimmerman, A.W., M. Rademacher, H. R 眉 terjans, C. L 眉 cke, J.H. Veerkamp. Functional and conformational characterization of new mutants of heart fatty acid-binding protein. Biochemical Journal,1999.344(2):p.495-501.
    94. Zimmerman, A.W., J.H. Veerkamp. New insights into the structure and function of fatty acid-binding proteins. Cellular and Molecular Life Sciences,2002.59(7):p.1096-1116.
    95. Likic, V.A., F.G. Prendergast, Structure and dynamics of the fatty acid binding cavity in apo rat intestinal fatty acid binding protein.1999, Cold Spring Harbor Laboratory Press, p. 1649-1657.
    96. Hanhoff, T., C. Liicke, F. Spener. Insights into binding of fatty acids by fatty acid binding proteins. Molecular and Cellular Biochemistry,2002.239(1):p.45-54.
    97. Bakowies, D., W.F. van Gunsteren. Simulations of apo and holo-fatty acid binding protein: structure and dynamics of protein, ligand and internal water. Journal of Molecular Biology, 2002.315(4):p.713-736.
    98. Friedman, R., E. Nachliel, M. Gutman. Molecular Dynamics Simulations of the Adipocyte Lipid Binding Protein Reveal a Novel Entry Site for the Ligand. Biochemistry,2005.44(11):p. 4275-4283.
    99. Chmurzynska, A. The multigene family of fatty acid-binding proteins (FABPs):Function, structure and polymorphism. Journal of Applied Genetics,2006.47(1):p.39-48.
    100. Tsfadia, Y., R. Friedman, J. Kadmon, A. Selzer, E. Nachliel, M. Gutman. Molecular dynamics simulations of palmitate entry into the hydrophobic pocket of the fatty acid binding protein. FEBS Letters,2007.581(6):p.1243-1247.
    101. Likic, V.A., F.G. Prendergast, Dynamics of internal water in fatty acid binding protein: Computer simulations and comparison with experiments.2001, John Wiley & Sons, Inc. p. 65-72.
    102. Friedman, R., E. Nachliel, M. Gutman. Fatty Acid Binding Proteins:Same Structure but Different Binding Mechanisms? Molecular Dynamics Simulations of Intestinal Fatty Acid Binding Protein. Biophysical Journal,2006.90(5):p.1535-1545.
    103. Levin, L., E. Nachliel, M. Gutman, Y. Tsfadia. Molecular dynamics study of the interaction between fatty acid binding proteins with palmitate mini-micelles. Molecular and Cellular Biochemistry,2009.326(1):p.29-33.
    104. Esteves, A., R. Ehrlich. Invertebrate intracellular fatty acid binding proteins. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2006.142(3-4):p. 262-274.
    105. Hodsdon, M.E., C. Frieden. Intestinal Fatty Acid Binding Protein:The Folding Mechanism As Determined by NMR Studies. Biochemistry,2001.40(3):p.732-742.
    106. Storch, J., A.E.A. Thumser. The fatty acid transport function of fatty acid-binding proteins. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2000.1486(1): p.28-44.
    107. Jakobsson, E., G. Alvite, T. Bergfors, A. Esteves, G.J. Kleywegt. The crystal structure of Echinococcus granulosus fatty-acid-binding protein 1. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2003.1649(1):p.40-50.
    108. MULler-Fahrnow, A., U. Egner, T.A. Jones, H. RUDel, F. Spener, W. Saenger. Three-dimensional structure of fatty-acid-binding protein from bovine heart. European Journal of Biochemistry,1991.199(2):p.271-276.
    109. Haunerland, N. Fatty acid binding proteins in locust and mammalian muscle. Comparison of structure, function, and regulation. Comparative Biochemistry and Physiology. B, Comparative Biochemistry,1994.109:p.199-208.
    110. Benning, M., A. Smith, M. Wells, H. Holden. Crystallization, structure determination and least-squares refinement to 1.75 A resolution of the fatty-acid-binding protein isolated from Manduca sexta Institute for Enzyme Research,1992.228:p.208-219.
    111. Schaap, F.G., G.J. Van der Vusse, J.F.C. Glatz. Evolution of the family of intracellular lipid binding proteins in vertebrates. Molecular and Cellular Biochemistry,2002.239(1):p.69-77.
    112. Vogel Hertzel, A., D.A. Bernlohr. The Mammalian Fatty Acid-binding Protein Multigene Family:Molecular and Genetic Insights into Function. Trends in Endocrinology and Metabolism,2000.11(5):p.175-180.
    113. Kurtz, A., A. Zimmer, F. Schnutgen, G. Bruning, F. Spener, T. Muller. The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development,1994.120(9):p.2637-2649.
    114. Treuner, M., C.A. Kozak, D. Gallahan, R. Grosse, T. M 黮 ler. Cloning and characterization of the mouse gene encoding mammary-derived growth inhibitor/heart-fatty acid-binding protein. Gene,1994.147(2):p.237-242.
    115. Gerbens, F., G. Rettenberger, J. Lenstra, J. Veerkamp, M. Pas. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mammalian Genome,1997.8(5):p.328-332.
    116. Mansfield, S.G., S. Cammer, S.C. Alexander, D.P. Muehleisen, R.S. Gray, A. Tropsha, W.E. Bollenbacher. Molecular cloning and characterization of an invertebrate cellular retinoic acid binding protein. Proceedings of the National Academy of Sciences,1998.95(12):p. 6825-6830.
    117. Wu, Q., N.H. Haunerland. A novel fatty acid response element controls the expression of the flight muscle FABP gene of the desert locust, Schistocerca gregaria. European Journal of Biochemistry,2001.268(22):p.5894-5900.
    118. Esteves, A., V. Portillo, R. Ehrlich. Genomic structure and expression of a gene coding for a new fatty acid binding protein from Echinococcus granulosus, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2003.1631(1):p.26-34.
    119. Glatz, J.F.C., G.J. van der Vusse. Cellular fatty acid-binding proteins:Their function and physiological significance. Progress in Lipid Research,1996.35(3):p.243-282.
    120. Simon, T.C., K.A. Roth, J.I. Gordon. Use of transgenic mice to map cis-acting elements in the liver fatty acid-binding protein gene (Fabpl) that regulate its cell lineage-specific, differentiation-dependent, and spatial patterns of expression in the gut epithelium and in the liver acinus. Journal of Biological Chemistry,1993.268(24):p.18345-18358.
    121. GREEN, R.P., S.M. COHN, J.C. SACCHETTINI, K.E. JACKSON, J.I. GORDON. The Mouse Intestinal Fatty Acid Binding Protein Gene:Nucleotide Sequence, Pattern of Developmental and Regional Expression, and Proposed Structure of Its Protein Product. DNA and Cell Biology,1992.11(1):p.31-41.
    122. Smith, A.F., K. Tsuchida, E. Hanneman, T.C. Suzuki, M.A. Wells. Isolation, characterization, and cDNA sequence of two fatty acid-binding proteins from the midgut of Manduca sexta larvae. Journal of Biological Chemistry,1992.267(1):p.380-384.
    123. Maatman, R., M. Degano, H.V. Moerkerk, W.V. Marrewijk, D.V.d. Horst, J.V. Marrewijk, J. Veerkamp. Primary structure and binding characteristics of locust and human muscle fatty-acid-binding proteins. European Journal of Biochemistry,1994(221):p.801-810.
    124. Gu, P.-L., Y.I.N.S. Gunawardene, B.C.K. Chow, J.G. He, S.-M. Chan. Characterization of a novel cellular retinoic acid/retinol binding protein from shrimp:expression of the recombinant protein for immunohistochemical detection and binding assay. Gene,2002.288(1-2):p. 77-84.
    125. Mei, B., M.W. Kennedy, J. Beauchamp, P.R. Komuniecki, R. Komuniecki. Secretion of a Novel, Developmentally Regulated Fatty Acid-binding Protein into the Perivitelline Fluid of the Parasitic Nematode, Ascaris suum. Journal of Biological Chemistry,1997.272(15):p. 9933-9941.
    126. Esteves, A., B. Dallagiovanna, R. Ehrlich. A developmentally regulated gene of Echinococcus granulosus codes for a 15.5-kilodalton polypeptide related to fatty acid binding proteins. Molecular and Biochemical Parasitology,1993.58(2):p.215-222.
    127. Plenefisch, J., H. Xiao, B. Mei, J. Geng, P.R. Komuniecki, R. Komuniecki. Secretion of a novel class of iFABPs in nematodes:coordinate use of the Ascaris/Caenorhabditis model systems. Molecular and Biochemical Parasitology,2000.105(2):p.223-236.
    128. Haunerland, N.H., X. Chen, P. Andolfatto, J.M. Chisholm,Z. Wang. Developmental changes of FABP concentration, expression, and intracellular distribution in locust flight muscle. Molecular and Cellular Biochemistry,1993.123(1):p.153-158.
    129. Evans, J.D., D.E. Wheeler. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proceedings of the National Academy of Sciences, 1999.96(10):p.5575-5580.
    130. Gong, Y.-N., W.-W. Li, J.-L. Sun, F. Ren, L. He, H. Jiang, Q. Wang. Molecular cloning and tissue expression of the fatty acid-binding protein (Es-FABP) gene in female Chinese mitten crab (Eriocheir sinensis). BMC Molecular Biology,2010.11(1):p.71.
    131. Glatz, J.F.C., T. Borchers, F. Spener, G.J. van der Vusse. Fatty acids in cell signalling: Modulation by lipid binding proteins. Prostaglandins, Leukotrienes and Essential Fatty Acids, 1995.52(2-3):p.121-127.
    132. Horst, D.J.v.d. Lipid transport function of lipoproteins in flying insects. Biochimica et Biophysica Acta, Lipids and Lipid Metabolism,1990.1047(3):p.195-211.
    133. Gobert, G.N., Immunolocalization of schistosome proteins.1998, Wiley Subscription Services, Inc., A Wiley Company, p.176-185.
    134. Esteves, A., L. Joseph, M. Paulino, R. Ehrlich. Remarks on the phylogeny and structure of fatty acid binding proteins from parasitic platyhelminths. International Journal for Parasitology,1997.27(9):p.1013-1023.
    135. Poirier, H., I. Niot, P. Degrace, M.C. Monnot, A. Bernard, P. Besnard. Fatty acid regulation of fatty acid-binding protein expression in the small intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology,1997.273(2):p. G289-G295.
    136. Issemann, I., R. Prince, J. Tugwood, S. Green. A role for fatty acids and liver fatty acid binding protein in peroxisome proliferation. Biochem Soc Trans.,1992.20(4):p.824-827.
    137. Green, S. PPAR:a mediator of peroxisome proliferator action. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1995.333(1-2):p. 101-109.
    138. Veerkamp, J.H., H.T.B. van Moerkerk. Fatty acid-binding protein and its relation to fatty acid oxidation. Molecular and Cellular Biochemistry,1993.123(1):p.101-106.
    139. Vogel Hertzel, A., D.A. Bernlohr. Regulation of adipocyte gene expression by polyunsaturated fatty acids. Molecular and Cellular Biochemistry,1998.188(1):p.33-39.
    140. Amri, E.Z., B. Bertrand, G. Ailhaud, P. Grimaldi. Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. Journal of Lipid Research,1991.32(9):p. 1449-56.
    141. Barry Marc, F., C. Jasmine, R.M. Evans. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors a and δ. Proceedings of the National Academy of Sciences,1997.94(9):p.4312-4317.
    142. Zhang, Z., P.E. Burch, A.J. Cooney, R.B. Lanz, F.A. Pereira, J. Wu, R.A. Gibbs, G. Weinstock, D.A. Wheeler. Genomic Analysis of the Nuclear Receptor Family:New Insights Into Structure, Regulation, and Evolution From the Rat Genome. Genome Research,2004.14(4):p.580-590.
    143. Wolfrum, C. Lipid sensing and lipid sensors. Cellular and Molecular Life Sciences,2007. 64(19):p.2465-2476.
    144. Kaikaus, R., Z. Sui, N. Lysensko. Regulation of pathways of extramitochondrial fatty acid oxidation and liver fatty acid-binding protein by long-chain monocarboxylic fatty acids in hepatocytes:Effect of inhibition of carnitine palmitoyltransferase I. Biological Chemistry, 1993.268:p.26866-26871.
    145. Tontonoz, P., E. Hu, B.M. Spiegelman. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor [gamma]. Current Opinion in Genetics & Development,1995.5(5):p.571-576.
    146. Lawrence, J.W., D.J. Kroll, P.I. Eacho. Ligand-dependent interaction of hepatic fatty acid-binding protein with the nucleus. Journal of Lipid Research,2000.41(9):p.1390-1401.
    147. Laudet, V. Evolution of the nuclear receptor superfamily:early diversification from an ancestral orphan receptor. Journal of Molecular Endocrinology,1997.19(3):p.207-226.
    148. Clayton, G.M., S.Y. Peak-Chew, R.M. Evans, J.W.R. Schwabe. The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proceedings of the National Academy of Sciences,2001.98(4):p.1549-1554.
    149. Lacowicz, J.R. Principle of fluorescence.3rd edition.2006, New York:Plenum Press.
    150. L. Recalde Ruiz, D., E. Andres Garcia, M. E. Diaz Garcia, A. L. Carvhalo Torres. Fluorimetric flow-injection method for anionic surfactants based on protein-surfactant interactions[dagger]. Analyst,1998.123(11):p.2257-2261.
    151. Gorinstein, S., I. Goshev, S. Moncheva, M. Zemser, M. Weisz, A. Caspi, I. Libman, H.T. Lerner, S. Trakhtenberg, O. Mart 铆 n-Belloso. Intrinsic Tryptophan Fluorescence of Human Serum Proteins and Related Conformational Changes. Journal of Protein Chemistry,2000. 19(8):p.637-642.
    152. Lee, C.T., K.A. Smith, T.A. Hatton. Photocontrol of Protein Folding:The Interaction of Photosensitive Surfactants with Bovine Serum Albumin. Biochemistry,2004.44(2):p. 524-536.
    153. Tofani, L., A. Feis, R.E. Snoke, D. Berti, P. Baglioni, G. Smulevich. Spectroscopic and Interfacial Properties of Myoglobin/Surfactant Complexes. Biophysical Journal,2004.87(2): p.1186-1195.
    154. Diaz, X., E. Abuin, E. Lissi. Quenching of BSA intrinsic fluorescence by alkylpyridinium cations:Its relationship to surfactant-protein association. Journal of Photochemistry and Photobiology A:Chemistry,2003.155(1-3):p.157-162.
    155. Lissi, E., E. Abuin, M.E. Lanio, C. Alvarez. A new and simple procedure for the evaluation of the association of surfactants to proteins. Journal of Biochemical and Biophysical Methods, 2002.50(2-3):p.261-268.
    156. Veerkamp, J.H., H.T.B. van Moerkerk, C.F.M. Prinsen, T.H. van Kuppevelt. Structural and functional studies on different human FABP types. Molecular and Cellular Biochemistry,1999. 192(1):p.137-142.
    157. Kirk, W.R., E. Kurian, F.G. Prendergast. Characterization of the sources of protein-ligand affinity:1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein. Biophysical Journal,1996.70(1):p.69-83.
    158. Velkov, T., S. Chuang, J. Wielens, H. Sakellaris, W.N. Charman, C.J.H. Porter, M.J. Scanlon. The Interaction of Lipophilic Drugs with Intestinal Fatty Acid-binding Protein. Journal of Biological Chemistry,2005.280(18):p.17769-17776.
    159. Norris, A.W., A.A. Spector. Very long chain n-3 and n-6 polyunsaturated fatty acids bind strongly to liver fatty acid-binding protein. Journal of Lipid Research,2002.43(4):p. 646-653.
    160. Richieri, G.V., R.T. Ogata, A.W. Zimmerman, J.H. Veerkamp, A.M. Kleinfeld. Fatty Acid Binding Proteins from Different Tissues Show Distinct Patterns of Fatty Acid Interactions. Biochemistry,2000.39(24):p.7197=7204.
    161. Vasilescu, M., D. Angelescu, M. Almgren, A. Valstar. Interactions of Globular Proteins with Surfactants Studied with Fluorescence Probe Methods. Langmuir,1999.15(8):p.2635-2643.
    162. Turro, N.J., X.-G. Lei, K.P. Ananthapadmanabhan, M. Aronson. Spectroscopic Probe Analysis of Protein-Surfactant Interactions:The BSA/SDS System. Langmuir,1995.11(7):p. 2525-2533.
    163. D'Auria, S., L. Petrova, C. John, G. Russev, A. Varriale, V. Bogoeva. Tumor-specific protein human galectin-1 interacts with anticancer agents. Molecular BioSystems,2009.5(11):p. 1331-1336.
    164. Manevich, Y., T. Shuvaeva, C. Dodia, A. Kazi, S.I. Feinstein, A.B. Fisher. Binding of peroxiredoxin 6 to substrate determines differential phospholipid hydroperoxide peroxidase and phospholipase A2 activities. Archives of Biochemistry and Biophysics,2009.485(2):p. 139-149.
    165. Barbero, N., E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, F. Bussolino. A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence. Dyes and Pigments,2009.80(3):p.307-313.
    166. Valeur, B. Fluorescent probes for evaluation of local physical structural parameters.1993, Wiley-Interscience:New York. p.25-84.
    167. Nigen, M., V.L. Tilly, T. Croguennec, D. Drouin-Kucma, S. Bouhallab. Molecular interaction between apo or holo a-lactalbumin and lysozyme:Formation of heterodimers as assessed by fluorescence measurements. Biochimica et Biophysica Acta (BBA)-Proteins & amp; Proteomics,2009.1794(4):p.709-715.
    168. Klimtchuk, E., S. Venyaminov, E. Kurian, W. Wessels, W. Kirk, F.G. Prendergast. Photophysics of ANS. I. Protein-ANS complexes:Intestinal fatty acid binding protein and single-trp mutants. Biophysical Chemistry,2007.125(1):p.1-12.
    169. Frolov, A., F. Schroeder. Time-Resolved Fluorescence of Intestinal and Liver Fatty Acid Binding Proteins:Role of Fatty Acyl CoA and Fatty Acid. Biochemistry,1997.36(3):p. 505-517.
    170. Robert M, C. Fluorescence resonance energy transfer. Current Opinion in Biotechnology, 1995.6(1):p.103-110.
    171. Cremazy, F.G.E., E.M.M. Manders, P.I.H. Bastiaens, G. Kramer, G.L. Hager, E.B. van Munster, P.J. Verschure, J.T.J. Gadella, R. van Driel. Imaging in situ protein-DNA interactions in the cell nucleus using FRET-FLIM. Experimental Cell Research,2005.309(2):p.390-396.
    172. Remaut, K., B. Lucas, K. Braeckmans, N.N. Sanders, S.C. De Smedt, J. Demeester. FRET-FCS as a tool to evaluate the stability of oligonucleotide drugs after intracellular delivery. Journal of Controlled Release,2005.103(1):p.259-271.
    173. Gowda, K., B.D. Marks, T.K. Zielinski, M.S. Ozers. Development of a coactivator displacement assay for the orphan receptor estrogen-related receptor-[gamma] using time-resolved fluorescence resonance energy transfer. Analytical Biochemistry,2006.357(1): p.105-115.
    174. Manevich, Y., K.S. Reddy, T. Shuvaeva, S.I. Feinstein, A.B. Fisher. Structure and phospholipase function of peroxiredoxin 6:identification of the catalytic triad and its role in phospholipid substrate binding. Journal of Lipid Research,2007.48(10):p.2306-2318.
    175. Hostetler, H.A., A.L. McIntosh, B.P. Atshaves, S.M. Storey, H.R. Payne, A.B. Kier, F. Schroeder. L-FABP directly interacts with PPARα in cultured primary hepatocytes. Journal of Lipid Research,2009.50(8):p.1663-1675.
    176. Gidwani, A., D. Holowka, B. Baird. Fluorescence Anisotropy Measurements of Lipid Order in Plasma Membranes and Lipid Rafts from RBL-2H3 Mast Cells Biochemistry,2001.40(41):p. 12422-12429.
    177. Pinskaya, M., E. Romanova, E. Volkov, E. Deprez, H. Leh, J.-C. Brochon, J.-F. Mouscadet, M. Gottikh. HIV-1 Integrase Complexes with DNA Dissociate in the Presence of Short Oligonucleotides Conjugated to Acridine. Biochemistry,2004.43(27):p.8735-8743.
    178. Tleugabulova, D., Z. Zhang, J.D. Brennan. Characterization of Bodipy Dimers Formed in a Molecularly Confined Environment. The Journal of Physical Chemistry B,2002.106(51):p. 13133-13138.
    179. Huwiler, K.G., T. De Rosier, B. Hanson, K.W. Vogel. A Fluorescence Anisotropy Assay for the Muscarinic M1 G-protein-Coupled Receptor. Assay and Drug Development Technologies, 2010.8(3):p.351-361.
    180. Hayouka, Z., J. Rosenbluh, A. Levin, S. Loya, M. Lebendiker, D. Veprintsev, M. Kotler, A. Hizi, A. Loyter, A. Friedler. Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proceedings of the National Academy of Sciences,2007.104(20):p.8316-8321.
    181. Woodford, J.K., W.D. Behnke, F. Schroeder. Liver fatty acid binding protein enhances sterol transfer by membrane interaction. Molecular and Cellular Biochemistry,1995.152(1):p. 51-62.
    182. DiRusso, C.C., E.J. Connell, N.J. Faergeman, J. Knudsen, J.K. Hansen, P.N. Black. Murine FATP alleviates growth and biochemical deficiencies of yeast fatlA strains. European Journal of Biochemistry,2000.267(14):p.4422-4433.
    183. 李红,孟凡丽,田华梅,赵云龙,红螯螯虾人工养殖技术,in上海市动物学会1999年年会.1999.
    184. 林小涛,黄长江,梁旭方,曹双俊.摄食、体重和光照条件对罗氏沼虾幼体氧代谢的影响.生态学杂志,1998(04).
    185. Ying, X., W. Yang, Y. Zhang. Comparative studies on fatty acid composition of the ovaries and hepatopancreas at different physiological stages of the Chinese mitten crab. Aquaculture,2006. 256(1-4):p.617-623.
    186. Rodriguez-Gonzalez, H., M. Garcia-Ulloa, A. Hernandez-Llamas, H. Villarreal. Effect of dietary protein level on spawning and egg quality of redclaw crayfish Cher ax quadricarinatus. Aquaculture,2006.257(1-4):p.412-419.
    187. Cortes-jacinto, E., H. Villarreal-colmenares, R. Civera-cerecedo, J. Naranjo-paramo. Effect of dietary protein level on the growth and survival of pre-adult freshwater crayfish Cher ax quadricarinatus (von Martens) in monosex culture. Aquaculture Research,2004.35(1):p. 71-79.
    188. Teshima, S., A. Kanazawa, S. Koshio, K. Horinouchi. Lipid metabolism of the prawn Penaeus japonicus during maturation:Variation in lipid profiles of the ovary and hepatopancreas. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1989. 92(1):p.45-49.
    189. Bray, W.A., A.L. Lawrence, L.J. Lester. Reproduction of Eyestalk-Ablated Penaeus stylirostris Fed Various Levels of Total Dietary Lipid. Journal of the World Aquaculture Society,1990.21(1):p.41-52.
    190. Alava, V.R., E.T. Quinitio, J.B.d. Pedro, F.M.P. Priolo, Z.G.A. Orozco, M. Wille. Lipids and fatty acids in wild and pond-reared mud crab Scylla serrata (Forsskal) during ovarian maturation and spawning. Aquaculture Research,2007.38(14):p.1468-1477.
    191. RodrlGuez-GonzALez, H., H. Villarreal, M. GarcIA-Ulloa, A. HernANdez-Llamas, Evaluation of practical diets containing different protein levels on gonad development of female redclaw crayfish Cherax quadricarinatus.2009, Blackwell Publishing Ltd. p.347-355.
    192. Manirakiza, P., A. Covaci, P. Schepens. Comparative Study on Total Lipid Determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and Modified Bligh & Dyer Extraction Methods. Journal of Food Composition and Analysis,2001.14(1):p.93-100.
    193. Harrison, K.E. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans:A review. The Journal of Shellfish Research,1990.9:p.1-28.
    194. Pangantihon-Kuhlmann, M.P., O. Millamena, Y. Chern. Effect of dietary astaxanthin and vitamin A on the reproductive performance of Penaeus monodon broodstock. Aquatic Living Resources,1998.11(6):p.403-409.
    195. Austin, C.M. A comparison of clutch and brood size in the Red Claw, Cherax quadricarinatus (von Martens) and the Yabby, C. destructor Clark (Decapoda:Parastacidae). Aquaculture, 1998.167(1-2):p.135-145.
    196. Parker, W., D. Melnick. Absence of aflatoxin from refined vegetable oils. Journal of the American Oil Chemists' Society,1966.43(11):p.635-638.
    197. Chavez-Crooker, P., P. Pozo, H. Castro, M.S. Dice, I. Boutet, A. Tanguy, D. Moraga, G.A. Ahearn. Cellular localization of calcium, heavy metals, and metallothionein in lobster (Homarus americanus) hepatopancreas. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,2003.136(3):p.213-224.
    198. Lim, C., H. Ako, C.L. Brown, K. Hahn. Growth response and fatty acid composition of juvenile Penaeus vannamei fed different sources of dietary lipid. Aquaculture,1997.151(1-4): p.143-153.
    199. Gerbi, A., M. Zerouga, M. Debray, G. Durand, C. Chanez, J.-M. Bourre. Effect of Fish Oil Diet on Fatty Acid Composition of Phospholipids of Brain Membranes and on Kinetic Properties of Na+, K+-ATPase Isoenzymes of Weaned and Adult Rats. Journal of Neurochemistry,1994.62(4):p.1560-1569.
    200. Bell, J., D. Tocher, B. Farndale, D. Cox, R. McKinney, J. Sargent. The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformation. Lipids,1997.32(5):p.515-525.
    201. Lehti-Koivunen, S.M., L.A. Kivivuori. Fluidity of Neuronal Membranes of Crayfish (Astacus astacus L.) Acclimated to 5℃ and 20℃. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology,1998.119(3):p.773-779.
    202. Li, J., Z. Guo, X. Gan, Q. Wang, Y. Zhao, Biochemical changes during vitellogenesis in the red claw crayfish, Cherax quadricarinatus (von Martens).2010, Blackwell Publishing Ltd. p. e446-e455.
    203. Abdu, U., C. Davis, I. Khalaila, A. Sagi. The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. General and Comparative Endocrinology,2002.127(3):p.263-272.
    204. Martinez-Perez, F., S. Zinker, G. Aguilar, J. Valdes, H. Arechiga. Circadian oscillations of RPCH gene expression in the eyestalk of the crayfish Cherax quadricarinatus. Peptides,2005. 26(12):p.2434-2444.
    205. Livak, K.J., T.D. Schmittgen. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods,2001.25(4):p.402-408.
    206. 刘立鹤,陈立侨,周永奎,江洪波.甲壳动物消化酶的研究.饲料工业,2006.27(18):p.56-62.
    207. 潘鲁青,王克行.中华绒螯蟹幼体消化酶活力与氨基酸组成的研究.中国水产科学,1997.4(2):p.13-20.
    208. 陈立侨,江洪波,周忠良,杨家新,朱钧,张道南ω-3HUFA对中华绒螯蟹幼体存活率及体脂肪酸组成的影响.水产学报,2000.24(5):p.448-452.
    209. Hoehne-Reitan, K., E. Kjφrsvik, K.I. Reitan. Bile salt-dependent lipase in larval turbot, as influenced by density and lipid content of fed prey. Journal of Fish Biology,2001.58(3):p. 746-754.
    210. Cara, J.B., F.J. Moyano, S. Cardenas, C. Fernandez-Diaz, M. Yufera. Assessment of digestive enzyme activities during larval development of white bream. Journal of Fish Biology,2003. 63(1):p.48-58.
    211. 潘鲁青,刘泓宇,肖国强.甲壳动物幼体消化酶研究进展.中国水产科学,2006.13(3):p.492-501.
    212. Wouters, R., C. Molina, P. Lavens, J. Calderon. Lipid composition and vitamin content of wild female Litopenaeus vannamei in different stages of sexual maturation. Aquaculture,2001. 198(3-4):p.307-323.
    213. Gonzalez-Felix, M.L., A.L. Lawrence, D.M. Gatlin, M. Perez-Velazquez. Growth, survival and fatty acid composition of juvenile Litopenaeus vannamei fed different oils in the presence and absence of phospholipids. Aquaculture,2002.205(3-4):p.325-343.
    214. Williams, K.C. Nutritional requirements and feeds development for post-larval spiny lobster: A review. Aquaculture,2007.263(1-4):p.1-14.
    215. Coutteau, P., I. Geurden, M.R. Camara, P. Bergot, P. Sorgeloos. Review on the dietary effects of phospholipids in fish and crustacean larviculture. Aquaculture,1997.155(1-4):p.149-164.
    216. Kanazawa, A., S. Koshio. Lipid nutrition of spiny lobster Panulirus japonicus (Decapoda, Palinuridae):A review. Crustaceana (Leiden),1994.67(2):p.226-232.
    217. Shearer. Experimental design, statistical analysis and modelling of dietary nutrient requirement studies for fish:a critical review. Aquaculture Nutrition,2000.6(2):p.91-102.
    218. Paibulkichakul, C., S. Piyatiratitivorakul, P. Kittakoop, V. Viyakarn, A.W. Fast, P. Menasveta. Optimal dietary levels of lecithin and cholesterol for black tiger prawn Penaeus monodon larvae and postlarvae. Aquaculture,1998.167(3-4):p.273-281.
    219. Duerr, E.O., W.A. Walsh, Evaluation of cholesterol additions to a soyabean meal-based diet for juvenile Pacific white shrimp, Penaeus vannamei (Boone), in an outdoor growth trial. 1996, Blackwell Publishing Ltd. p.111-116.
    220. Teshima, S., A. Kanazawa. Biosynthesis of sterols in the lobster, Pamulrus japonica, the Prawn, Penaeus japonicus and the Crab, Portunus trituberculatus. Comp Biochem Physiol, 1971.38:p.597-602.
    221. Jeckel, W.H.,J.E. Aizp 鷑 de Moreno, V.J. Moreno. Biochemical composition, lipid classes and fatty acids in the ovary of the shrimp Pleoticus muelleri bate. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1989.92(2):p.271-276.
    222. 汪留全,李海洋,胡王,江河.饲料中胆固醇水平对幼蟹生长和饲料利用率影响的研究.淡水渔业,2004.34:p.13-15.
    223. Sheen, S.-S., P.-C. Liu, S.-N. Chen, J.-C. Chen. Cholesterol requirement of juvenile tiger shrimp (Penaeus monodon). Aquaculture,1994.125(1-2):p.131-137.
    224. Castell, J.D., E.G. Mason, J.F. Covey. Cholesterol Requirements of Juvenile American Lobster (Homarus americanus). Journal of the Fisheries Research Board of Canada,1975.32(8):p. 1431-1435.
    225. 艾春香,林琼武,李少菁,王桂忠,陈学雷.蟹类的营养需求研究及其配合饲料研制.厦门大学学报(自然科学版),2006.S2:p.205-212.
    226. Hodsdon, M.E., C. Frieden. Intestinal Fatty Acid Binding Protein:The Folding Mechanism As Determined by NMR Studies Michael E. Biochemistry,2000.40(3):p.732-742.
    227. Ghani, F., A.H.B. Wu, L. Graff, C. Petry, G. Armstrong, F. Prigent, M. Brown. Role of Heart-Type Fatty Acid-binding Protein in Early Detection of Acute Myocardial Infarction. Clinical Chemistry,2000.46(5):p.718-719.
    228. Mita, R., M.J. Beaulieu, C. Field, R. Godbout. Brain Fatty Acid-binding Protein and ω-3/ω-6 Fatty Acids. Journal of Biological Chemistry,2010.285(47):p.37005-37015.
    229. Soderhall, I., A. Tangprasittipap, H. Liu, K. Sritunyalucksana, P. Prasertsan, P. Jiravanichpaisal, K. Soderhall. Characterization of a hemocyte intracellular fatty acid-binding protein from crayfish (Pacifastacus leniusculus) and shrimp (Penaeus monodon). FEBS Journal,2006.273(13):p.2902-2912.
    230. Li, W.-W., X.-K. Jin, L. He, Y.-N. Gong, H. Jiang, Q. Wang. Molecular cloning and tissue expression of the fatty acid-binding protein (Es-FABP9) gene in the reproduction seasons of Chinese mitten crab, Eriocheir sinensis Molecular Biology Reports,2010:p.1-9.
    231. Ren, Q., Z.-Q. Du, X.-F. Zhao, J.-X. Wang. An acyl-CoA-binding protein (FcACBP) and a fatty acid binding protein (FcFABP) respond to microbial infection in Chinese white shrimp, Fenneropenaeus chinensis. Fish & Shellfish Immunology,2009.27(6):p.739-747.
    232. Ockner, R.K., J.A. Manning, R.B. Poppenhausen, W.K.L. Ho. A Binding Protein for Fatty Acids in Cytosol of Intestinal Mucosa, Liver, Myocardium, and Other Tissues. Science,1972. 177(4043):p.56-58.
    233. Wu, Q., W. Chang, J. Rickers-Haunerland, T. Higo, N.H. Haunerland. Characterization of a new fatty acid response element that controls the expression of the locust muscle FABP gene. Molecular and Cellular Biochemistry,2002.239(1):p.173-180.
    234. Cavagnari, B.M., P.Y. Scaraffia, J.F. Haller, N.M. Gerez de Burgos, J.A. Santome. Presence of a Fatty Acid-Binding Protein and Lipid Stores in Flight Muscles of Dipetalogaster maximus (Hemiptera:Reduviidae). Journal of Medical Entomology,2000.37(6):p.938-944.
    235. Folli, C., I. Ramazzina, R. Percudani, R. Berni. Ligand-binding specificity of an invertebrate (Manduca sexta) putative cellular retinoic acid binding protein. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2005.1747(2):p.229-237.
    236. THUMSER, A.E.A., J. VOYSEY, D.C. WILTON. Mutations of recombinant rat liver fatty acid-binding protein at residues 102 and 122 alter its structural integrity and affinity for physiological ligands. Biochem. J.,1996.314(3):p.943-949.
    237. Holme, M.-H., C. Zeng, P.C. Southgate. A review of recent progress toward development of a formulated microbound diet for mud crab, Scylla serrata, larvae and their nutritional requirements. Aquaculture,2009.286(3-4):p.164-175.
    238. Soudant, P., Y. Marty, J. Moal, R. Robert, C. Qu 閞, J.R. Le Coz, J.F. Samain. Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture,1996.143(3-4):p.361-378.
    239. Li, J.Y., Z.L. Guo, X.H. Gan, D.L. Wang, M.F. Zhang, Y.L. Zhao, Effect of different dietary lipid sources on growth and gonad maturation of pre-adult female Cherax quadricarinatus (von Martens).2011, Blackwell Publishing Ltd. p. e853-e860.
    240. Terpe, K. Overview of tag protein fusions:from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology,2003.60(5):p.523-533.
    241. LaVallie, E.R., E.A. DiBlasio, S. Kovacic, K.L. Grant, P.F. Schendel, J.M. McCoy. A Thioredoxin Gene Fusion Expression System That Circumvents Inclusion Body Formation in the E. coli Cytoplasm. Nat Biotech,1993.11(2):p.187-193.
    242. Tsumoto, K., D. Ejima, I. Kumagai, T. Arakawa. Practical considerations in refolding proteins from inclusion bodies. Protein Expression and Purification,2003.28(1):p.1-8.
    243. Rudolph, R., H. Lilie. In vitro folding of inclusion body proteins. The FASEB Journal,1996. 10(1):p.49-56.
    244. Buchner, J., I. Pastan, U. Brinkmann. A method for increasing the yield of properly folded recombinant fusion proteins:Single-chain immunotoxins from renaturation of bacterial inclusion bodies. Analytical Biochemistry,1992.205(2):p.263-270.
    245. Jakoby, M.G., K.R. Miller, J.J. Toner, A. Bauman, L. Cheng, E. Li, D.P. Cistola. Ligand-protein electrostatic interactions govern the specificity of retinol-and fatty acid-binding proteins. Biochemistry,1993.32(3):p.872-878.
    246. Distel, R.J., G.S. Robinson, B.M. Spiegelman. Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. Journal of Biological Chemistry,1992. 267(9):p.5937-41.
    247. Jump, D.B. Dietary polyunsaturated fatty acids and regulation of gene transcription. Current Opinion in Lipidology,2002.13(2):p.155-164.
    248. Liu, R.-Z., X. Li, R. Godbout. A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals:transcription in rat retina and testis. Genomics,2008. 92(6):p.436-445.
    249. Di Nunzio, M., F. Danesi, A. Bordoni. n-3 PUFA as Regulators of Cardiac Gene Transcription: A New Link between PPAR Activation and Fatty Acid Composition. Lipids,2009.44(12):p. 1073-1079.
    250. Fujishiro, K., Y. Fukui, O. Sato, K. Kawabe, K. Seto, K. Motojima. Analysis of tissue-specific and PPARa-dependent induction of FABP gene expression in the mouse liver by an in vivo DNA electroporation method. Molecular and Cellular Biochemistry,2002.239(1):p.165-172.
    251. Motojima, K. Differential effects of PPAR[alpha] activators on induction of ectopic expression of tissue-specific fatty acid binding protein genes in the mouse liver. The International Journal of Biochemistry & Cell Biology,2000.32(10):p.1085-1092.
    252. Jones, G., P.A. Sharp. Ultraspiracle:An invertebrate nuclear receptor for juvenile hormones. Proceedings of the National Academy of Sciences,1997.94(25):p.13499-13503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700