用户名: 密码: 验证码:
三维颅面相似度比较的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机辅助颅面复原是随着计算机的发展而兴起的一门新技术,它以现代解剖学为理论依据,以传统颅面复原技术为基础,是通过计算机的辅助对活体颅面进行修复和重塑、对未知颅骨进行面貌复原的技术。这项技术可应用在考古学、人类学、医学、公共安全系统等多个领域,具有广阔的应用发展前景。迄今在颅面复原算法方面已开展了大量工作,但颅面复原后期结果评价研究却仍是一个挑战性的难题,三维颅面相似度比较正是其中重要一环。该项研究可为颅面复原结果定性和定量的分析提供基础,并可应用在颅面复原前筛选颅面、颅面检索等其他方面。本文以此为研究背景,针对三维颅面的特点提取其形状特征,对三维颅面几何相似度比较展开研究,给出三维颅面比较的方法。
     论文主要工作及创新点如下:
     1.提出一种结合局部平面对称和力矩平衡的三维模型姿态估计方法。通过三维模型的CPCA坐标平面确立其全局对称平面和初始姿态,提出局部对称长度比度量三维模型的局部对称性,使用最大局部对称长度比确立具有局部对称性的三维模型的最终姿态,使用力矩平衡原理确立不具有局部对称性的三维模型的最终姿态。
     2.基于上述三维模型姿态估计的方法,提出估计三维颅面姿态的方法。考虑到三维颅面更需要在面部进行对齐,为此通过对齐颅面正中矢状面轮廓的办法估计颅面姿态。求出颅面的正中矢状面轮廓线,每间隔一个固定角度对轮廓线进行采样,得到能够反映其形状的轮廓点。将不同颅面的轮廓点进行对齐,从而得到颅面的最终姿态。最后对本文使用的数据库中的颅面进行了姿态估计。
     3.提出使用Principal Warps进行颅面相似度比较的算法。将Principal Warps扩展到两个三维模型同构特征点间的形状变形分析,进而将两个颅面的几何相似度比较看作是一个参考颅面到另一个颅面的弯曲变形,弯曲变形程度越小说明两个颅面越相似。首先选择对应颅面特征点,然后以薄板样条函数建立二者间的映射,计算两个颅面对应特征点的弯曲变形矩阵,并用参考颅面的Principal Warps为基表示该矩阵,在此基础上定义了颅面相似度的计算公式,从而实现对三维颅面几何相似度比较。
     4.提出基于地图投影进行颅面相似度比较的方法。算法利用航海图常用的墨卡托投影将不可展的三维颅面模型展开成平面,然后引入大地高来反映三维颅面模型展开后的弯曲程度,最终形成展开曲面并将其划分成小曲面。选择改进锥曲率作为展开曲面离散网格点曲率的估算方法,计算每个小曲面的四个标量:大地高均值、大地高方差、锥曲率均值、锥曲率方差,以此作为衡量小曲面的四个属性,定义小曲面间的距离,进一步定义展开曲面间的距离,通过比较其距离来衡量颅面间的相似度。
     5.提出描述三维模型形状变化的描述符:自变化形状描述符。选择一系列等间距互相平行的平面切割三维模型,得到一组模型的切片。定义两个相邻切片间的差来反映切片间的形状变化,将所有切片的差值组成的向量定义为三维模型的自变化形状描述符。该描述符反映了三维模型的形状变化趋势,可用来作为三维模型整体形状比较的依据。最后给出算法进行三维颅面相似度比较。
     6.提出半径-相对角直方图算法。针对相对角直方图算法计算结果不稳定以及计算时间长的问题,首先确立三维颅面对称平面的法向量为计算参考的第一主轴,然后定义一组同心球壳,将三维颅面的点划分在不同的球壳区间内,分区计算不同区间内点的相对角,在此基础上定义一个区间的相对角分布,进一步得到三维颅面在所有球壳上的半径-相对角直方图。引入卡方距离计算颅面间的距离,进行颅面相似度比较。
Computer aided craniofacial reconstruction, an emerging technology based on modern anatomy and traditional technologies, is used to reshape the face of a living person or to restore the face on the skull of a dead. This technology has wide development prospects in many fields such as archaeology, anthropology, iatrology and public safety system. So far some progresses have been made in the study of construction, but construction effects evaluation is still a challenging and difficult scheme. A vital part of evaluation is comparison of craniofacial shape similarities, which can set the stage for the qualitative and quantitative analysis for construction effects and can further be used in cranioface screening and retrieval. This thesis is concerned with comparison of3D craniofacial shape similarities. According to the characteristics of3D craniofaces, this thesis investigates on a series of methods to extract the shape features of3D craniofaces and then to compare them. The main work of this thesis is summarized as follows:
     1. A combined partial symmetry and moment balance method for pose estimation is presented. First CPCA coordinate planes of a3D model are computed to establish the model's symmetry planes and its initial pose. Then a new measure, which is called partial symmetry length ratio (PSLR), is introduced to judge whether the model is partial symmetry or not. If the model is partial symmetry, the pose with maximal PSLR is the estimated pose; otherwise moment balance is used to estimate the model's final pose.
     2. A method of pose estimation for3D craniofaces is introduced based on the above method. When estimating poses of3D craniofaces, their faces need to be aligned at first. The median plane is selected to solve this problem. For a cranioface the contour of its median plane is computed. Corresponding to a fixed angular sampling interval the contour is resampled to get a set of points, which can represent the shape of the median plane. The point set is aligned to another well-aligned set to get the final pose of the cranioface. The method was used to estimate the poses of all craniofaces in our database.
     3. A method of comparison of3D craniofacial shape similarities based on principal warps is proposed. In our approach principal warps are extended to analyze shape deformation between the homologous landmarks of3D models. And comparison of two craniofaces is regarded as the deformation of the referenced one into the other. The more similar they are, the smaller deformation is. First the homologous landmarks are selected from the two craniofaces. Then thin-plate spline is used to establish a map between them and to compute a bending transformation matrix. The matrix can be represented by new bases, which are the principal warps of the referenced cranioface. And on that basis, the similarity formula is defined to compare craniofacial shape similarities.
     4. A method of comparison of craniofacial similarities based on map projection is developed. Mercator projection, which is commonly used for navigation, is introduced to map3D cranioface on a flat surface. Then geodetic height is represented the curvature of the surface. Thus a developed curving surface is got and is divided into small cells. An improved cone-curvature estimation method is developed to compute the curvature of the vertices in the cells. Four measures, which is height mean, height variance, cone-curvature mean and cone-curvature variance, are used to define the distance between each cell, and further to define the distance between two curving surfaces. Craniofacial similarities are compared by the distance.
     5. A shape descriptor, self-difference shape descriptor (SDSD), is proposed to describe the shape of3D model. A set of parallel planes with equal interval are selected to cut a model. Each plane intersects with the model and the set of the intersection points is called a slice. All slices will represent the shape of the model. The difference of two neighboring slices will reflect local shape variation of the model. Therefore SDSD is defined as a vector, whose component consists of the difference. SDSD can represent shape variation trend of the model. Supposing different models have different shape variation trends, this descriptor can be used to represent3D models. Lastly a computing method is given to compare similarities of craniofaces.
     6. A method of radius relative angle-context distribution (RRACD) is introduced to solve the problems in traditional RACD methods, such as unstable results and long-time computation. The normal of the symmetry plane of a cranioface is regarded as the principal axis instead of the first PCA axis. Then a group of concentric spherical shells are constructed to partition the vertices of the cranioface into different shell sections. For each section the relative angle-context distribution is defined by relative angles of the vertices inside it. Thus RRACD is the distributions of all sections. Finally chi-square distance is used to measure craniofacial distance and to compare craniofaces.
引文
[1]Welcker H. Schiller's Schadel und Todtenmaske, nebst Mittheihungen uber Schadel und Todtenmaske Kant's[M]. Germany:Branschweig,1883
    [2]His W. Anatomische forschungen ueber Johann Sebastian Bach's gebeine und antlitz' nebst bemerkungen ueber dessen bilder[J]. Abhandlungen der Saechsischen Gesellcshaft und Wissenschaften zu Leipzing,1895,22:379-420
    [3]格拉西莫夫.从头骨复原面貌的原理[M].北京:科学出版社,1958
    [4]Turner W D, Brown R E B, Kelliher T P, et al. A novel method of automated skull registration for forensic facial approximation[J]. Forensic Science International,2005,154: 149-158
    [5]王明辉,王蕾.古代人骨研究中慎用“复原”二字[N].中国文物报,2004-12-31(7)
    [6]Taylor K T. Forensic Art and Illustration[M].Boca Ruton:CRC Press LLC,2001
    [7]Archer K, Coughlan K, Forsey D, et al. Software tools for craniofacial growth and reconstruction[A]. Graphics Interface[C], Vancouver Canada,1998
    [8]Verze Laura. History of facial reconstruction[J]. Acta Biomed,2009,80:5-12
    [9]Wilkinson C M. Forensic facial reconstruction[M]. Cambridge:Cambridge University Press,2004:157-199
    [10]Snow C C, Gatliff B P, Me Williams K R. Reconstruction of facial features from the skull: An evaluation of its usefulness in forensic anthropology [J]. American Journal of Physical Anthropology,1970,33:221-228
    [11]Farrar F. From skull to visage a forensics technique for facial restoration[J]. The Police Chief,1977,4:78-80
    [12]Cherry D G, Angel J L. Personality Reconstruction from Unidentified Remains[J]. FBI Law Enforcement Bulletin,1977,48:12-15
    [13]Gatliff B P. Facial sculpture on the skull for identification[J]. The American Journal of Forensic Medicine and Pathology,1984,5:327-332
    [14]Gatliff B P, Snow C C. From skull to visage[J]. Journal of Biocommunication,1979, 6(2):27-30
    [15]Helmer R P, Rohricht S, Petersen D, et al. Assessment of the reliability of facial reconstruction[M]//Iscan M Y, Helmer R P. Forensic Analysis of the Skull:Craniofacial Analysis, Reconstruction, and Identification. New York:Wiley-Liss,1993:229-246
    [16]Wikimedia Commons. http://en.wikipedia.org/wiki/Forensic_facial_reconstruction[OL], 2012-3-7
    [17]Neave R A H. Facial reconstruction of skeletal remains:three Egyptian examples[J]. MASCA J,19801(6):175-177
    [18]Neave R A H. Reconstruction of the skull and the soft tissues of the head and face of "Lindow Man"[J]. Can. Soc. Forens. Sci. J,1989,22(1):43-53
    [19]Wilkinson C M.'Virtual' Sculpture as a method of computerised facial reconstruction [A]. Proceedings of the 11th Scientific Meeting of the International Association for Craniofacial Iidentification[C], Lythrum press,2004:69
    [20]Abate A F, Nappi M, Ricciardi S, et al. FACES:3D facial reconstruction from ancient skulls using content based image retrieval[J]. Journal of Visual Languages and Computing, 2004,15:373-389
    [21]Hill B, Macleod I, Watson L. Facial reconstruction of a 3500 years old Egyptian mummy using axial computed tomography [J]. Journal of Audiovisual Media in Medicine, 1993,16(1):3-11
    [22]Hill B, Macleod I, Crothers L. Rebuilding the face of George Buchanan[J]. J Journal of Audiovisual Media in Medicine,1996,19(1):5-11
    [23]Macleod I, Hill B. Computerised facial reconstruction of Robert the Bruce by:Vanezis P. and Vanezis M.[M]//Heads and Tales, Reconstructing faces, Edinburgh:National Museums of Scotland Publishing Limited,2001:42
    [24]Stephan C N, Henneberg M. Building faces from dry skulls:are they recognized above chance rates?[J] Journal of Forensic Sciences,2001,46(3):432-440
    [25]Vanezis M, Vanezis P. Cranio-facial reconstruction in forensic identification-historical development and a review of current practice[J]. Medicine, Science and the Law,2000,40(3), 197-205
    [26]Vanezis M. Forensic facial reconstruction using 3-D computer graphics:evaluation and improvement of its reliability in identification[D]. Glasgow:University of Glasgow,2008
    [27]Vanezis P, Vanezis M, Tagliaro F. Ipotesi Di Reconstruzione Del Volto Di Cangrande Della Scalla:Reconstruzione Facciale Di Cangrande Della Scalla In Cangrande della Scalla: La morte e il corredo di un principe nel medioevo europeo[M]. Venezia:Marsilio Editori, 2004:66-69
    [28]Giuseppe Attardi, Marilina Betro, Maurizio Forte, et al.3D facial reconstruction and visualization of ancient Egyptian mummies using spiral CT data Soft tissues reconstruction and textures application[A]. SIG-GRAPH99[C]. Los Angeles,1999
    [29]朱泓,周慧,林雪川.老山汉墓女性墓主人的种族类型、DNA分析和颅像复原[J]. 吉林大学社会科学学报,2004,02:21-27
    [30]林雪川,赵福生,潘其风,等.北京市石景山区老山汉墓出土的颅骨的计算机虚拟三维人像复原[J].文物,2004,0881-87
    [31]刘昊.3D技术成功复原唐代公主芳容[N].北京:北京日报,2011-4-16(7)
    [32]刘恕.三维颅面鉴定系统建立起56个民族五官数据库[N].北京:科技日报,2009-10-19(001)
    [33]Zachow Stefan, Hege Hans-Christian, Deuflhard Peter. Computer-assisted planning in cranio-maxillofacial surgery[J]. Journal of Computing and Information Technology-CIT 14, 2006,1:53-64
    [34]Buzug M T. Special issue on computer-assisted craniofacial reconstruction and modeling[J]. Journal of Computing and Information Technology-CIT 14,2006,1:1-6
    [35]Hierl T, Klisch N, Kloppel R, et al. Therapie ausgepragter Mittelgesichtsriicklagen mit Hilfe der Distraktionsosteogenese. Mund Kiefer GesichtsChir,2003,7:7-13
    [36]Keeve Erwin, Girod Sabine, Augustin Arno, et al. Interactive craniofacial surgery simulation[J]. Lecture Notes in Computer Science,1996,1131/1996:541-546
    [37]Vanezis P, Vanezis M, McCombe G, et al. Facial reconstruction using 3D computer graphics[J]. Forensic Science International,2000,108:81-95
    [38]Terajima Masahiko, Nakasima Akihiko, Aoki Yoshimitsu, et al. A 3-dimensional method for analyzing the morphology of patients with maxillofacial deformities[J]. American Journal of Orthodontics and Dentofacial Orthopedics,2009,136(6):857-866
    [39]Hao-Ren Ke, Hong-Jang Jean, Zen-Chung Shih. A study on computer-aided facial reconstruction in forensic medicine[A].1998 International Symposium Workshop on Computer Graphics and Virtual Reality[C]. Tainan,1998:15-22
    [40]Berar Maxime, Desvignes Michel, Bailly Gerard, et al.3D semi-landmarks-based statistical face reconstruction[J]. Journal of Computing and Informaion Technology-CIT 14, 2006,1:31-43
    [41]Tilotta Francoise, Richard Frederic, Glaunes Joan, et al. Construction and analysis of a head CT-scan database for craniofacial reconstruction[J]. Forensic Science International,2009, 191:112.el-112.el2
    [42]Ma Lihong, Jiang Shengmin, Zhang Yu, et al. Craniofacial landmark detection by layered diffusion and dilated skeleton maps[A].2006 9th Int. Conf. Control, Automation, Robotics and Vision[C], Singapore,2006:669-673
    [43]Claes Peter, Vandermeulen Dirk, Greef De Sven, et al. Statistically deformable face models for cranio-facial reconstruction[J]. Journal of Computing and Information Technology, 2006.14:21-30
    [44]Jones M W. Facial reconstruction using volumetric data[A]. VMV2001[C]. Germany, 2001:135-142
    [45]李康.基于颅骨的人脸建模技术研究及在法医面貌复原中的应用[D].西安:西北大学,2006
    [46]王银燕,梁荣华,吴福理,等.基于RBF插值的颅面复原算法[J].系统仿真学报,2008,20(增刊):404-410
    [47]兰玉文,李跃威,陈守榕,等.三维颅面复原指标系统的研究[A].第11届国际颅面鉴定学术会议论文集[C].大连,2004:102-121
    [48]王扬扬,李一波,姬晓飞.基于特征点的颅面复原技术[J].沈阳航空工业学院学报,2008,25(2):46-49
    [49]Rhine J S, Campell H R. Thickness of facial tissues in American blacks[J]. Journal of Forensic Sciences,1980,25(4):847-858.
    [50]Rhine J S, Moore C E. Facial reproduction tables of facial tissue thickness of American Caucasoids in forensic anthropology[R], Albuquerque University of New Mexico:Technical Report Maxwell Museum Technical Series 1,1984
    [51]Williamson M A, Nawrocki S P, Rathbun T A. Variation in midfacial tissue thickness of African-American children[J]. Journal of Forensic Science,2002,47(1):25-31
    [52]De Greef S, Claes P, Vandermeulen D. Large-scale in-vivo Caucasian facial soft tissue thickness database for craniofacial reconstruction[J]. Forensic Sci Int,2006, Suppl 1:126-46
    [53]Phillips V, Smuts N. Facial reconstruction:utilization of computerized tomography to measure facial tissue thickness in a mixed racial population[J], Forensic Sci. Int.,1996,83: 51-59.
    [54]Aulsebrook W A, Becker P J, Iscan M Y. Facial soft-tissue thicknesses in the adult male Zulu[J]. Forensic Science International,1996,79(2):83-102
    [55]Inas Hassan El-Mehallawi, Eman Mostafa Soliman. Ultrasonic assessment of facial soft tissue thicknesses in adult Egyptians[J]. Forensic Science International,2001,117(1):99-107
    [56]Suzuki K. On the thickness of the soft parts of the Japanese face[J]. Anthropol. Soc. Nippon,1948,60:7-11
    [57]Utsuno Hajime, Kageyama Torn, Uchida Keiichi, et al. Facial soft tissue thickness in Japanese children[J]. Forensic Science International,2010,199:109.el-109.e2
    [58]兰玉文,才东升.X线摄影法颅像重合鉴定标志点的研究[J].刑事技术增刊,1982, 17-22
    [59]Starbuck J M, Ward R E. The affect of tissue depth variation on craniofacial reconstructions[J]. Forensic Science International,2007,172:130-136
    [60]Gladilin Evgeny. Biomechanical modeling of soft tissue and facial expressions for craniofacial surgery planning[D]. Berlin:Freien University,2002
    [61]Obaidellah U H, Seivanathan N, Sankupellay M, et al. Soft tissue simulation in craniofacial surgery using finite element models[A]. Proceeding ACST07 Proceedings of the third conference on IASTED International Conference:Advances in Computer Science and Technology[C]. ACTA Press Anaheim,2007:365-370
    [62]Lestrel P E. Some Approaches toward the mathematical modeling of the craniofacial complex[J]. Journal of Craniofacial Genetics and Developmental Biology,1989,9:77-91
    [63]董建民.颅面面貌形态学的几何分析[D].西安:西北大学,2008
    [64]Moreno A B, Sanchez A, Frias-Martinez E. Three-dimensional facial surface modeling applied to recognition[J]. Engineering Applications of Artificial Intelligence.2009,22: 1233-1244
    [65]Archer M K. Craniofacial reconstruction using hierarchical B-spline interpolation[D]. Canada:The university of British Columbia,1997
    [66]Banvard R A. The Visible Human Project (?)mage Data Set from Inception to Completion and Beyond, CODATA 2002[CD]. Frontiers of scientific and technical data,2002
    [67]周明全,耿国华,范江波.计算机辅助的颅骨面貌复原技术[J].西北大学学报(自然科学版),1997,27(5):10-13
    [68]Turner W D, Brown R E B, Kelliher T P, et al. A novel method of automated skull registration for forensic facial approximation[J]. Forensic Science International,2005,154: 149-158
    [69]Mang Andreas, Muller Jan, Buzug TM. A multi-modality computer-aided framework towards postmortem identification[J]. Journal of Computing and Information Technology, 2006,1:7-19
    [70]Vanezis P, Vanezis M, McCombe G, et al. Facial reconstruction using 3D computer graphics[J], Forensic Science International,2000,108:81-95
    [71]Kahler Kolja, Haber Jorg, Seidel Hans-Peter. Reanimating the dead:reconstruction of expressive faces from skull data[A]. Proceedings of SIGGRAPH' 03[C]. New York ACM 2003:554-561
    [72]Vanezis P. Application of 3-D computer graphics for facial reconstruction and comparison with sculpting techniques[J]. Forensic Science International,1989,42:69-84
    [73]朱新懿,耿国华,温超.利用改进的分区统计颅面模型重构颅面[J].计算机工程与应用,2012,48(2):5-7+52
    [74]Kermi A, Marniche-Kermi S, Laskri M T.3D-Computerized facial reconstructions from 3D-MRI of human heads using deformable model approach[A]. Machine and Web Intelligence (ICMWI)[C].Algiers:IEEE Xplore 2010:276-282
    [75]Quatrehomme G, Cotin S, Subsol G, et al. A fully three-dimensional method for facial reconstruction based on deformable models[J]. Journals of Forensic Science,1997,42(4): 649-652
    [76]Thirion J P, Gourdon A. The 3D marching lines algorithm and its application to crest lines extraction[R], INRIA,1992
    [77]孙武峰.基于网格人脸模型的局部器官真实感建模方法研究与实现[D].西安:西北大学,2010
    [78]霍青松.颅骨面貌真实感处理关键技术研究[D].西安:西北大学,2009
    [79]肖红.颅面复原纹理生成的研究[D].沈阳:沈阳航空工业学院,2007
    [80]Lee W S, Wu Y, Magnenat-Thalmaxm N. Cloning and aging in a VR family [A]. Proceedings of IEEE Virtual Reality [C]. Houston,1999:61-68
    [81]郑南宁,付峋,张婷,等.人脸的表情与年龄变换和非完整信息的重构技术(上)[J].电子学报,2003,31(12A):1955-2962
    [82]Chen L H, Saeyor S, Dohi H, et al. A system of 3D hairstyle synthesis based on the Wisp model[J].Visual Computer,1999,15(4):159-170
    [83]Desbrun Mathieu, Kanso Eva, Tong Yiying. Discrete differential forms for computational modeling[A]. ACM SIGGRAPH 2006 Courses on SIGGRAPH 06[C]. ACM Press,2006:39-49
    [84]Claes Peter, Vandermeulen Dirk, Greef De Sven, et al. Craniofacialreconstruction using a combined statistical model of face shape and soft tissue depths:methodology and validation[J]. Forensic Science International,2006,159:147-158
    [85]Lee W J, Wilkinson C M, Hwang H S. An Accuracy Assessment of Forensic Computerized Facial Reconstruction Employing Cone-Beam Computed Tomography from Live Subjects[J]. Journal of Forensic Sciences,2012,57(2):318-327
    [86]Feng Jun, Ip H H S, Lap Yi Lai, et al. Robust point correspondence matching and similarity measuring for 3D models by relative angle-context distributions[J]. Image and Vision Computing,2008,26(6):761-775
    [87]李楠.三维颅面测量及其相似度评估方法的研究与实现[D].西安:西北大学,2011
    [88]Ip H H S, Wong W Y F.3D head models retrieval based on hierarchical facial region similarity [A]. Proceedings of the 15th International Conference on Vision Interface[C]. Calgary,2002:314-319
    [89]Wong Hau-San, Cheung K K T, Ip H H S.3D head model classification by evolutionary optimization of the extended Gaussian image representation. Pattern Recognition,2004,37: 2307-2322
    [90]Krogman W M, Iscan M Y. Restoration of physiognomy [M]//Thomas C C. The Human Skeleton in Forensic Medicine.1986:413-457
    [91]Ubelaker D H, Donnell G O. Computer assisted facial reproduction[J]. Journal of Forensic Science,1992,37:155-162
    [92]Stoney M B, Koelmeyer T D. Facial reconstruction:a case report and review of development of techniques[J]. Medicine, Science and the Law,1999,39(1):49-60
    [93]章志勇.三维模型几何相似性比较的研究[D].杭州:浙江大学,2005
    [94]崔晨旸.三维模型检索中关键技术的研究[D].杭州:浙江大学,2005
    [95]潘翔,张三元,张引,等.一种基于拓扑连接图的三维模型检索方法[J].计算机学报,2004,27(9):1250-1255
    [96]Scholkopf B, Smola A J, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem|J]. Neural Computation,1998,10(6):1299-1319
    [97]王庆刚,李见为.具有局部结构保留性质的PCA改进算法[J].模式识别与人工智能,2009,22(3):388-392
    [98]Vranic D.3D model retrieval[D]. Leipzig:University of Leipzig,2004
    [99]Vranic D, Saupe D.3D model retrieval[A]. Spring Conference on Computer Graphics and its Applications (SCCG2000)[C]. Comenius University,2000:89-93
    [100]朱新懿,耿国华.颅面重构中颅面相似度比较[J].计算机应用研究,2010,27(8):3153-3155
    [101]Mohamed Chaouch, Anne Verroust-Blondet. Alignment of 3D models[J]. Graphical Model,2009,71:63-76
    [102]万丽莉.一种结合法线分布特征的三维模型旋转归一化方法[J].计算机辅助设计与图形学学报,2008,20(6):683-688
    [103]Podolak Joshua, Shilane Philip, Golovinskiy Aleksey, et al. A planar-reflective symmetry transform for 3D shapes[J]. ACM Transactions on Graphics (TOG)-Proceedings of ACM SIGGRAPH 2006,2006,25(3):549-559
    [104]Kazhdan Michael, Funkhouser Thomas, Rusinkiewicz Szymon. Symmetry descriptors and 3D shape matching[A]. Eurographics Symposium on Geometry Processing[C], ACM, 2004:156-166
    [105]Kazhdan M, Chazelle B, Dobkin D, et al. A reflective symmetry descriptor for 3D models[J]. Algorithmica,2004,38(1):201-225
    [106]Minovic P, Ishikawa S, Kato K, Symmetry identification of a 3-D object represented by octree[J]. Pattern Analysis and Machine Intelligence,1993,15(5):507-514
    [107]Princeton Shape Retrieval and Analysis Group. Princeton Shape Benchmark[DB/OL]. http://shape.cs.princeton.edu/benchmark/,2005-3-15
    [108]Osada R, Funkhouser T, Chazelle B, et al. Shape distributions[J]. ACM Transaction on Graphics,2002,21(4):807-832
    [109]Besl P. J., McKay N. D.. A Method for Registration of 3-D Shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256
    [110]张煜,李树祥,陈武凡,等.薄板样条插值函数的改进与应用[J].中国图象图形学报,2003,8(A)spec:46-49
    [111]Arad Nur, Dyn Nira, Reisfeld Daniel, et al. Image warping by radial basis functions: Application to facial expressions[J]. Graphical Models and Image Processing,1994,56(2): 161-172
    [112]Terzopoulos D. Regularization of inverse visual problems involving discontinuities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(04):413-424
    [113]Bookstein L. Fred. Biometrics, biomathematics and the morphometric synthesis[J]. Bulletin of Mathematical Biology,1996,58(2):313-365
    [114]Bookstein L. Fred. Principal Warps:Thin-Plate Splines and the Decomposition of Deformations [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence.1989,11(6): 567-585
    [115]Paquet E, Rioux M, Murching A, et al. Description of shape information for 2-D and 3-D objects[J]. Signal Processing:Image Communication,2000,16(1-2):103-122
    [116]Vranic V D, Saupe D.3D model retrieval with spherical harmonics and moments[A]. Proceedings of the 23rd DAGM Symposium on Pattern Recognition[C]. Berlin: SpringerVerlag,2001:392-397
    [117]Ericson Christer. Real-time collision detection[M]. USA:Morgan Kaufmann publishers, 2004:203-206
    [118]刘海容.形状的曲率表示和分解[D].武汉:华中科技大学,2004
    [119]李基拓.三角化曲面展开技术研究及其应用[D].杭州:浙江大学,2006
    [120]庄梅玲.三维衣身原型去面展平技术的研究[D].上海:东华大学,2010
    [121]陈中贵.网格曲面的展开与可展性优化[D].杭州:浙江大学,2009
    [122]Gao Yue, Dai Qionghai, Zhang Nai-Yao.3D model comparison using spatial structure circular descriptor[J]. Pattern Recognition,2010,43:1142-1151
    [123]钱淡如.航海学[M].北京:人民交通出版社,1993:29-39
    [124]Wikipedia. Mercator projection[OL]. http://en.wikipedia.org/wiki/Mercator_projection, 2012-3-7
    [125]施一民.现代大地控制测量[M].北京:测绘出版社,1993:9-53
    [126]方惠兰,王国瑾.三角网格曲面上离散曲率估算方法的比较与分析[J].计算机辅助设计与图形学学报,2005,17(11):2500-2507
    [127]齐宝明.三角网格离散曲率估计和Taubin方法改进[D].大连:大连理工大学,2008
    [128]Adan Antonio, Adan Miguel. A flexible similarity measure for 3D shapes rccognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(11):1507-1520
    [129]张晓东.三维模型的形状特征提取方法研究[D].东营:中国石油大学(华东),2010
    [130]Tangelder J W H, Veltkamp R C A survey of content based 3D shape retrieval methods[J]. Multimedia Tools and Applications,2007,39(3):441-471
    [131]Paquet Eric, Rioux Marc, Murching Anil, et al. Description of shape information for 2-D and 3-D Objects[J]. Signal Processing:Image Communication,2000,16(1-2):103-122
    [132]张欣,莫蓉,石源,等.一种三维模型形状检索描述符[J].计算机辅助设计与图形学学报,2010,22(5):741-745
    [133]周明全,樊亚春,耿国华.一种基于空间对称变换的三维模型形状描述方法[J].电子学报,2010,38(4):853-859
    [134]潘翔,陈启华,张三元.均值描述符一种紧的三维模型多特征表示[J].计算机辅助设计与图形学学报,2011,23(10):1707-1703
    [135]Ankerst Mihael, Kastenmuller Gabi, Kriegel Hans-Peter, et al.3D shape histograms for similarity search and classification in spatial database[A]. Proceedings of Symposium on Large Spatial Databases[C]. Hong Kong,1999:207-226
    [136]Thompson D W. On Growth and Form[M]. England:Cambridge University Press,196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700