用户名: 密码: 验证码:
酶处理对相思木KP浆氧脱木素影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题通过将生物酶处理与氧脱木素结合,应用不同种类的生物酶及不同的组合方式来探讨酶处理对氧脱木素的脱木素率及碳水化合物降解的影响,其研究成果对提高氧脱木素效果及酶的工业化应用具有重要意义。
     论文对漆酶/木聚糖酶体系(LXS)与常规木聚糖酶X对相思木KP浆进行预处理、及氧脱木素后处理的适宜工艺条件分别优选;研究了LXS及X对相思木KP浆预处理对氧脱木素工艺条件的影响;比较了酶处理对自制硫酸盐蒸煮高卡伯价相思木纸浆、及EMCC深度脱木素低卡伯价纸浆的氧脱木素影响、预处理方式及后处理方式对氧脱木素效果的影响以及四种酶体系——LXS、X、漆酶/介体体系(LMS)及耐高温木聚糖酶XHT对氧脱木素效果的影响;通过分析己烯糖醛酸对氧脱木素及酶处理的影响、通过SEM观察纤维的微观结构、以及HPLC分析酶解液的降解成分分析研究了酶处理对氧脱木素影响的作用机理。研究结果表明:
     1、LXS预处理低卡伯价相思木EMCC硫酸盐浆的适宜酶用量为7IU·g~(-1);LXS预处理后浆料氧脱木素的适宜反应时间、最高反应温度及用碱量分别为60min、100℃和2.5%;利用LXS进行氧脱木素后处理的适宜反应时间及酶用量分别为2h和5IU·g~(-1)。
     2、X预处理低卡伯价相思木EMCC硫酸盐浆的适宜作用时间及酶用量分别为1.5h和4IU·g~(-1);X预处理后浆料氧脱木素的适宜用碱量为2.5%;氧脱木素后X处理的适宜作用时间及酶用量分别为1h和4IU·g~(-1)。
     3、低卡伯价相思木EMCC硫酸盐浆氧脱木素后LXS及X处理的效果均优于预处理;X与LXS相比,X处理提高氧脱木素率和保护碳水化合物的作用不及LXS,但更有利于提高浆料的白度。
     4、自制相思木硫酸盐浆(高卡伯价)进行LXS预处理及后处理的适宜酶用量分别为7IU·g~(-1)和5IU·g~(-1);X预处理及后处理的适宜酶用量分别为6IU·g~(-1)和4IU·g~(-1)。
     5、酶处理对自制相思木硫酸盐浆氧脱木素的影响比EMCC深度脱木素硫酸盐浆要更明显;经LXS后处理,浆料的氧脱木素率提高了11个百分点,粘度较单段氧脱木素相比几乎没有明显下降,白度提高了约4个单位;经X后处理浆料白度可提高约7个单位。
     6、从对氧脱木素的影响效果及经济可行性来看,四种酶体系中以XHT与氧脱木素结合进行后处理最为合适。
     7、Hex.A去除后酶处理对于提高氧脱木素率、保护浆料粘度及改善白度的作用明显下降;SEM观察到经过酶处理后纤维表面及横切面出现大量的裂隙及孔隙,其中以酶后处理最为明显,为后续漂白中化学药品的渗透和漂白降解产物的溶出创造条件。
     8、氧脱木素前后酶解液的HPLC分析结果显示,X处理液较LXS处理液具有较高的木糖含量,X处理对浆料中的木聚糖具有一定的降解作用。
The effects of enzyme treatments on oxygen delignification of Acacia kraft pulp and its mechanism were investigated. It was explored the influences of the enzyme treatments on delignification rate and degradation of carbohydrate during the oxygen delignification process. The results are of great significance to improve the oxygen delignification and enzyme industrial application.
     The enzyme treatment before and after oxygen delignification were studied. It was researched the influences of enzyme pretreatment on the three primary variables in the subsequent oxygen delignification process. The effects of enzyme treatments on oxygen delignification between high-lignin content pulp and low-lignin content pulp, pretreatment and sebsuquent treatment, and four types of enzyme systems were compared. The mechanism was also investigated by analysis of the hexenuronic acid content in the pulp, SEM observation of the fibers’microstructure, and determination of the sugar content in the filtrate by HPLC. The results indicated:
     1、The optimum enzyme dosage of LXS in the pretreatment of low-lignin content pulp was 7IU/g, in the subsequent process it was 5IU/g and treated for 2 hours. The three primary variables of oxygen delignification after LXS pretreatment were: alkali dosage 2.5%, treated for 60 min at 100℃.
     2、The optimum conditions of X in the pretreatment of low-lignin content pulp were: X dosage 4 IU·g~(-1), treated for 1.5 hours; in the subsequent process they were: X dosage 4 IU·g~(-1),treated for 1 hour. The optimal alkali dosage was 2.5% in the subsequent oxygen delignification process.
     3、The results of subsequent treatment of both LXS and X were better than that of the pretreatment. Compared with X, LXS was better in improving the delignification rate and pulp strength. X was more effective in improving the whiteness of pulp.
     4、The optimum enzyme dosage of LXS in the pretreatment and subsequent of high-lignin content pulp were 7IU/g and 5IU/g respectively; for X, they were 6 IU/g and 4 IU/g respectively.
     5、The effects of enzyme treatment on oxygen delignification were more significant in high-lignin content pulp than in low-lignin content pulp. After subsequent treatment of LXS, the delignification rate of oxygen increased by 11 percents; the viscosity was not dropped obviously; the whiteness of pulp increased by 4% ISO. After subsequent treatment of X, the whiteness of pulp can be increased by 7% ISO.
     6、XHT was the most appropriate enzyme to combine with oxygen delignification in the four enzyme systems to improve the delignification effects and drop the application costs.
     7、The effects of enzyme treatments obviously decreased after Hex.A was removed from the pulp. SEM observation of the microstructure indicated that the fiber surface was rough and there were many tiny holes and cracks in the cross section of the cell wall after the enzyme treatment, among which the subsequent treatment pulp was most obvious.
     8、HPLC analysis of the filtrate before and after oxygen delignification showed that the xylose content was relatively high in the X subsequent filtrate. It indicated that X had better effects on degradation of xylan.
引文
[1]李雪芝,等.改善氧脱木素效果的方法[J].天津造纸, 2005,3:6.
    [2] Patrick C T. Biotechnology in the pulp and paper industry: a review Part 1: tree improvement, pulping and bleaching, and dissolving pulp applications [J]. TAPPI J, 1990,73(4):198.
    [3]谢来苏.制浆造纸的生物技术[M].北京:中国轻工出版社, 2003 .
    [4]付时雨,等.漆酶/介体催化体系中的反应性能[J].中国造纸, 2001, 20(5):1~4.
    [5]尤纪雪,等. 3种不同酶(体系)降解木质素机制初探[J].中国造纸学报, 2008, 23(3): 32~36.
    [6] Waheri M. Proceedings of the Dioxin Conference. CPPA. Toronto. 1989:310.
    [7]谢来苏,等.制浆原理与工程[M].北京:中国轻工业出版社, 2001.
    [8]刘光良.相思属树(Acalia Sp.)材性及制浆造纸适应性(文献综述) [J].林产化工通讯, 1997, (05):3.
    [9]薛国新,等.不同树龄相思树混合木片硫酸盐法制浆[J].中国造纸, 1999, (04):20~21.
    [10]刘善桂,等.生产全漂白硫酸盐相思木浆的探讨[J].纸和造纸, 2001,(05):28~30.
    [11]黄文荣,等.无污染漂白技术是制浆造纸工业可持续发展的方向[J].西南造纸, 2003(1):9.
    [12]胡开堂,译.国际漂白造纸动态[J].国际造纸, 1998, 17(5):25~27.
    [13]李海龙,等.木聚糖酶处理对麦草浆氧脱木素的影响[J].中国造纸, 2006,25(12):1~3.
    [14]于伟东,等.麦草烧碱-AQ浆木聚糖酶与活性氧漂白的研究[J].中国造纸, 1999,4:28~30.
    [15]赵宇,等.桉木硫酸盐浆木聚糖酶漂白的研究[J].黑龙江造纸, 2006,1:26~30.
    [16]金永灿,等.化学纸浆的氧脱木素[J].纤维素科学与技术, 1998, 6(2):5~14.
    [17]赵保路.氧自由基和天然抗氧化剂[M].北京:科学出社,1999.
    [18] Gierer J. Formation and involvement of superoxide (O2-·/HO2·) and hydroxyl (OH·) radicals in TCF bleaching processes: A review [J]. Holzforschung, 1997, 51(1): 34.
    [19] Gierer J, et al. Formation of hydroxyl radical from hydrogen peroxide and their effect on bleaching of mechanical pulp [J]. Journal of Wood Chemistry and Technology, 1993, 13(4): 561.
    [20] Guay D F, et al. Mechanisms of oxidative degradation of carbohydrates during oxygen delignification,Ⅱ. Reaction of photo chemically generated hydroxyl radicals with methylβ-cellobioside [J]. Journal of Wood Chemistry and Technology, 2001, 21(1): 67.
    [21]刘瑞恒,等.氧脱木素过程中氧自由基的产生极其脱木素选择性[J].中国造纸学报. 2008, 23(1):90~93.
    [22]林鹿,等.紫外激光协同O3选择性降解纸浆木素与清除有害HO?自由基[J].中国科学, 2002 (1):60~65.
    [23]安国兴.纸浆氧脱木素技术的现状和发展趋势[J].中国造纸, 1998, (4):58~59.
    [24]李许生,等.硫酸盐浆的氧气漂白技术及强化途径[J].西南造纸, 2003, (6): 16~17.
    [25]崔科丛,等.漂白技术的科研与实践[J].西南造纸, 2001, (3):20.
    [26]陈克复.制浆造纸机械与设备.上册[M].北京:中国轻工业出版社,2003.
    [27] Kirk T K. Degradation of lignin [J]. Microbial degradation of organic compounds, Marcel Dekker Inc, 1984: 399~437.
    [28] Paterson A, et al. Radical breakdown of Lignin [J]. Nature, 1985, 361(6029):575~576.
    [29] Yoshida H. Chemistry of Lacquer [J]. Chem. Soc, 1883, 43: 472~486.
    [30]刘淑珍,等.担子菌漆酶的分离纯化及其性质研究[J].微生物学报, 2003, 43(1):73~78.
    [31]钱亚鹏,等.真菌漆酶及其应用[J].生物工程进展, 2001, 21(5):23~28.
    [32]陈坚,等.环保用酶制剂的研究与应用现状[J].苏州城建环保学院学报, 2002, 15(2):1~7.
    [33]秦梦华,等.酶处理对麦草NaOH-AQ制浆性能的影响[J].中国造纸学报, 2000, 15:33.
    [34] Bourbonnais R, et al. Enzyme delignification of kraft pulp using laccase and a mediator [J].Tappi J, 1996, 79:199.
    [35]林鹿,等.生物制桨化学[M].广州:华南理工大学出版社. 2005.
    [36]尤纪雪,等.漆酶/木聚糖酶体系直接降解木质素的研究[J].纤维素科学与技术, 2008, 16(2):12.
    [37]尤纪雪,等.两种漆酶/木聚糖酶体系降解木质素能力的比较[J].中华纸业, 2009, 28(3):1~5.
    [38]叶汉玲,等.直接降解木质素的漆酶/木聚糖酶体系的合成[J].纤维素科学与技术, 2008, 41~47.
    [39] Liu L, et al. Principle component analysis in F/10 and G/11 xylanase [J]. Biochem. Bio-phys Res Commun, 2004, 322: 277~280.
    [40] Wong K, et al. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications [J]. Microbiol Mol Biol Rev, 1988, 52: 305~317.
    [41] Bray M R, et al. Essential carboxy groups in xylanase A [J]. Biochem. J, 1990, 270: 91~96.
    [42]毛连山,等.木聚糖酶在纸浆漂白中应用的研究现状[J].中国造纸学报, 2006, 3(21):93~96.
    [43]刘亮伟,等.木聚糖酶研究进展[J].河南农业科学, 2006, 6:14~17.
    [44]张学铭,等.己烯糖醛酸在纸浆中的存在及影响[J].中国造纸, 2005, 24(4)45~49.
    [45] Teleman A, et al. Identification of the acidic degradation products of hexenuronic acid by NMR spectroscopy [J]. CarbohydrRes, 1996, 280: 197.
    [46]周学飞.己烯糖醛酸测定新方法[J].纸和造纸, 2005, 7(4): 72~73.
    [47]刘超纲,等.里氏木霉选择性合成木聚糖酶的研究(Ⅰ) [J].林产化学与工业. 1999, 19(2):9.
    [48]石淑兰.制浆造纸分析与检测[M].北京:中国轻工业出版社, 2003.
    [49]梁权峰,等. 4-脱氧-4-己烯糖醛酸水解动力学[J].林产工业, 2003, 30(4):35~36.
    [50] You, J X. et al. Study on direct delignification with laccase/xylanase system [J]. Journal of Wood Chemistry and Technology. 2008, 28(3):227-239.
    [51]李海龙.木聚糖酶处理对纸浆中己烯糖醛酸含量的影响[J].华南理工大学学报(自然科学版), 2008, 7(36):42~45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700