用户名: 密码: 验证码:
过渡金属超常氧化态配合物化学发光新体系的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从20世纪初人们肯定了过渡金属超常氧化态的存在后,国内外的学者开展了大量的关于过渡金属超常氧化态的研究工作。目前人们已经成功地制备和分离出其纯品,不同超常氧化态过渡金属稳定存在形式是不同的。例如在已知的超常氧化态过渡金属中,Ni (Ⅳ), Ag (Ⅲ),Cu(Ⅲ)都是借助于适当的多齿配体而稳定存在,如二过碘酸合镍,二过碲酸合银,二过碘酸合银,银的多肽配合物,二过碘酸合铜,二过碲酸合铜等,而Fe(Ⅵ)则通常以高铁酸盐(如FeO42-)的形式存在。过渡金属超常氧化态配离子具有特殊的结构,在适当的条件下有较高的氧化能力,目前人们对过渡金属超常氧化态的研究主要集中在以下两方面:(1)过渡金属超常氧化态配离子与小分子之间的氧化还原反应动力学和机理研究;(2)过渡金属超常氧化态配离子引发高分子领域中的自由基聚合反应的研究。但到目前为止,过渡金属超常氧化态配合物在发光分析中的应用却很少。
     本论文在第一章中对过渡金属超常氧化态配合物的研究及其在分析化学中的应用作了评述;本论文的研究报告分为三部分:
     一、过渡金属超常氧化态配离子催化鲁米诺-过氧化氢化学发光新体系的研究及其在化学发光生物传感器中的应用
     研究发现过渡金属超常氧化态配离子(二羟基二(过碘酸根)合铜(Ⅲ)配离子(DPC)、二羟基二(过碘酸根)合银(Ⅲ)配离子(DPA)和二羟基二(过碘酸根)合镍(Ⅳ)配离子(DPN))对鲁米诺-过氧化氢化学发光反应均具有很强的催化性能,且远超过通常的金属离子催化剂、过渡金属配合物催化剂、金属蛋白类催化剂和纳米粒子催化剂。例如在低浓度的鲁米诺(10-7 mol L-1)条件下,常用的催化剂(Co2+, Cu2+, Ni2+, Mn2+, Fe3+, Cr3+, K3Fe(CN)6)对鲁米诺-过氧化氢化学发光反应都几乎无催化能力,而过渡金属超常氧化态配离子在相同条件下仍然表现出很强的催化化学发光。由此建立了一种的用于测定过氧化氢的化学发光新体系。克服了文献中报道过的各种鲁米诺-过氧化氢化学发光体系测定过氧化氢所存在的干扰问题,提高了方法的选择性,同时减少的试剂的消耗。
     过氧化氢又是一种基础化学传感器,与产生过氧化氢的酶识别反应相结合,可以构建多种生物传感器。在此设计中酶反应器的制备是一个关键技术,文中设计了一种新颖的将海藻酸钙纤维与纳米介孔二氧化硅相结合作为酶载体的酶反应器。该反应器将氨基化纳米介孔二氧化硅对酶的吸附作用和聚合物对酶的笼蔽效应相结合改善了酶从载体上的泄露问题,同时由于纳米介孔二氧化硅的特殊表面结构,催化增强作用和生物相容性使得被固定在载体上的酶具有较强催化活性并能长时间的保持其稳定性。本文以葡萄糖氧化酶为模板研究了该酶反应器在流通式化学发光生物传感器中的性能。将该酶反应器与鲁米诺-二羟基二(过碘酸根)合镍(Ⅳ)配离子-过氧化氢化学发光体系相结合建立了一种高灵敏度的流通式葡萄糖化学发光生物传感器,检出限比已报道的化学发光传感器低两个数量级。该流通式化学发光生物传感器具有制备简单,响应速度快,寿命长,灵敏度高和操作简单的特点。进而又制备了将葡萄糖氧化酶和β-半乳糖苷酶同时固定在氨基化纳米介孔二氧化硅-海藻酸钙纤维上的双酶反应器。由此构建的化学发光乳糖生物传感器,化学发光强度与乳糖浓度在8.0×10-8-4.0×10-6 g mL-1范围内呈良好的线性关系,方法的检出限是2.7×10-8 g mL-1。该流通式化学发光生物传感器已经成功地应用于测定牛奶中的乳糖含量。
     二、过渡金属超常氧化态配合物作为氧化剂在鲁米诺化学发光体系中的应用研究
     在鲁米诺-过氧化氢-过渡金属超常氧化态配合物化学发光体系中,当过氧化氢缺乏时,过渡金属超常氧化态配合物则主要呈现出高的氧化性,可以氧化鲁米诺产生化学发光,某些化合物可以增敏该化学发光。通过对该体系反应前后的紫外光谱、荧光光谱、化学发光光谱及反应动力学的分析,结合文献中的一些研究成果,本论文认为,这一化学发光体系涉及一系列自由基反应过程。以鲁米诺-二羟基二(过碘酸根)合镍(Ⅳ)配离子(DPN)-异烟肼化学发光体系为例,在反应过程中起氧化作用的活化物种是二羟基一过碘酸合镍配离子(MPN)。它经过两步单电子转移氧化异烟肼逐级生成异烟肼自由基、二氮烯自由基和苯甲酸自由基,同时MPN氧化鲁米诺生成鲁米诺自由基。由异烟肼产生的一系列自由基与鲁米诺自由基反应生成α-羟基过氧化物,α-羟基过氧化物分解生成激发态的氨基邻苯二甲酸根离子,当其由激发态回到基态时,将能量以光子的形式释放出来,产生化学发光。在此研究基础上建立了测定异烟肼、硫酸阿米卡星和硫酸双肼屈嗪的化学发光新方法。
     (1)四价镍配合物作为氧化剂的鲁米诺化学发光新体系的研究
     研究了二羟基二过碘酸合镍配离子在碱性条件下氧化鲁米诺产生化学发光的行为。以异烟肼为模板,通过化学发光光谱和紫外吸收光谱讨论了该发光现象的可能反应机理。该化学发光体系具有高的灵敏度和选择性并且已经成功的应用于血清中异烟肼的测定。
     (2)鲁米诺-二羟基二过碘酸合银配离子化学发光新体系测定硫酸阿米卡星
     实验发现在碱性介质中三价银的配合物能够氧化鲁米诺产生化学发光,而硫酸阿米卡星可以极大地增敏该化学发光。结合流动注射技术建立了测定硫酸阿米卡星的化学发光新方法。在优化条件下,相对化学发光强度与硫酸阿米卡星浓度在5.1×10-8-5.1×10-6 mol L-1范围内呈良好的线性关系,方法的检出限是1.9×10-8 mol L-1(3σ),对浓度为5.1×10-7 mol L-1的硫酸阿米卡星溶液平行测定7次,相对标准偏差是2.8%。将该方法用于测定血清中的硫酸阿米卡星,结果令人满意。
     (3)鲁米诺-二羟基二过碘酸合铜配离子流动注射化学发光法测定硫酸双肼屈嗪
     基于在碱性介质中硫酸双肼屈嗪能极大地增敏鲁米诺-二羟基二过碘酸合铜配离子的化学发光,建立了一种新的流动注射化学发光测定硫酸双肼屈嗪的方法,并且探讨了该发光行为的可能反应机理。在优化条件下,相对化学发光强度与硫酸双肼屈嗪浓度在7.0×10-9-8.6×10-7g mL-1范围内呈良好的线性关系,方法的检出限是2.1×10-9g mL-1(3σ)。对浓度为5.2×10-8 gmL-1的硫酸双肼屈嗪溶液平行测定7次,相对标准偏差是3.1%。该方法具有操作简单,响应迅速,灵敏度高的特点。并且用浓度很低的鲁米诺就可以得到令人满意的分析结果,减少了试剂的消耗量,提高了方法的选择性。该方法已经成功地应用于血清中硫酸双肼屈嗪的测定。
     三、过渡金属超常氧化态配合物直接氧化化学发光反应研究
     研究发现过渡金属超常氧化态配离子(二羟基二(过碘酸根)合铜(Ⅲ)配离子(DPC)、二羟基二(过碘酸根)合银(Ⅲ)配离子(DPA)和二羟基二(过碘酸根)合镍(Ⅳ)配离子(DPN)具有超常的氧化能力使它们能直接氧化某些物质而产生化学发光。基于此建立了过渡金属超常氧化态配合物直接氧化化学发光测定尿酸、肾上腺素、林可霉素的新方法。通过研究体系的动力学曲线、紫外光谱、荧光光谱、化学发光光谱,讨论了直接氧化化学发光新体系可能的反应机理。在过渡金属超常氧化态配合物直接氧化化学发光体系中,尿酸、林可霉素和过渡金属超常氧化态配离子之间(DPA,DPN)发生的是一步双电子转移的氧化还原反应,首先形成激发态的DPN,DPA与分析物的配合物中间体,氧化还原反应通过活化中间体的内界双电子转移来完成,当激发态配合物中间体回到基态时,能量以光的形式释放,产生化学发光。而肾上腺素-DPN体系的反应历程是DPN氧化肾上腺素生成激发态的3,4-二羟基苯乙酮,当其回到基态时发出波长为450 nm的光。
     (1)二羟基二过碘酸合银配离子直接氧化化学发光法测定尿酸
     基于二羟基二过碘酸合银配离子在碱性介质中能够直接氧化尿酸而产生化学发光,建立了一种新的灵敏的测定尿酸的流动注射化学发光新方法。在优化条件下,化学发光强度与尿酸浓度在4.0×10-7-2.0×10-4 mol L-1范围内呈良好的线性关系,方法的检出限是1.2×10-7 mol L-1(3σ)。对浓度为5.0×10-5 mol L-1的尿酸溶液平行测定7次,相对标准偏差是2.1%。该方法与其他已报道的化学发光法相比较具有更高的选择性,已经成功的应用于测定血清中的尿酸含量。
     (2)四价镍直接氧化化学发光法测定林可霉素
     基于在酸性条件下二羟基二过碘酸合镍能够直接氧化林可霉素产生化学发光,建立了测定林可霉素的流动注射化学发光新方法。在优化条件下,相对化学发光强度与林可霉素浓度在8.0×10-9-1.0×10-6g mL-1范围内呈良好的线性关系,方法的检出限是2.5×10-9 gmL-1(3σ),对浓度为1.0×10-7 g mL-1的林可霉素溶液平行测定7次,相对标准偏差为4.0%。将该方法用于测定注射液、血清和尿样中的林可霉素含量,结果令人满意。
     (3)四价镍直接氧化化学发光新方法测定肾上腺素
     报道了一种在碱性介质中二羟基二过碘酸合镍直接氧化肾上腺素产生化学发光测定肾上腺素的新方法。在最优的条件下,相对化学光强度与肾上腺素浓度在1.0×10-7-1.0×10-5g mL-1范围内呈良好的线性关系,方法的检出限是4.0×10-8 g mL-1(3σ)。对浓度为2.0×10-6 g mL-1的肾上腺素溶液平行测定11次,相对标准偏差为3.7%。该方法已经成功的用于测定注射液中肾上腺素的含量。
The application of transition metals in highest oxidation state has been extensively studied since their existence was known in the beginning of the last century. Transition metals in highest oxidation state should be stabilized by chelating with suitable polydentate ligands. The known transition metals in highest oxidation state including [Ag(HIO6)2]5-, [Ag(H2TeO6)2]5-,[Cu(HIO6)2]5-, [Cu(H2Te06)2]5-,[Ni(HIO6)2(OH)2]6-, [Ni(HTeO4)6]2- and FeO42-. Transition metals in highest oxidation state complex have been considerably used in the analysis of several organic compounds and initiator of graft copolymerization due to their particular structure which focus on kinetics and mechanism of oxidation, the existence form of reaction active center and electron transfer reaction and so on.
     The application of Transition metals in highest oxidation state complex in analysis is summarized in Chapter 1. The research work of the dissertation is made up of three sections of novel chemiluminescence systems about transition metals in highest oxidation state complex.
     (I) The study of transition metals in highest oxidation state complex used as catalyter in luminol-H2O2 CL system and its application in chemiluminescence flow-through biosensor
     Transition metals in highest oxidation state complex (DPC, DPN, DPA) possess more excellent catalysis than previously reported (such as Co2+, Cu2+, Ni2+, Mn2+, Fe3+, Cr3+, KIO4, K3Fe(CN)6 and so on) in luminol-hydrogen peroxide CL system with low luminol concentration. It is important that the interference by these catalyzers in the H2O2 determination is absent with lower concentration of luminol and H2O2. The selectivity chemiluminescence reaction of luminol-H2O2-transition metals in highest oxidation state complex has been proposed for the determination H2O2 in rain water and artificial water.
     A novel enzyme reactor was prepared by calcium alginate fiber and amino modified nanosized mesoporous silica (CAF-AMNMS) as support. Combination the adsorption of enzyme on AMNMS with the cage effect of the polymer greatly increases catalytic activity and stability of immobilized enzyme. It was showed that the lifetime, stability and catalytic activity of enzyme reactor greatly improved by incorporating AMS into CAF to efficiently encapsulate enzyme. Glucose oxidase (GOD) was chosen as a model enzyme to explore the possibility of CAF-AMNMS as a matrix for enzyme immobilization in the design of a chemiluminescence (CL) flow-through biosensor. The detection limit of the flow-through biosensor combined with a novel luminol-dihydroxydiperiodatonickelate (DPN) CL system was lower than other reported CL biosensor. The proposed biosensor exhibits short response time, easy operation, long lifetime, high catalytic activity, high sensitivity and simple assembly. Then a novel enzyme reactor with co-immobilization ofβ-galactosidase and glucose in calcium alginate fiber and amino modified nanosized mesoporous silica (CAF-AMNMS) was prepared. The enzyme reactor was applied to prepare a chemiluminescence (CL) flow-through biosensor combined with a novel luminal-dihydroxydiperiodatonickelate (DPN) CL system we reported. The concentration range of linear response is 8×10-8-4×10-6 g mL-1 with the detection limit of 2.7×10-8 g mL-1 (3σ). It had been successfully applied to determine lactose in milk.
     (Ⅱ) Transition metals in highest oxidation state complex used as oxidant in luminol CL system
     Transition metals in highest oxidation state complex (DPC, DPN, DPA) are good oxidants which can react with luminol to emit CL in alkaline medium. The CL intensity could be greatly enhanced by some compounds. In this system, using low concentration luminol can get excellent experimental result with higher selectivity than other luminol system. The possible mechanism of this system was first proposed based on the kinetic characteristic of the reaction, CL spectrum and UV spectra. Luminol-DPN-isoniazid CL system as the example, the oxidation reaction of MPN (main reactive form of the DPN) and isoizid proceeds via formation of three free radicals (isoniazid radical, diazene radical and isonicotinoyl) by two reversible one-electron transfer processes, at the same time, MPN oxidates luminol to form luminol radical. Luminol radical reacts with three radical from isoniazid to produce proxy anion. proxy anion decomposes to electronically excited 3-aminophthalate with loss nitrogen and then contributes CL emission by returning to ground state. Isoniazid, amikacin sulfate and dihydralazine sulfate have been determined based on the CL reaction.
     (1) New luminol chemiluminescence reaction using tetravalent nickel-periodate complex as a oxidant and its applications
     Here we report a new chemiluminescence (CL) reaction between luminol and tetravalent nickel-periodate complex (dihydroxydiperiodatonickelate, DPN) in alkaline medium. The CL intensity could be greatly enhanced by some compounds. The application of luminol-DPN system was studied using isoniazid as a model. In this system, luminol with very low concentration can get excellent experimental result with higher selectivity than other luminol system. It had been successfully applied to determine isoniazid in serum.
     (2) New luminol chemiluminescence reaction using dihydroxydiperiodatoargentate as oxidant for the determination of amikacin sulfate
     A new chemiluminescence (CL) reaction between luminol and dihydroxydiperiodatoargentate (K2 [Ag (H2IO6) (OH)2], DPA) was observed in alkaline medium. The CL intensity could be greatly enhanced by amikacin sulfate (AKS). So a new CL method for the determination of amikacin sulfate was built by combining with flow injection technology. The concentration range of linear response is 5.1×10-8-5.1×10-6mol L-1 with the detection limit of 1.9×10-8 mol L-1 (3σ). The proposed method had good reproducibility with the relative standard deviation 2.8%(n=7) for 5.1×10-7 mol L-1 of amikacin sulfate. It have been successfully applied to determine amikacin sulfate in serum.
     (3) Flow-injection chemiluminescence determination of dihydralazine sulfate in serum using luminol and dihydroxydiperiodatocuprate (Ⅲ) system
     A novel flow-injection chemiluminescence (CL) method for the determination of dihydralazine sulfate (DHZS) is described. The method is based on the reaction of luminol and dihydroxydiperiodatocuprate (K2 [Cu (H2IO6) (OH)2], DPC) in alkaline medium to emit CL, which is greatly enhanced by DHZS. The optimum condition for the CL reaction was in detail studied using flow injection system. The experiments indicated that under optimum condition, the CL intensity was linearly related to the concentration of DHZS in the range of 7.0×10-9-8.6×10-7g mL-1 with a detection limit (3σ) of 2.1×10-9 g mL-1. The proposed method had good reproducibility with the relative standard deviation 3.1%(n=7) for 5.2×10-8 g mL-1 of DHZS. This method has the advantages of simple operation, fast response and high sensitivity. The special advantage of the system is that very low concentration of luminol can react with DPC catalyzed by DHZS to get excellent experiment results. And CL cannot be observed nearly when luminol with same concentration reacts with other oxidants, so luminol-DPC system has higher selectivity than other luminol CL systems. The method has been successfully applied to determine DHZS in serum.
     (Ⅲ) Direct oxidation by transition metals in highest oxidation state complex CL system possesses high selectivity which has been applied in determination of uric acid, lincomycin an adrenaline.
     Transition metals in highest oxidation state complex (DPC, DPN, DPA) are good oxidants in a medium with an appropriate pH value which can direct oxidate some compounds to emit CL. A flow injection CL method for the determination of uric acid, lincomycin and adrenaline based on the direct oxidation by transition metals in highest oxidation state complex CL system. The possible mechanism of direct oxidation CL system was first proposed based on the kinetic characteristic of the reaction, CL and fluorescence spectrum, UV spectra. In direct oxidation by transition metals in highest oxidation state complex CL system, uric, lincomycin react with DPA and DPN respectively by the oxidation of a single reversible two-electron transfer process to form excited complex of DPN-, DPA- analyte, then contributes CL emission by returning to ground state. But in DPN-adrenaline CL system, DPN oxidates adrenaline to produce excited 3,4-dihydroxyacetophenone which maximal fluorescence wavelength is located at 450 nm, then emit 450 nm CL by returning to ground state.
     (1) A novel flow-injection chemiluminescence determination of uric acid based on dihydroxydiperiodatoargentate (Ⅲ) oxidation
     A novel and high selectivity flow-injection chemiluminescence (FI-CL) system with dihydroxydiperiodatoargentate (Ⅲ) (DPA) is developed for the determination of uric acid for the first time. It is based on the reaction of dihydroxydiperiodatoargentate (Ⅲ) (DPA) with uric acid in alkaline medium to emit CL. With the peak height as a quantitative parameter applying optimum working conditions, the relative CL intensity was linear with the uric acid concentration in the range of 4.0×10-7-2.0×10-4 mol L-1 with a detection limit of 1.2×10-7 mol L-1(3σ). The relative standard deviation (RSD) was 2.1% for 5.0×10-5 mol L-1 uric acid (n=7). The proposed method hold higher selectivity than other CL methods and was applied to determination of uric acid in human serum. The possible CL reaction mechanism was also discussed briefly.
     (2) A novel chemiluminescence reaction system for the determination of lincomycin with dihydroxydiperiodatonickelate (Ⅳ)
     A sensitive and high selective chemiluminescence (CL) method was developed for the determination of lincomycin in acid medium using dihydroxydiperiodatonickelate (DPN) as oxidant. The mechanism leading to luminescence is discussed by comparing the spectra of fluorescence and CL. Relative CL intensity is linear in the range from 8.0×10-9-1.0×10-6 g mL-1, the limit of detection is 2.5×10-9g mL-1 (3a), and the relative standard deviation is 4.0% at 1.0×10-6g mL-1 of lincomycin (n=7). The method was successfully applied to determination of lincomycin in injections, human urine, and in serum samples.
     (3) A novel chemiluminescence reaction system for the determination of adrenaline with dihydroxydiperiodatonickelate (Ⅳ)
     A novel chemiluminescence (CL) system with dihydroxydiperiodatonickelate (Ⅳ) (DPN), for the first time, is developed for the determination of adrenaline. The possible CL emission mechanism was briefly discussed by comparing the fluorescence emission with CL spectra. Under the optimum conditions, the relative CL intensity was linear over the concentration ranging from 1.0×10-7 to 1.0×10-5 g mL-1 with a detection limit of 4.0×10-8 g mL-1(3σ) and relative standard deviation was 3.7 % for 2.0×10-6 g mL-1 adrenaline (n=11). The proposed method has been successfully applied to the determination of adrenaline in pharmaceutical preparations.
引文
[1]王立平,单金缓,孙汉文.过渡金属超常氧化态配离子的存在形式[J].河北大学学报(自然科学版),2004,24:320-325.
    [2]M.Vrtis. Tervalent Copper [J]. Rec. Trav. Chim.,1925,44:425-434.
    [3]L. Malaprade. Crystalline Cupriperiodates [J]. Compt. Rend.,1973,204:979-980.
    [4]L. Malatesta. Salts of Trivalent Copper and Silver [J]. Gazz. Chim. Ital.,1941,71: 467-474.
    [5]L. J. Kirschenbaum, J. H. Ambrus, G. Atkinson. Kinetics of Silver (Ⅲ) Complexation by Periodate and Tellurate Ions [J]. Inorg. Chem.,1973,12 (12): 2832-2837.
    [6]吴明姆,苏锵,胡宁海.水合二高碘酸合铜(Ⅲ)酸钠钾配合物的合成、结构与光谱性质[J].无机化学学报,1993,9(1):48-52.
    [7]吴明姆,苏锵,胡宁海.水合二高碲酸合铜(Ⅲ)氢钠配合物的合成、结构和紫外吸收光谱[J].应用化学,1992,9(5):65-69.
    [8]P. Ray, B. Sarma. Magnetochemical Studies in Valeacy (Ⅳ) Tetrapositive Nickel as Alkali Nickel Periodates [J]. J. Indian. Chem. Soc.,1948,25:205-208.
    [9]P. Ray. Inorganic Synthesis, Vol V Ed therald moeller [M]. New York:McGraw-Hill Book Company,1957,201.
    [10]C. P. Murthy, B. Sethuram, T. N. Rao. Oxidation by Tetravalent Nikel Part 1: Kinetics of Electron Transfer from some Aliphatic Alcohols to Ni (Ⅳ) in Aqueous Alkaline Media [J]. Z. Phy. Chemie, Leipzig,1986,267:1212-1218.
    [11]H. G. Mukherjee, B. Mandal, S. De. Preparation and Sstudies of the Complex Periodatoferrate (Ⅲ) Hexahydrare and Periodatonickelate (Ⅳ) Monohydrate [J]. Indian. J. Chem.,1984,23A:426-428.
    [12]H. G. Mukherjee, S. K. Dutta, S. Sen. Preparation and Characterization of Tellurato Complex of Nickel (Ⅳ) [J]. J. Indian. Chem. Soc.,1996,73:598-599.
    [13]G. W. Thompson, L. T. Ockerman, J. M. Schreyer. Preparation and Purification of Potassium Ferrate (Ⅵ) [J]. J. Am. Chem. Soc.,1951,73:1379-1382.
    [14]李志远,赵建国.高铁酸盐制备、性质及应用[J].化学通报,1993(7):19-23.
    [15]中南矿业学院分析化学教研室等编著,分析化学手册[M].北京:科学出版社,1984,567.
    [16]S. A. Chimatadar, T. Basavaraj, K. A. Thabaj, S. T. Nandibewoor. Ruthenium(Ⅲ) Catalysed Oxidation of Gabapentin (neurontin) by Diperiodatocuprate(Ⅲ) in Aqueous Alkaline Medium-A Kinetic and Mechanistic Study [J]. J. Mol. Catal. A: Chem.,2007,267:65-71.
    [17]G. E. Crouthamel, H. V. Meek, D. S. Martin, C. V. Banks. Spectrophotometric Studies of Dilute Aqueous Periodate Solution [J]. J. Am. Chem. Soc.,1949,71: 3031-3035.
    [18]G. E. Crouthamel, H. V. Meek, D. S. Martin. Ionization and Hydration Equilibria of Periodic Acid [J]. J. Am. Chem. Soc.,1951,73:82-87.
    [19]J. Aveston. Hydrolysis of Potassium Periodate:Ultracentrifugation, Potentiometric Titration, and Raman spectra [J]. J. Chem. Soc. (A),1969,273-275.
    [20]高英,王之朴.停止流动法研究K2FeO4氧化乙醇胺的动力学[J].物理化学学报,1993,9(1):70-76.
    [21]K. K. S. Gupta, K. Nandyb, A. K. Bera, et al. Oxidative Behaviours and Relative Reactivities of Some Aliphatic, Heterocyclic and Aromatic Aldehydes towards Bis (dihydrogentellurato) Cuprate (Ⅲ) and Argentate (Ⅲ) in Alkaline Medium [J]. Indian J. Chem.,1997,36A:190-196.
    [22]G. P. Panigrahi, C.Pathya. Kinetics and Mechanism of Oxidation of Methyl Ethyl Retone and Cyclohexanone by Potassium Bis (tellurato) Cuprare (Ⅲ) [J]. Inorg. Chem.,1984,23:2133-2138.
    [23]K. B. Reddy, C. P. Murthy, B. Sethuram, et al. Kinetics and Mechanism of Os (Ⅷ) Catalysed and Uncatalysed Oxidation of Cyclopentanol, Cyclohexanol and Cycloheptanol by Ditelluratocuprate (Ⅲ) in Alkaline Medium [J]. Indian J. Chem., 1981,20A:272-275.
    [24]王立平,单金缓,申世刚,许明远,葛旭升.碱性介质中分光光度法研究二过碲酸合铜(Ⅲ)氧化某些氨基酸的反应动力学及机理[J].河北大学学报(自然科学版),2008,28:640-645.
    [25]单金缓,霍树营,王立平,申世刚,孙汉文.碱性介质中二过碲酸合铜(Ⅲ)配离子氧化羟基乙酸钠的反应动力学及机理[J].河北省科学院学报,2003,20:80-85.
    [26]单金缓,王莉,魏海英,申世刚,孙汉文.碱性介质中二过碲酸合铜(Ⅲ)酸根氧化乙二醇一乙醚的反应动力学及机理[J].无机化学学报,2002,18:143-146.
    [27]单金缓,王莉,申世刚,孙汉文,刘保生.二(碲酸根)合铜(Ⅲ)酸根氧化乙醇独甲醚的动力学及机理[J].无机化学学报,2000,16:888-891.
    [28]宋文玉,刘红梅.二(原碲酸根)合铜(Ⅲ)酸根离子氧化环己酮的反应动力学及机理[J].无机化学学报,2000,16(4):607-611.
    [29]S. D. Kulkarni, S. T. Nandibewoo. A Kinetic and Mechanistic Study on Oxidation of Isoniazid Drug by Alkaline Diperiodatocuprate(Ⅲ)-A Free Radical Intervention [J]. Transition Me. Chem.,2006,31:1034-1039.
    [30]K. B. Reddy, B. Sethuram, T. N. Rao. Kinetics of Oxidative Deamination and Decarhoxylation of some Amino Acids by Diperiodatocuprate (Ⅲ) in Alkaline Medium [J]. Indian J. Chem.,1981,20A:395-397.
    [31]宋文玉,李振华,王安周.二过碘酸合铜(Ⅲ)配离子氧化异丙胺的动力学及机理[J].高等学校化学学报,1997,18(11):1842-1846.
    [32]宋文玉,降青梅,王安周.二(过碘酸)合铜(Ⅲ)酸根离子氧化二乙醇胺的反应动力学及机理[J].无机化学学报,1999,15:442-445.
    [33]单金缓,赵建国,申世刚,等.碱性介质中二过碘酸合铜(Ⅲ)配离子氧化氨基乙酸的反应动力学[J].河北大学学报(自然科学版),1996,16(4):29-33.
    [34]单金缓,刘铁英.二过碘酸合铜(Ⅲ)氧化乙醇胺的动力学及机理[J].物理化学学报,1994,10(10):947-949.
    [35]单金缓,刘铁英,王安周.二过碘酸合铜(Ⅲ)氧化氨基丙酸的动力学[J].物理化学学报,1994,10(12):1110-1114.
    [36]W. J. Niu, Y. Zhu, K. C. Hu, et al. Kinetics of Oxidation of SCN-by Diperiodatocuprate (Ⅲ) (DPC) in Alkaline Medium [J]. Int. J. Chem. Kinet.,1996, 28(12):899-904.
    [37]K. K. S. Gupta, K. Nandyb, S. S. Gupta. Oxidative Behaviours and Relative Reactivities of Some Alkanols and Aryl Alcohols towards Bis (dihydrogentellurato) Cuprate (Ⅲ) and Argentate (Ⅲ) in Alkaline Medium [J]. J. Chem. Soc. Prekin. Trans.,1993,2:767-771.
    [38]T. R. Prasad, B. Sethuram, T. N. Rao. Oxidation of Aliphatic Amines by Ditelluratoargentate (Ⅲ) [J]. Indian J Chem.,1982,21 A:169-171.
    [39]J. H. Shan, L. Wang, S. G. Shen, et al. Kinetics and Mechanism of the Oxidation of Glycol by Dihydroxyditelluratoargentate(Ⅲ) with Spectrophotometry [J]. Chemical Remical in Chinese Universities,2000,16(3):218-222.
    [40]单金缓,王莉,申世刚,刘保生,孙汉文.碱性介质中二(过碲酸)合银(Ⅲ)离子氧化苹果酸的动力学及机理[J].河北大学学报(自然科学版),2001,21:53-56.
    [41]单金缓,韩国庆,申世刚,何亚红.分光光度法研究二高碲酸合银(Ⅲ)配离子氧化四氢糠醛的动力学[J].广东工业大学学报,1997,14:116-118.
    [42]单金缓,霍树营,申世刚,孙汉文,王安周.碱性介质中分光光度法研究二羟基二(二过碘酸根)合银(Ⅲ)氧化谷氨酸的反应动力学及机理[J].高等学校化学学报,2005,4:706-709.
    [43]K. V. Krishna, P. J. P Rao. Kinetics and Mechanism of Oxidation of Some Reducing Sugars by Diperiodatoargentate (Ⅲ) in Alkalkine Medium [J]. Transition Met. Chem.,1995,20:344-346.
    [44]P. J. P. Rao, B. Sethuram, T. N. Rao. Kinetics of Oxidative Deamination of some Amino Acids by Diperiodatoargentate (Ⅲ) in Alkaline Medium [J]. React Kinet. Catal. Lett.,1985,29(1):289-296.
    [45]S. D. Kulkarni, S. T. Nandibewoor. Kinetics and Mechanism of L-isoleucine Oxidation by Alkaline Diperiodatoargentate(Ⅲ) [J]. Transition Met. Chem.,2008, 33:23-28.
    [46]N. P. Shetti, R. N. Hegde, S. T. Nandibewoor. Mechanistic Aspects of Uncatalysed and Os (Ⅷ) Catalysed Oxidation of 5-flourouracil-An Anticancer Drug by Alkaline Diperiodatoargentate (Ⅲ) [J]. Inorg. Chim. Acta,2009,362:2270-2278.
    [47]宋文玉,李文惠,贾春萍.碱性介质中二高碘酸合银(Ⅲ)氧化四氢糠醇的动力学及机理[J].高等学校化学学报,1999,20(11):1767-1771.
    [48]石铁生.过渡金属的超常氧化态研究-Ⅰ.碱性介质中二过碘酸合银(Ⅲ)配离子氧化硫氰酸钾的动力学及机理[J].中国科学(B辑),1990,33(5):471-479.
    [49]S. D. Lamani, J. C. Abbar, S. T. Nandibewoor. Mechanistic aspects of Os(Ⅷ)/Ru(Ⅲ) Catalysed Oxidation of L-phenylalanine by Ag(Ⅲ) Periodate Complex in Aqueous Alkaline Medium [J]. Catal. Lett.,2009,133:142-155.
    [50]J. C. Abbar, S. D. Lamani, S.T. Nandibewoor. Mechanistic Investigation of Uncatalyzed and Osmium (Ⅷ) Catalyzed Oxidation of Guanidine by Ag (Ⅲ) Periodate Complex in Aqueous Alkaline Medium:A Comparative Kinetic Approach [J]. Ind. Eng. Chem. Res.,2009,48:7550-7560.
    [51]P. R. Hosamani, S. T. Nandibewoor. Mechanistic Study of Ruthenium (Ⅲ) Catalysed Oxidation of L-lysine by Diperiodatoargentate (Ⅲ) in Aqueous Alkaline Medium [J]. J. Chem. Sci.,2009,121:275-281.
    [52]S. D. Kulkarni, P. N. Naik, S. T. Nandibewoor. Mechanistic Study on the Oxidation of Sulfacetamide by Aqueous Alkaline Diperiodatoargentate(Ⅲ) [J]. Ind. Eng. Chem. Res.,2009,48:591-597.
    [53]V. Seregar, T. M. Veeresh, S. T. Nandibewoor. Osmium(Ⅷ) Catalysed Oxidation of L-leucine by a New Oxidant, Diperiodatoargentate(Ⅲ) in Aqueous Alkaline Medium [J]. J. Mol. Catal. A:Chem.,2007,271:253-260.
    [54]C. V. Hiremath, S. D. Kulkarni, S. T. Nandibewoor. Oxidation of L-leucine by Alkaline Diperiodatoargentate(Ⅲ) Deamination and Decarboxylation:A Kinetic and Mechanistic Study [J]. Ind. Eng. Chem. Res.,2006,45:8029-8035.
    [55]V. Seregar, T. M. Veeresh, S. T. Nandibewoor. Ruthenium(Ⅲ) Catalysed Oxidation of L-leucine by a New Oxidant, Diperiodatoargentate(Ⅲ) in Aqueous Alkaline Medium [J]. Polyhedron,2007,26:1731-1739.
    [56]A. Kumar, I. Vaishal, P. Ramamurthy. Kinetics and Mechanism of Oxidation of Ethylenediamine and Related Compounds by Diperiodatoargentare (Ⅲ) ion [J]. Int J. Chem. Kinet.,2000,32:286-293.
    [57]G. C. Hiremath, R. M. Mulla, S. T. Nandibewoor. Kinetic, Mechanistic and Spectral Investigation of Ruthenium(Ⅲ) Catalysed Oxidation of Atenolol by Alkaline Diperiodatonickelate(Ⅳ) (stopped flow technique) [J]. Catal. Lett.,2004,98: 49-56.
    [58]R. S. Shettar, S. T. Nandibewoor. Kinetic, Mechanistic and Spectral Investigations of Ruthenium(Ⅲ)-Catalysed Oxidation of 4-hydroxycoumarin by Alkaline Diperiodatonickelate (Ⅳ) (stopped flow technique) [J]. J. Mol. Catal. A:Chem., 2005,234:137-143.
    [59]R. T.Mahesh, P. D. Pol, S. T. Nandibewoor. Kinetics and Mechanism of Oxidation of L-leucine by Alkaline Diperiodatonickelate(Ⅳ)-A Free Radical Intervention, Deamination, and Decarboxylation [J]. Monatsh. Chem.,2003,134:1341-1352.
    [60]C. V. Hiremath, D. C. Hiremath, S. T. Nandibewoor. Ruthenium(Ⅲ) Catalysed Oxidation of Gabapentin (neurontin) by Diperiodatonickelate(IV) in Aqueous Alkaline medium:A Kinetic and Mechanistic Study [J]. J. Mol. Catal. A:Chem., 2007,269:246-253.
    [61]P. D. Pol, C. P. Kathari, S. T. Nandibewoor. Kinetics and Mechanism of Ruthenium(Ⅲ)-Catalysed Oxidation of Tellurium (Ⅳ) by Alkaline Diperiodatonickelate (Ⅳ) [J]. Transition Met. Chem.,2003,28:209-216.
    [62]R. M. Mulla, H. M. Gurubasavaraj, S. T. Nandibewoor. Kinetics of Ruthenium(Ⅲ)-Catalysed Oxidation of Paracetamol by Diperiodatonickelate(Ⅳ) in Aqueous Alkaline Medium (stopped flow technique) [J]. Appl. Catal., A,2006,314: 208-215.
    [63]S. T. Patil, Mahantesh A. Angadi, A. L. Harihar. Oxidative Deamination and Decarboxylation of L-Asparagine by the Aqueous Alkaline Diperiodatonickelate(Ⅳ) Complex [J]. J. Solution Chem.,2008,37:1795-1808.
    [64]谢恩海,孟庆水,王之朴.二过碘酸合镍(Ⅳ)氧化酒石酸钠的动力学[J].物理化学学报,1992,8:500-504.
    [65]J. H. Shan, H. Y. Wei, L. Wang, S. G. Shen, H. W. Sun. Kinetics and Mechanism of Oxidation of Glycine by Diperiodatonickelate (Ⅳ) Complex in Aqueous Alkaline Medium [J]. Chemical Research.,2001,12:21-25.
    [66]单金缓,钱璟,王孟歌,申世刚,孙汉文,王安周.分光光度法研究二羟基(二过碘酸根)合镍(Ⅳ)氧化丁二醇的反应动力学机理[J].高等化学学报,2004,1:95-98.
    [67]单金缓,魏海英,王莉,申世刚,刘保生,孙汉文,王安周.分光光度法研究二羟基二过碘酸合镍(Ⅳ)氧化三乙醇胺的反应动力学及机理[J].高等学校化学学报,2002,10:1860-1863.
    [68]鲁越青,陈平,钮渭军,胡科诚.碱性介质中二过碘酸合镍(Ⅳ)氧化乳酸的反应动力学[J].成都理工学院学报,1998,25:462-466.
    [69]李志庭,常青,李宝文,杨利庭,王安周.碱性介质中二羟基二过碘酸合镍(Ⅳ)配离子氧化乙二胺的动力学及机理[J].高等学校化学学报,2000,5:747-751.
    [70]单金缓,钱璟,翟彤丹,申世刚,孙汉文.碱性介质中二羟基二(过碘酸根)合镍(Ⅳ)酸根氧化α-丙二醇的反应动力学及机理[J].无机化学学报,2003,19:843-747.
    [71]王莉,单金缓,孙汉文.碱性介质中过渡金属超常氧化态配离子氧化反应动力学及机理[J].河北大学学报(自然科学版),2002,22:92-96.
    [72]T. Raviprasad, B. Sethuram, T. N. Rao. State of Ditelluratoargente (Ⅲ) in Alaline Medium-A Kinetic Study of the Oxidation of Alcohols by Ag (Ⅲ) [J]. Indian J. Chem,1979,18A:40-42.
    [73]T. R. Prasad, B. Sethuram, T. N. Rao. Oxidation of Aliphatic Amines by Ditelluratoargentate (Ⅲ) [J]. Indian J. Chem.,1982,21 A:169-170.
    [74]A. Kumar, P. Kumar. Kinetics and Mechanism of Oxidation of Nitrilotriacetic Acid by Diperiodatoargentate (Ⅲ) [J]. J. Phys. Org. Chem.,1999,12:79-85.
    [75]L. J. Kirschenbaum, J. D. Rush. Kinetics of the Reduction of the Tetrahydroxoargentate (Ⅲ) Ion by Arsenite [J]. Inorg. Chem.,1983,22:3304-3309.
    [76]R. N. Mehrotra, L. J. Kirschenbarm. Kinetics and Mechanism of the Oxidation of the Hypophosphite Ion by the Tetrahydroxoargentate (Ⅲ) Ion [J]. Inorg. Chem., 1989,28:4327-4330.
    [77]J. G. Mohanty, R. P. Singh, A. Chakravorty. Chemistry of Tetravalent Nickel and Related Species. I. MN6 Coordination Octahedra Generated from Hexadentate Oxime Ligands [J]. Inorg. Chem.,1975,14:2178-2183.
    [78]J. G. Mohanty, A.Chakravorty. Chemistry of Tetravalent Nickel and Related Species.2.1 Cyclic Voltammetry of Oxidation-Reduction Equilibriums Involving Protons[J]. Inorg. Chem.,1976,15:2912-1916.
    [79]A. N. Singh, R. P. Singh, J. G. Mohanty, A. Chakravoty. Chemistry of Tetravalent Nickel and Related Species.3.1 Characteruzation and Cyclic Voltammetry New NiN6 Species Based on Tridentate Ligans [J]. Inorg. Chem.,177,166:2597-2601.
    [80]D. H. Macartney, A. Mcauley. Kinetics and Mechanisms of the Reaction of a Nickel (IV) Complex with Iron(Ⅱ), Vanadium(Ⅳ), and Nickel(Ⅱ) Cyclam Ions in Aqueous Perchlorate Media [J]. Inorg. Chem.,1983,22:2062-2066.
    [81]A. Z. Wang, F. M. Li, Z. T. Li, et al. Kinetics and Mechanism of Oxidation of Glycol by Dihydrodiperiodatonickelate (Ⅳ) Complex in Aqueous Alkaline Medium [J]. Chemical Research in Chinese Universities,1992,8:432-438.
    [82]Z. T. Li, F. L. Wang, A. Z. Wang. Kinetics and Mechanism of Oxidation of Tetrahydrofuryl Alcohol by Dihydroxydiperiodatonickelate (Ⅳ) Complex in Aqueous Alkaline Medium [J]. Int. J. Chem. Kinet.,1992,24:933-941.
    [83]M. A. Alisiddiqui, J. Alikhan, S. Kandikars. Kinetics and Mechanistic Study of Oxidation of Benzaldoxime by Trtravalent Nickle in Alkaline Medium [J]. Indian J. Chem.,1993,32A:174-176.
    [84]Y. H. Liu, Y. Z. Zhang, Z. H. Liu, K. L. Deng. Graft Copolymerization of Butyl Acrylate onto Casein Initiated by Potassium Diperiodatonickelate (Ⅳ) in Alkaline Medium [J]. Eur. Polym. J.,2002,38:1619-1625.
    [85]Y. H. Liu, X. R. Song, H. M. Shi, L. L. Xu. Study on the Kinetics of Polymerization by New Initiation Systems Copper (Cu (Ⅲ)) Complex Ion (Ⅰ)-Polymerization of Acrylamide Initiated by Self-Reduction [J]. Chem. J. Chinese Univ.,1990,11(3): 328-330.
    [86]Y. H. Liu, J. S. Zhang, W. P. Li. Graft Copolymerization of Methyl Acrylate onto Soluble Starch Initiated with Potassium Diperiodatoargentate (Ⅲ) [J]. J. Hebei Univ.,2001,21(1):57-60.
    [87]刘盈海,宋杏茹,王秀美,王为民.二过碘酸合铜(Ⅲ)钾和甲酰胺引发丙烯腈聚合反应的研究[J].河北化工,1989,4:15-18.
    [88]刘盈海,商亚娟,于同利,范志涛.二过碘酸合银(Ⅲ)钾引发丙烯酸甲酯在尼龙66上接枝共聚合反应的研究[J].河北大学学报(自然科学版),1997,3:30-33.
    [89]宋杏茹,刘盈海,冯雪芳,张红梅.二过碘酸合银(Ⅲ)-尿素氧化还原引发丙烯腈动力学的研究[J].化学世界,1996,2:81-84.
    [90]封满良,黄玉文,章竹君.多轻基化合物化学发光分析新体系的研究-尿液中尿酸的测定[J].化学学报,1997,55:806-810.
    [91]黄玉文,封满良,章竹君.反相流动注射化学发光测定葡萄糖[J].分析化学,1997,25:34-36.
    [92]Y. F. Hu, Z. J. Zhang, C. Y. Yang. A Sensitive Chemiluminescence Method for the Determination of H2O2 in Exhaled Breath Condensate [J]. Anal. Sci.,2008,24: 201-205.
    [93]Y. F. Hu, Z. J. Zhang, C. Y Yang. Measurement of Hydroxyl Radical Production in Ultrasonic Aqueous Solution by a Novel Chemiluminescence Method [J]. Ultrason. Sonochem.,2008,15:665-672.
    [94]Y. F. Hu, Z. J. Zhang. Determination of Free Cholesterol Based on a Novel Flow-Injection Chemiluminescence Method by Immobilizing Enzyme [J]. Luminescence,2008,23:338-343.
    [95]胡玉斐,章竹君.以马铃薯组织为酶供体化学发光新方法测定血清中游离多巴胺[J].化学学报,2008,66:783-787.
    [96]Y. F. Hu, Z. J. Zhang, C. Y. Yan. The Determination of Hydrogen Peroxide Generated from Cigarette Smoke with an Ultrasensitive and Highly Selective Chemiluminescence Method [J]. Anal. Chim. Acta,2007,60:95-100.
    [97]Y. H. Sun, Z. J. Zhang, Y. T. Zhang, Y. Wei. Determination of Sugars by LC with on-line Electrogenerated Cu(HIO6)2]5--Luminol Chemiluminescence Detection [J]. Chromatographia,2008,67:825-827.
    [98]Y. T. Zhang, Z. J. Zhang, Y. H. Sun, Y. Wei. Development of an Analytical Method for the Determination of β2-agonist Residues in Animal Tissues by High-Performance Liquid Chromatography with on-line Electrogenerated [Cu(HIO6)2]5--Luminol Chemiluminescence Detection [J]. J. Agric. Food Chem., 2007,55:4949-4956.
    [99]Y. T. Zhang, Z. J. Zhang, Y. H. Sun, Y. Wei. Detection of Glucocorticoid Residues in Pig Liver by High-performance Liquid Chromatography with on-line Electrogenerated [Cu(HIO6)2]5--Luminol Chemiluminescence Detection [J]. J. Chromatogr. A,2007,1154:260-268.
    [100]J. B. Bai, H. M. Shi, Y. Z. Zhang, D. H. Tian, X. D. Xu, W. J. Kang. Determination of Epinephrine by Flow Injection Analysis Coupled Ag (Ⅲ) Complex-Luminol Chemiluminescence Detection [J]. Chin. J. Chem.,2009,27:745-750.
    [101]H. M. Shi, X. D. Xu, Y. X. Ding, S. P. Liu, L. Q. Li, W. J. Kang. Determination of Cortisol in Human Blood Sera by a New Ag (Ⅲ) Complex-Luminol Chemiluminescent System [J]. Anal. Biochem.,2009,387:178-183.
    [102]B. X. Li, Z. J. Zhang, W. Liu. Flow-injection Chemiluminescence Determination of Chlortetracycline Using on-line Electrogenerated [Cu(HIO6)2]5- as the Oxidant [J], Talanta,2001,55:1097-1102.
    [103]H. W. Sun, P. Y. Chen, F. Wang. A Novel Chemiluminescence Reaction System for the Determination of Norfloxacin with Ag(Ⅲ) Complex [J]. Spectrochim. Acta, 2009,74:819-824.
    [104]H. W. Sun, P. Y. Chen, F. Wang, H. F. Wen. Investigation on Enhanced Chemiluminescence Reaction Systems with Bis(hydrogenperiodato) Argentate(Ⅲ) Complex Anion for Fluoroquinolones Synthetic Antibiotics [J]. Talanta,2009,79: 134-140.
    [1]H. O. Albecht. Chemiluminiscence [J]. Z, Phys. Chem.,1928,136:321-330.
    [2]林金明.化学发光基础理论与应用[M].化学工业出版社:北京,2004,2:33.
    [3]M. Voicescu, M. Vasilescu, A. Meghea. Energy Transfer from the Aminophthalate Dianion to Fluorescein [J]. Fluorescein J. of Fluores.,2000,10(3):229-236.
    [4]G. Merenyi, J. S. Lind. Role of a Peroxide Intermediate in the Chemiluminescence of Luminol [J]. J. Am. Chem. Soc.,1980,102:5830-5835.
    [5]A. Navas Diaz, J. A. Gonzalez Garcia, J. Lovillo. Enhancer Effect of Fluorescein on the Luminol-H2O2-Horseradish Peroxidase Chemiluminescence:Energy Transfer Process [J]. Luminescence,1997,12:199-205.
    [6]T. Miyazawa, K. Fujimoto, T. Suzuki and K. Yasuda. Determination of Phospholipid Hydroperoxide Using Luminol Chemiluminescence-high Performance Liquid Chromatography [J]. Methods Enzymol.,1994,233:324-332.
    [7]C. B. Xiao, D. W. King, D. A. Palmer, D. J. Wesolowski. Study of Enhancement Effects in the Chemiluminescence Method for Cr (Ⅲ) in the ng L-1 Range [J]. Anal. Chim. Acta,2000,415:209-219.
    [8]W. Qin, Z. J. Zhang, B. X. Li, S. N. Liu. Chemiluminescence Flow-sensing System for Hydrogen Peroxide with Immobilized Reagents [J]. Anal. Chim. Acta,1998, 372:357-363.
    [9]Y. M. Liu, Er-Bao Liu, Jie-Ke Cheng. Ultrasensitive Chemiluminescence Detection of Sub-fM Level Co (Ⅱ) in Capillary Electrophoresis [J]. J. Chromatogr. A,2001, 939:91-97.
    [10]M. Yang, R. Liu, Y. Xu, Y. Zou, X. Song. A Sequential Injection Analysis/chemiluminescent Plant Tissue-based Biosensor System for the Determination of Diamine [J]. Biosens. Bioelectron.,2007,22:871-876.
    [11]N. Amini, I. McKelvie. An Enzymatic Flow Analysis Method for the Determination of Phosphatidylcholine in Sediment Pore Waters and Extracts [J]. Talanta,2005,66: 445-452.
    [12]A. Economou, P. Panoutsou, D. Themelis. Enzymatic Chemiluminescent Assay of Glucose by Sequential-injection Analysis with Soluble Enzyme and on-Line Sample Dilution [J]. Anal. Chim. Acta,2006,572:140-147.
    [13]Y. Moliner-Martinez, S. Mesegrer-Lloret, L. A. Tortajada-Genaro, P. Campins-Falco. Influence of Water Sample Storage Protocols in Chemiluminescence Detection of Trace Elements [J]. Talanta,2003,60:257-268.
    [14]J. C. Ren, X. Y. Huang. Sensitive and Universal Indirect Chemiluminescence Detection for Capillary Electrophoresis of Cations Using Cobalt(Ⅱ) as a Probe Ion [J]. Anal. Chem.,2001,73:2663-2668.
    [15]F. J. Perez, S. Rubio. An Improved Chemiluminescence Method for Hydrogen Peroxide Determination in Plant Tissues [J]. Plan Growth Regulation,2006,48: 89-95.
    [16]G. M. Greenway, T. Leelasattarathkul, S. Liawruangrath, R. A. Wheatley, N. Youngvises. Ultrasound-Enhanced Flow Injection Chemiluminescence for Determination of Hydrogen Peroxide [J]. Analyst,2006,131:501-508.
    [17]A. Economou, A. K. Clark, P. R. Fielden. Determination of Co (Ⅱ) by Chemiluminescence after in situ Electrochemical Pre-separation on a Flow-through Mercury Film Electrode [J]. Analyst,2001,126:109-113.
    [18]J. C. Yuan, A. M. Shiller. The Variation of Hydrogen Peroxide in Rainwater over the South and Central Atlantic Ocean [J]. Atmos. Environ.,2000,34:3973-3980.
    [19]P. Campins-Falco, L. A. Tortajada-Genaro, S. Meseguer-Lloret, F. Bosch-Reig. Multivariate Calibration Applied to Simultaneous Chemiluminescence Determination of Cobalt and Chromium [J]. Anal. Bioanal. Chem.,2002, 374:1223-1229.
    [20]P. Campins-Falco, L. A. Tortajada-Genaro, F. Bosch-Reig. A New Flow Cell Design for Chemiluminiscence Analysis [J]. Talanta,2001,55:403-413.
    [21]A. S. Carretero, J. R. Fernandez, A. R. Bowiea, Paul J. Worsfold. Acquisition of Chemiluminescence Spectral Profiles Using a Continuous Flow Manifold with Two Dimensional CCD Detection [J]. Analyst,2000,125:387-390.
    [22]L. A. Tortajada-Genaro, P. Campins-Falco, J. Verdu-Andres, F. Bosch-Reig. Multivariate Versus Univariate Calibration for Nonlinear Chemiluminescence Data Application to Chromium Determination by Luminol-hydrogen Peroxide Reaction [J]. Anal. Chim. Acta,2001,450:155-173.
    [23]E. K. Paleologos, A. G. Vlessidis, M. I. Karayannis, N. P. Evmiridis. On-Line Sorption Preconcentration of Metals Based on Mixed Micelle Cloud Point Extraction Prior to Their Determination with Micellar Chemiluminescence Application to the Determination of Chromium at ng L-1 Levels [J]. Anal. Chim. Acta,2003,477:223-231.
    [24]W. S. Aum, J. Threeprom, H. F. Li, J. M. Lin. Determination of Chromium(Ⅲ) and Total Chromium Using Dual Channels on Glass Chip with Chemiluminescence Detection [J]. Talanta,2007,71:2062-2068.
    [25]L. A. Tortajada-Genaro, P. Campins-Falco. Multivariate Standardisation for Non-Linear Calibration Range in the Chemiluminescence Determination of Chromium [J]. Talanta,2007,72:1004-1012.
    [26]Y. M. Liu, Z. L. Liu, Y. M. Shi, W. Tian. The Determination of Glutamine with Flow-injection Chemiluminescence Detection and Mechanism Study [J]. Luminescence,2010,25:50-54.
    [27]Y. Q. Wen, H. Y. Yuan, J. F. Mao, D. Xiao, Martin M. F. Choi. Droplet Detector for the Continuous Flow Luminol-Hydrogen Peroxide Chemiluminescence System [J]. Analyst,2009,134:354-360.
    [28]X. J. Huang, Q. S. Pu, Z. L. Fang. Capillary Electrophoresis System with Flow Injection Sample Introduction and Chemiluminescence Detection on a Chip Platform [J]. Analyst,2001,126:281-284.
    [29]W. P. Yang, Z. J. Zhang, W. Deng. Simultaneous, Sensitive and Selective on-Line Chemiluminescence Determination of Cr(Ⅲ) and Cr(Ⅵ) by Capillary Electrophoresis [J]. Anal. Chim. Acta,2003,485:169-177.
    [30]花卉,汪敬武,孙芳.牛血红蛋白催化化学发光反应与FIA联用测定人血清中的血糖[J].分析科学学报,2006,22:540-542.
    [31]朱晓芳,李德英,孙芳,梁汝萍,汪敬武.血红蛋白催化化学发光反应联用流动注射测定甘油三酯[J].分析实验室,2009,28:9-12.
    [32]J. R. Zhang, A. R. Cazers, B. S. Lutzke, E. D. Hall. HPLC-Chemiluminescence and Thermospray LC/MS Study of Hydroperoxides Generated from Phosphatidylcholine [J]. Free Radical Bio. Med.,1995,18:1-10.
    [33]S. Baj, T. Krawczyk, K. Staszewska. The Influence of Dioxygen on Luminal Chemiluminescence [J]. Luminescence,2009,24:348-354.
    [34]S. Bezzia, S. Loupassakia, C. Petrakisa, P. Kefalas, A. Calokerinos. Evaluation of Peroxide Value of Olive Oil and Antioxidant Activity by Luminal Chemiluminescence [J]. Talanta,2008,77:642-646.
    [35]A. Zamburlini, M. Maiorino, P. Barbera, A. M. Pastorino, A. Roveri, L. Cominacini, F. Ursini. Measurement of Lipid Hydroperoxides in Plasma Lipoproteins by a New Highly-sensitive Single Photon Counting Luminometer [J]. Biochim. Biophys. Acta, 1995,1256:233-240.
    [36]W. Zhang, N. D.Danielson. Characterization of a Micro Spiral Glow Cell for Chemiluminescence Detection [J]. Microchem. J.,2003,75:255-264.
    [37]A. Zamburlini, M. Maiorino, P. Barbera, A. Roveri, F. Ursini. Direct Measurement by Single Photon Counting of Lipid Hydroperoxides in Human Plasma and Lipoproteins [J]. Anal. Biochem.,1995,232:107-113.
    [38]E. L. Bastos, P. Romoff, C. R. Eckert, W. J. Baader. Evaluation of Antiradical Capacity by H2O2-Hemin-Induced Luminol Chemiluminescence [J]. J. Agric. Food Chem.,2003,51:7481-7488.
    [39]B. X. Li, Z. J. Zhang, L. X. Zhao. Chemiluminescent Flow-through Sensor for Hydrogen Peroxide Based on Sol-Gel Immobilized Hemoglobin as Catalyst [J]. Anal. Chim. Acta,2001,445:161-167.
    [40]V. R. D. Santos, W. X. Paula, E. Kalapothakis. Influence of the Luminol Chemiluminescence Reaction on the Confirmatory Tests for the Detection and Characterization of Bloodstains in Forensic Analysis [J]. Forensic Science International:Genetics Supplement Series 2009,2:196-197.
    [41]O. A. Azizova, A. P. Piryazev, M. P. Sherstnev, S. V. Drinitsina, Y. M. Lopukhin. Chemiluminescence Assay of the Antioxidant State in Patients with Atherosclerosis [J]. Bull. Exp. Biol. Med.,2001,131:524-526.
    [42]S. L. Zhou, J. H. Wang, W. H. Huang, X. Lu, J. K. Cheng. Monitoring the Reaction of Hemoglobin with Hydrogen Peroxide by Capillary Electrophoresis-Chemiluminescence Detection [J]. J. Chromatogr. B,2007,850: 343-347.
    [43]Q. Zhi, C. Xie, X. Y. Huang, J. C. Ren. Coupling Chemiluminescence with Capillary Electrophoresis to Analyze Single Human Red Blood Cells [J]. Anal. Chim. Acta,2007,583:217-222.
    [44]L. R. Luo, Z. J. Zhang, L. F. Ma. A Design of Reaction-Controlled Chemiluminescence Imaging and Its Application [J]. Anal. Chim. Acta,2005,543: 222-228.
    [45]N. Kuroda, N. Murasaki, M. Wada, K. Nakashime. Application of an Enhanced Luminol Chemiluminescence Reaction Using 4-[4,5-di (2-pyridyl)-lH-imidazol-2-yl]phenylboronic Acid to Photographic Detection of Horseradish Peroxidase on a Membrance [J]. Luminescence,2001,16:167-172.
    [46]F. G. Sanchez, A. N. Diaz, V. Bracho, A. Aguilar, M. Algarra. Automated Determination of Asulam by Enhanced Chemiluminescence Using Luminol/ Peroxidase System [J]. Luminescence,2009,24:448-452.
    [47]B. X. Li, Z. J. Zhang, Y. Jin. Chemiluminescence Flow Biosensor for Hydrogen Peroxide with Immobilized Reagents [J]. Sens. Actuators, B,2001,72:115-119.
    [48]T. Ichibangase, Y. Ohba, N. Kishikawa, K. Nakashima, N. Kuroda. Chemiluminescence Assay of Lipase Activity Using a Synthetic Substrate as Proenhancer for Luminol Chemiluminescence Reaction [J]. Luminescence,2004, 19:259-264.
    [49]Y. Lv, Z. J. Zhang, F. N. Chen. Chemiluminescence Biosensor Chip Based on a Microreactor Using Carrier Air Flow for Determination of Uric Acid in Human Serum [J]. Analyst,2002,127:1176-1179.
    [50]B. X. Li, D. Lan, Z. J. Zhang. Chemiluminescence Flow-through Biosensor for Glucose with Eggshell Membrane as Enzyme Immobilization Platform [J]. Anal. Biochem.,2008,374:64-70.
    [51]A. Wolter, R. Niessner, M. Seidel. Detection of Escherichia Coli O157:H7, Salmonella Typhimurium, and Legionella Pneumophila in Water Using a Flow-through Chemiluminescence Microarray Readout System [J]. Anal. Chem., 2008,80:5854-5863.
    [52]O. Nozaki, H. Kawamoto. Determination of Hydrogen Peroxide by Micro-flow Injection-chemiluminescence Using a Coupled Flow Cell Reactor Chemiluminometer [J]. Luminescence,2000,15:137-142.
    [53]X. Y. Z. Karsunke, R. Niessner, M. Seidel. Development of a Multichannel Flow-through Chemiluminescence Microarray Chip for Parallel Calibration and Detection of Pathogenic Bacteria [J]. Anal. Bioanal. Chem.,2009,395:1623-1630.
    [54]D. G. Varsamis, E. Touloupakis, P. Morlacchi, D. F. Ghanotakis, M. T. Giardi, D. C. Cullen. Development of a Photosystem Ⅱ-based Optical Microfluidic Sensor for Herbicide Detection [J]. Talanta,2008,77:42-47.
    [55]K. Y. Inoue, K. Ino, H. Shiku, S. Kasai, T. Yasukawa, F. Mizutani, T. Matsue. Electrochemical Monitoring of Hydrogen Peroxide Released from Leucocytes on Horseradish Peroxidase Redox Polymer Coated Electrode Chip [J]. Biosens. Bioelectron., DOI:10.1016/j.bios.2009.12.014.
    [56]H. C. Hong, H. J. Huang. Flow Injection Analysis of Uric Acid with a Uricase-and Horseradish Peroxidase-coupled Sepharose Column Based Luminol Chemiluminescence System [J]. Anal. Chim. Acta,2003,499:41-46.
    [57]G. J. Zhou, G. Wang, J. J. Xu, H. Y. Chen. Reagentless Chemiluminescence Biosensor for Determination of Hydrogen Peroxide Based on the Immobilization of Horseradish Peroxidase on Biocompatible Chitosan Membrance [J]. Sens. Actuators, B,2002,81:334-339.
    [58]N. Kuroda, P. Shimoda, M. Wada, K. Nakashima. Lophine Derivatives and Analogues as New Phenolic Enhancers for the Luminol-hydrogen Peroxide-horseradish Peroxidase Chemiluminescence System [J]. Anal. Chim. Acta, 2000,403:131-136.
    [59]S. Q. Ren, X. Wang, B. J. Tang, G. M. Hu, Z. J. Li, G. N. Nan, J. M. Lin. Micro-plate Chemiluminescence Enzyme Immunoassay for Clinical Determination of Progesterone in Human Serum [J]. Chin. J. Anal. Chem.,2008,36:729-734.
    [60]H. Jin, X. Wang, T. B. Xin, P. Gao, J. M. Lin, S. X. Liang. Microplate Chemiluminescence Enzyme Immunoassay for the Quantitative Evaluation of Carbohydrate Antigen 72-4 in Human Serum [J]. Chin. Sci. Bull.,2008,53: 2958-2963.
    [61]J. H. Lin, H. Zhang, S. S. Zhang. New Bienzymatic Strategy for Glucose Determination by Immobilized-gold Nanoparticle-enhanced Chemiluminescence [J]. Sci. China, Ser. B,2009,52:196-202.
    [62]O. Nozaki, H. Kawamoto. Reactivation of Horseradish Peroxidase with Imidazole for Continuous Determination of Hydrogen Peroxide Using a Microflow Injection-Chemiluminescence Detection System [J]. Luminescence,2003,18: 203-206.
    [63]O. Nozaki, H. Kawamoto. Reactivation of Inactivated Horseradish Peroxidase with Ethyleneurea and Allantoin for Determination of Hydrogen Peroxide by Micro-Flow Injection Horseradish Peroxidase-Catalyzed Chemiluminescence [J]. Anal. Chim. Acta,2003,495:233-238.
    [64]S. Kasai, Y. Hirano, N. Motochi, H. Shiku, M. Nishizawa, T. Matsue. Simultaneous Detection of Uric Acid and Glucose on a Dual-Enzyme Chip Using Scanning Electrochemical Microscopy/scanning Chemiluminescence Microscopy [J]. Anal. Chim. Acta,2002,458:263-270.
    [65]李晓霞,申丽华,漆红兰.毛细管固定过氧化物酶流动注射化学发光法测定过氧化氢的研究[J].分析测试学报,2008,27:49-422.
    [66]I. S. Alpeeva, I. Y. Sakharov. Luminol-Hydrogen Peroxide Chemiluminescence Produced by Sweet Potato Peroxidase [J]. Luminescence,2007,22:92-96.
    [67]B. X. Li, Z. J. Zhang, Y. Jin. Plant Tissue-Based Chemiluminescence Flow Biosensor for Determination of Unbound Dopamine in Rabbit Blood with on-line Microdialysis Sampling [J]. Biosens. Bioelectron.,2002,17:585-589.
    [68]D. Janasek, U. Spohn. A Chemiluminometric FIA Procedure for the Enzymatic Determination of L-aspartate [J]. Sens. Actuators, B,2001,74:163-167.
    [69]B. X. Li, Z. J. Zhang, Y. Jin. Plant Tissue-Based Chemiluminescence Flow Biosensor for Glycolic Acid [J]. Anal. Chem.,2001,73:1203-1206.
    [70]H. C. Yeh, W. Y. Lin. Stopped-Flow Study of the Enhanced Chemiluminescence for the Oxidation of Luminol with Hydrogen Peroxide Catalyzed by Microperoxidase 8 [J]. Talanta,2003,59:1029-1038.
    [71]A. S. Haqqani, J. K. Sandhu, H. C. Birnboim. A Myeloperoxidase-Specific Assay Based upon Bromide-Dependent Chemiluminescence of Luminal [J]. Anal. Biochem.,1999,273:126-132.
    [72]O. M. Panasenko, A. V. Chekanov,I.I. Vlasova, A. V. Sokolov, K. V. Ageeva, M. O. Pulina, O. S. Cherkalina, V. B. Vasil ev. Influence of Ceruloplasmin and Lactoferrin on the Chlorination Activity of Leukocyte Myeloperoxidase Assayed by Chemiluminescence [J]. Biophysics,2008,53:268-272.
    [73]M. Nakamra, S. Nakamra. One-and Two-Electron Oxidations of Luminal by Peroxidase Systems [J]. Free Radical Bio. Med.,1998,24:537-544.
    [74]T. E. G.Candy, P. Jones. Attenuation of 4-I-phenol-Enhanced Chemiluminescence by Non-enhancer Phenols [J]. J. Biolumin. Chemilum.,1991,6:239-243.
    [75]S. B. Vlasenko, A. A. Arefyev, A. D. Klimov, B. B. Kim, E. L. Gorovits, A. P. Osipov, E. M. Gavrilova, A. M. Yegorov. An Investigation on the Catalytic Mechanism of Enhanced Chemiluminescence:Immunochemical Applications of This Reaction [J]. J. Biolumin. Chemilumin.,1989,4:164-176.
    [76]M. Hodgson, P. Jones. Enhanced Chemiluminescence in the Peroxidase-Luminol-H2O2 System:Anomalous Reactivity of Enhancer Phenols with Enzyme Intermediates [J]. J. Biolumin. Chemilumin.,1989,3:21-25.
    [77]D. A. Navas, S. F. Garcia, G. J. A. Gonzalez. Enhancement and Inhibition of Luminol Chemiluminescence by Phenolic acids [J]. J. Biolumin. Chemlumin.,1995, 10:175-184.
    [78]林金明.化学发光基础理论与应用[M].化学工业出版社:北京,2004,2:38.
    [79]A. L. Dounce, S. P. Sichak. Hematin Iron Valence in Catalase and Peroxidase Compound I:Relationship to Free Radical Reaction Mechanism [J]. Free Radical Biol. Med.,1988,5,89-93.
    [80]L. X. Zhao, L. Sun, X. G. Chu. Chemiluminescence Immunoassay [J]. Trends Anal. Chem.,2009,28:404-415.
    [81]李晓霞.增强化学发光免疫分析的研究进展[J].延安大学学报(自然科学版), 2002,21:48-53.
    [82]F. Q. Wu, Y. M. Huang, C. Z. Huang. Chemiluminescence Biosensor System for Lactic Acid Uing Natural Animal Tissue as Recognition Element [J]. Biosens. Bioelectron.,2005,21:518-522.
    [83]F. Q. Wu, Y. M. Huang, Q. Li. Animal Tissue-Based Chemiluminescence Sensing of Uric Acid [J]. Anal. Chim. Acta,2005,536:107-113.
    [84]Y. Lv, Z. J. Zhang, F. N. Chen. Chemiluminescence Microfluidic System Sensor on a Chip for Determination of Glucose in Human Serum with Immobilized Reagents [J]. Talanta,2003,59:571-576.
    [85]H. Nakamura, Y. Abe, R. Koizumi, K. Suzuki, Y. Mogi, T. Hirayama, I. Karube. A Chemiluminescence Biochemical Oxygen Demand Measuring Method [J]. Anal. Chim. Acta,2007,602:94-100.
    [86]Z. P. Li, Y. C. Wang, C. H. Liu, Y. K. Li. Development of Chemiluminescence Detection of Gold Nanoparticles in Biological Conjugates for Immunoassay [J]. Anal. Chim. Acta,2005,551:85-91.
    [87]I. Parejo, C. Petrakis, P. Kefalas. A Transition Metal Enhanced Luminol Chemiluminescence in the Presence of a Chelator [J]. J. Pharmacol. Toxicol. Methods,2000,43:183-190.
    [88]S. Bezzi, S. Loupassaki, C. Petrakis, P. Kefalas, A. Calokerinos. Evaluation of Peroxide Value of Olive Oil and Antioxidant Activity by Luminol Chemiluminescence [J]. Talanta,2008,77:642-646.
    [89]M. Armata, C. Gabrieli, A. Termentzi, M. Zervou. E. Kokkalou. Constituents of Sideritis Syriaca. ssp. Syriaca (Lamiaceae) and Their Antioxidant Activity [J]. Food Chem.,2008,111:179-186.
    [90]C. N. Gabrieli, P. G. Kefalas, E. L. Kokkalou. Antioxidant Activity of Flavonoids from Sideritis Raeseri [J]. J. Ethnopharmacol.,2005,96:423-428.
    [91]D. L. Giokas, A. G. Vlessidis, N. P. Evmiridis. On-Line Selective Detection of Antioxidants Free-Radical Scavenging Activity Based on Co(Ⅱ)/EDTA-Induced Luminol Hemiluminescence by Flow Injection Analysis [J]. Anal. Chim. Acta,2007, 589:59-65.
    [92]I. Parejo, C. Codina, C. Petrakis, P. Kefalas. Evaluation of Scavenging Activity Assessed by Co (Ⅱ)/EDTA-Induced Luminol Chemiluminescence and DPPH'(2, 2-diphenyl-1-picrylhydrazyl) Free Radical Assay [J]. J. Pharmacol. Toxicol. Methods,2000,44:507-512.
    [93]D. Atanassova, P. Kefalas, E. Psillakis. Measuring the Antioxidant Activity of Olive Oil Mill Wastewater Using Chemiluminescence [J]. Environ. Int.,2005,31: 275-280.
    [94]H. A. H. Rongen, H. M. van der Horst, A. J. M. van Oosterhout, A. Bult, W. P. van Bennekom. Application of Xanthine Oxidase-Catalyzed Luminol Chemiluminescence in a Mouse Interleukin-5 Immunoassay [J]. J. Immunol. Meth., 1996,197:161-169.
    [95]J. M. Lin, X. Q. Shan, S. Hanaoka, M. Yamada. Luminol Chemiluminescence in Unbuffered Solutions with a Cobalt(Ⅱ)-Ethanolamine Complex Immobilized on Resin as Catalyst and its Application to Analysis [J]. Anal. Chem.,2001,73: 5043-5051.
    [96]S. Hanaoka, J. M. Lin, M. Yamada. Chemiluminescent Flow Sensor for H2O2 Based on the Decomposition of H2O2 Catalyzed by Cobalt (Ⅱ)-Ethanolamine Complex Immobilized on Resin [J]. Anal. Chim. Acta,2001,426:57-64.
    [97]T. Uzu, S. Sasaki. A New Copper (Ⅱ) Complex as an Efficient Catalyst of Luminol Chemiluminescence [J]. Org. Lett.,2007,9:4383-4386.
    [98]Z. F. Zhang, H. Cui, C. Z. Lai, L. J. Liu. Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and its Analytical Applications [J]. Anal. Chem.,2005,77: 3324-3329.
    [99]P. Yang, Y. H. Chen, Q. Y Zhu, F. W. Wang, L. Wang, Y. X. Li. Sensitive Chemiluminescence Method for the Determination of Glutathione, L-cysteine and 6-Mercaptopurine [J]. Microchim. Acta,2008,163:263-269.
    [100]S. L. Zhao, X. H. Lan, Y. M. Liu. Gold Nanoparticle-Enhanced Capillary Electrophoresis-Chemiluminescence Assay of Trace Uric Acid [J]. Electrophoresis, 2009,30:2676-2680.
    [101]S. L. Zhao, T. X. Niu, Y. R. Song, Y. M. Liu. Gold Nanoparticle-Enhanced Chemiluminescence Detection for CE [J]. Electrophoresis,2009,30:1059-1065.
    [102]S. L. Xu, H. Cui. Luminol Chemiluminescence Catalysed by Colloidal Platinum Nanoparticles [J]. Luminescence,2007,22:77-87.
    [103]S. F. Li, X. M. Zhang, W. X. Du, Y. H. Ni, X. W. Wei. Chemiluminescence Reactions of a Luminol System Catalyzed by ZnO Nanoparticles [J]. J. Phys. Chem. C,2009,113:1046-1051.
    [104]L. Wang, P. Yang. Y. X. Li, H. Q. Chen, M. G. Li, F. B. Luo. A Flow Injection Chemiluminescence Method for the Determination of Fluoroquinolone Derivative Using the Reaction of Luminal and Hydrogen Peroxide Catalyzed by Gold Nanoparticles [J]. Talanta,2007,72:1066-1072.
    [105]A. Safavi, G. Absalan, F. Bamdad. Effect of Gold Nanoparticle as a Novel Nanocatalyst on Luminal-Hydrazine Chemiluminescence System and its Analytical Application [J]. Anal. Chim. Acta,2008,610:243-248.
    [106]T. M. Triantis, K. Papadopoulosa, E. Yannakopoulou, D. Dimotikali, J. Hrbac, R. Zboril. Sensitized Chemiluminescence of Luminol Catalyzed by Colloidal Dispersions of Nanometer-Sized Ferric Oxides [J]. Chem. Eng. J.,2008,144: 483-488.
    [107]J. Z. Guo, H. Cui, W. Zhou, W. Wang. Ag Nanoparticle-Catalyzed Chemiluminescent Reaction between Luminol and Hydrogen Peroxide [J]. J. Photochem. Photobiol. A,2008,193:89-96.
    [108]周天翔,郭文英,屠一锋.纳米TiO2对鲁米诺电化学发光增敏作用的研究与应用[J].苏州科技学院学报(自然科学版),2009,26:39-43.
    [109]戴路,王伦.鲁米诺-过氧化氢化学发光体系测定雌性激素[J].安徽师范大学学报(自然科学版),2009,32:46-50.
    [110]苗力孝,漆红兰.金纳米粒子修饰石墨电极上鲁米诺-过氧化氢体系电化学发光行为的研究[J].延安大学学报(自然科学版),2007,26:66-68.
    [111]彭亚鸽,漆红兰,张成孝.金纳米粒子修饰电极上电化学发光法测定二茂铁羧酸的研究[J].陕西师范大学学报(自然科学版),2006,34:65-68.
    [112]S. D. Kulkarni, S. T. Nandibewoor. A kinetic and Mechanistic Study on Oxidation of Isoniazid Drug by Alkaline Diperiodatocuprate(Ⅲ)-A Free Radical Intervention [J]. Transition Met. Chem.,2006,31:1034-1039.
    [113]C. Prat, M. Vicente, S. Esplugas. Treatment of Bleaching Waters in the Paper Industry by Hydrogen Peroxide and Ultraviolet Radiation [J]. Water Res.,1988,22: 663-668.
    [114]M. Ksibi. Chemical Oxidation with Hydrogen Peroxide for Domestic Wastewater Treatment [J]. Chem. Eng. J.,2006,119:161-165.
    [115]G. Georgiou, L. Masip. An Overoxidation Journey with a Return Ticket [J]. Science, 2003,300:592-594.
    [116]A. Lobnik, M. Cajlakovic. Sol-gel Based Optical Sensor for Continuous Determination of Dissolved Hydrogen Peroxide [J]. Sens. Actuators, B,2001,74: 194-199.
    [117]P. A. Tanner, A. Y. S. Wong. Spectrophotometric Determination of Hydrogen Peroxide in Rainwater [J]. Anal. Chim. Acta,1998,370:279-287.
    [118]K. Zhang, L.Y. Mao, R.X. Cai. Stopped-Flow Spectrophotometric Determination of Hydrogen Peroxide with Hemoglobin as Catalyst [J]. Talanta,2000,51:179-186.
    [119]R. C. Matos, E. O. Coelho, C. F. Souza, F. A. Guedes, M. A. C. Matos. Peroxidase Immobilized on Amberlite IRA-743 Resin for on-Line Spectrophotometric Detection of Hydrogen Peroxide in Rainwater [J]. Talanta,2006,69:1208-1214.
    [120]A. C. Pappas, C. D. Stalikas, Y. C. Fiamegos, M. I. Karayannis. Determination of Hydrogen Peroxide by Using a Flow Injection System with Immobilized Peroxidase and Long Pathlength Capillary Spectrophotometry [J]. Anal. Chim. Acta, 2002,455:305-313.
    [121]J. Li, P. K. Dasgupta, G. A. Tarver. Pulsed Excitation Source Multiplexed Fluorometry for the Simultaneous Measurement of Multiple Analytes. Continuous Measurement of Atmospheric Hydrogen Peroxide and Methyl Hydroperoxide [J]. Anal. Chem.,2003,75:1203-1210.
    [122]B. Tang, L. Zhang, K. H. Xua. FIA-Near-Infrared Spectrofluorimetric Trace Determination of Hydrogen Peroxide Using Tricarchlorobocyanine Dye (Cy.7.C1) and Horseradish Peroxidase (HRP) [J]. Talanta,2006,68:876-882.
    [123]X. L. Chen, D. H. Li, H. H. Yang, Q. Z. Zhu, H. Zheng, J. G. Xu. Study of Tetra-substituted Amino Aluminum Phthalocyanine as a New Red-Region Substrate for the Fluorometric Determination of Peroxidase and Hydrogen Peroxide [J]. Anal. Chim. Acta,2001,434:51-58.
    [124]H. Q. Chen, H. P. Yu, Y. Y. Zhou, L. Wang. Fluorescent Quenching Method for Determination of Trace Hydrogen Peroxide in Rain Water [J]. Spectrochim. Acta, Part A,2007,67:683-686.
    [125]O. Nozakil, H. Kawamoto. Determination of Hydrogen Peroxide by Micro-Flow Injection-Chemiluminescence Using a Coupled Flow Cell Reactor Chemiluminometer [J]. Luminescence,2000,15:137-142.
    [126]O. Nozakil, H. Kawamoto. Reactivation of Horseradish Peroxidase with Imidazole for Continuous Determination of Hydrogen Peroxide Using a Microflow Injection-Chemiluminescence Detection System [J]. Luminescence,2003,18: 203-206.
    [127]Y. F. Hu, Z. J. Zhang, C. Y. Yan. The Determination of Hydrogen Peroxide Generated from Cigarette Smoke with an Ultrasensitive and Highly Selective Chemiluminescence Method [J]. Anal. Chim. Acta,2007,60:95-100.
    [128]J. Kruusma, V. Sammelselg, C. E. Banks. A Systematic Study of the Electrochemical Determination of Hydrogen Peroxide at Single-Walled Carbon Nanotube Ensemble Networks [J]. Electrochem. Commun.,2008,10:1872-1875.
    [129]R. A. A. Franchini, M. A. C. Matos, R. Colombara, R. C. Matos. Differential Amperometric Determination of Hydrogen Peroxide in Honeys Using Flow-Injection Analysis with Enzymatic Reactor [J]. Talanta,2008,75:301-306.
    [130]C. L. Hsu, K. S. Chang, J. C. Kuo. Determination of Hydrogen Peroxide Residues in Aseptically Packaged Beverages Using an Amperometric Sensor Based on a Palladium Electrode [J]. Food Control.,2008,19:223-230.
    [131]M. I. Awad, T. Oritani, T. Ohsaka. Simultaneous Potentiometric Determination of Peracetic Acid and Hydrogen Peroxide [J]. Anal. Chem.,2003,75:2688-2693.
    [132]D. Badocco, P. Pastore, G. Favaro, C. M. L. Giokas, A. G. Vlessidis, N. P. Evmiridis. Effect of Eluent Composition and pH and Chemiluminescent Reagent pH on Ion Chromatographic Selectivity and Luminol-Based Chemiluminescence Detection of Co2+, Mn2+ and Fe2+ at Trace Levels [J]. Talanta,2007,72:249-255.
    [133]O. Nozaki, H. Kawamoto. Reactivation of Inactivated Horseradish Peroxidase with Ethyleneurea and Allantoin for Determination of Hydrogen Peroxide by Micro-Flow Injection Horseradish Peroxidase-Catalyzed Chemiluminescence [J]. Anal. Chim. Acta,2003,495:233-238.
    [134]T. Leelasattarathkul, S. Liawruangrath, R. A. Wheatley, N.Youngvises, G. M. Greenway. Ultrasound-Enhanced Flow Injection Chemiluminescence for Determination of Hydrogen Peroxide [J]. Analyst,2006,131:501-508.
    [135]A. Balikungeri, M. Pelletier, D. Monnier. Contribution to the Study of Complex Bis (dihydrogen tellurato) Cuprate (Ⅲ) and Argentite (Ⅲ), Bis(hydrogen periodato) Cuprate (Ⅲ) and Argentite (Ⅲ) [J]. Inorg. Chim. Acta,1977,22:7-14.
    [136]P. K. Jaiswal, K. L. Yadava. Determination of Sugars and Organic Acids with Periodato Complex of Cu (Ⅲ) [J]. Indian J. Chem.,1973,11:837-838.
    [137]C. P. Murthy, B. Sethuram, T. N. Rao. Oxidation by Tetravalent Nickel Part 1: Kinetics of Electron Transfer from Some Aliphatic Alcohols to Ni (Ⅳ) in Aqueous Alkaline Media [J]. Z. Phys. Chem. Leipzig.,1986,6:1212-1218.
    [138]M. L. Feng, Z. Li, J. R. Lu, H. L. Jiang. KMnO4-OP Chemiluminescence System for FIA Determination of Hydrogen Peroxide [J]. Mikrochim. Acta,1997,126: 73-76.
    [139]A. Tahirovic, A. Copra, E. Omanovic-Miklicanin, K. Kalcher. A Chemiluminescence Sensor for the Determination of Hydrogen Peroxide [J]. Talanta,2007,72:1378-1385.
    [140]R. E. Ionescu, S. Cosnier, R. S. Marks. Protease Amperometric Sensor [J]. Anal. Chem.,2006,78:6327-6331.
    [141]P. Pandey, S. P. Singh, S. K. Arya, V. Gupta, M. Datta, S. Singh, B. D. Malhotra. Application of Thiolated Gold Nanoparticles for the Enhancement of Glucose Oxidase Activity [J]. Langmuir,2007,23:3333-3337.
    [142]李清文,王义明,张新荣,罗国安.溶胶凝胶法制备固定化酶柱并应用于化学发光型的葡萄糖传感器[J].分析化学,1999,27:1274-1277.
    [143]B. Krajewska. Application of Chitin-and Chitosan-Based Materials for Enzyme Immobilizations:A Review [J]. Enzyme Microb. Technol.,2004,35:126-139.
    [144]H. A. L. Pedro, A. J. Alfaia, J. Marques, H. J. Vila-Real, A. Calado, M. H. L. Ribeiro. Design of An Immobilized Enzyme System for Naringin Hydrolysis at High-Pressure [J]. Enzyme Microb. Technol.,2007,40:442-446.
    [145]B. B. Rodriguez, J.A. Bolbot, I.E. Tothill. Urease-Glutamic Dehydrogenase Biosensor for Screening Heavy Metals in Water and Soil Samples [J]. Anal. Bioanal. Chem.,2004,380:284-292.
    [146]G. Coppi, V. Iannuccelli, M. T. Bernabei, R. Cameroni. Alginate Microparticles for Enzyme Peroral Administration [J]. Int. J. Pharm.,2002,242:263-266.
    [147]T. Haider, Q. Husain. Hydrolysis of Milk/Whey Lactose by β-galactosidase:A Comparative Study of Stirred Batch Process and Packed Bed Reactor Prepared with Calcium Alginate Entrapped Enzyme [J]. Chem. Eng. Process.,2009,48:576-580.
    [148]H. G. Zhu, R. Srivastava, J. Q. Brown, M. J. McShane. Combined Physical and Chemical Immobilization of Glucose Oxidase in Alginate Microspheres Improves Stability of Encapsulation and Activity [J]. Bioconjugate Chem.,2005,16: 1451-1458.
    [149]M. M. Syed, A. Suhail, A. K. Amjad, H. Qayyum. An Enconomical, Simple and High Yield Procedure for the Immobilization/Stabilization of Peroxidases from Turnip Roots [J]. J. Sci. Ind. Res.,2004,63:540-547.
    [150]R. Robitaille, J. F. Pariseau, F. A Leblond, M. Lamoureux, Y. Lepage, J. P. Halle. Studies on Small (<350 Microm) Alginate-poly-L-lysine Microcapsules. Ⅲ. Biocompatibility of Smaller Versus Standard Microcap-Sules [J]. J. Biomed. Mater. Res.,1999,441:16-120.
    [151]D. Poncelet, R. J. Neufeld. Shear Breakage of Nylon Membrane Microcapsules in a Turbine Reactor [J]. Biotechnol. Bioeng.,1989,5:95-103.
    [152]A. Blandino, M. M. Macias, D. Cantero. Glucose Oxidase Release from Calcium Alginate Gel Capsules[J]. Enzyme Microb. Technol.,2000,27:319-324.
    [153]Z. Y. Jiang, Y. F. Zhang, J. Li, W. Jiang, D. Yang, H. Wu. Encapsulation of β-Glucuronidase in Biomimetic Alginate Capsules for Bioconversion of Baicalin to Baicalein [J]. Ind. Eng. Chem. Res.,2007,46:1883-1890.
    [154]A. Dashevsky. Protein Loss by the Microencapsulation of an Enzyme (Lactase) in Alginate Beads [J]. Int. J. Pharm.,1998,161:1-5.
    [155]M. Davisct. Ordered Porousmaterials for Emerging Applications [J]. Nature,2002, 417:813-821.
    [156]H. H. P. Yiu, P. A. Wright, N. P. Botting. Enzyme Immobilization Using Siliceous Mesoporous Molecular Sieves, Microporous Mesoporous Mater.44-45 (2001) 763-768.
    [157]J. Lei, J. Fan, C. Z. Yu, L. Y. Zhang, S. Y. Jiang, B. Tu, D. Y. Zhao, Immobilization of Enzymes in Mesoporous Materials:Controlling the Entrance to Nanospace [J]. Microporous Mesoporous Mater.,2004,73:121-128.
    [158]P. Reis, T. Witula, K. Holmberg. Mesoporous Materials as Host for an Entrapped Enzyme [J]. Microporous Mesoporous Mater.,2008,110:355-362.
    [159]S. Matsuura, R. Ishii, T. Itoh, T. Hanaoka, S. Hamakawa, T. Tsunoda, F. Mizukami. Direct Visualization of Hetero-Enzyme Co-Encapsulated in Mesoporous Silicas [J]. Microporous Mesoporous Mater.,2010,127:61-66.
    [160]C. H. Lee, T. S. Lin, C. Y. Mou. Mesoporous Materials for Encapsulating Enzymes [J]. Nano Today,2009,4:165-179.
    [161]K. Ikebukuro, M. Shimomura, N. Onuma, A. Watanabe, Y. Nomura, K. Nakanishi, Y. Arikawa, I. Karube. A Novel Biosensor System for Cyanide Based on A Chemiluminescence Reaction [J]. Anal. Chim. Acta,1996:329:111-116.
    [162]B. X. Li, Z. J. Zhang. Chemiluminescence Flow Biosensor for Determination of Total D-amino Acid in Serum with Immobilized Reagents [J]. Sens. Actuators, B, 2000,69:70-74.
    [163]Y. F. Hu, Z. J. Zhang. Determination of Free Cholesterol Based on a Novel Flow-Injection Chemiluminescence Method by Immobilizing Enzyme [J]. Luminescence,2008,23:338-343.
    [164]B. X. Li, Z. J Zhang, Y. Jin. Plant Tissue-Based Chemiluminescence Flow Biosensor for Glycolic Acid [J]. Anal. Chem.,2001,73:1203-1206.
    [165]Z. Y. Zhang, S. C. Zhang, X. R. Zhang. Recent Developments and Applications of Chemiluminescence Sensors [J]. Anal. Chim. Acta,2005,541:37-46.
    [166]B. X. Li, Z. J. Zhang, Y. Jin. Chemiluminescence Flow Sensor for in Vivo on-Line Monitoring of Glucose in Awake Rabbit by Microdialysis Sampling [J]. Anal. Chim. Acta,2001,432:95-100.
    [167]C. Y. Yang, Z. J. Zhang, J. L. Wang. A New Luminol Chemiluminescence Reaction Using a Tetravalent Nickel-Periodate Complex as the Oxidant [J]. Microchim. Acta, 2009,167:91-96.
    [168]D. Chicheportiche, G. Reach. In Vitro Kinetics of Insulin Release by Microencapsulated Rat Islets:Effect of the Size of the Microcapsules [J]. Diabetologia,1988,31:54-57.
    [169]X. M. Chen, Z. M. Cai, Z. J. Lin, T. T. Jia, H. Z. Liu, Y Q. Jiang, X. Chen. A Novel Non-Enzymatic ECL Sensor for Glucose Using Palladium Nanoparticles Supported on Functional Carbon Nanotubes [J]. Biosens. Bioelectron.,2009,24:3475-3480.
    [170]H. B. Liu, X. M. Qian, S. Wang, Y. L. Li, Y. L. Song, D. B. Zhu. Ultra-Sensitivity Glucose Sensor Based on Field Emitters [J]. Nanoscale Res. Lett.,2009,4: 1141-1145.
    [171]Z. L. Wei, Z. J. Li, X L. Sun, Y. J. Fang, J. K. Liu. Synergistic Contributions of Fullerene, Ferrocene, Chitosan and Ionic Liquid towards Improved Performance for a Glucose Sensor [J]. Biosens. Bioelectron,.2010,25:1434-1438.
    [172]V. B. Kandimalla, H. Ju. Binding of Acetylcholinesterase to Multiwall Carbon Nanotube-Cross-Linked Chitosan Composite for Flow-Injection Amperometric Detection of An Organophosphorous Insecticide [J]. Chem. Eur. J.,2006,12: 1074-1080.
    [173]Q. Cai, W. Y. Lin, F. S. Xiao, W. Q. Pang, X. H. Chen, B. S. Zou. The Preparation of Highly Ordered MCM-41 with Extremely Low Surfactant Concentration [J]. Microporous Mesoporous Mater.,1999,32:1-15.
    [174]K. Yao, Y. H. Zhu, P. Wang, X. L. Yang, P. Z. Cheng, H. Lu. ENFET Glucose Biosensor Produced with Mesoporous Silica Microspheres [J]. Mater. Sci. Eng., C, 2007,27:736-740.
    [175]K. Y. Ho, G. McKay, K. L. Yeung. Selective Adsorbents from Ordered Mesoporous Silica [J]. Langmuir,2003,19:3019-3024.
    [176]A. Tanriseven, S. Dogan. Production of Isomalto-Oligosaccharides using Dextransucrase Immobilized in Alginate Fibres [J]. Process Biochem.,2002,37: 1111-1115.
    [177]Y. Kobayashi, R. Matsuo, T. Ohya, N. Yokoi. Enzyme Entrapping Behaviors in Alginate Fibers and Papers [J]. Biotechnol. Bioeng.,1987,30:451-457.
    [178]H. Tanaka, H. Kurosawa, E. Kokufuta, I.A. Veliky. Preparation of Immobilized Glucomylase Using Ca-alginate Gel Coated with Partially Quaterized Poly(ethleneimine) [J]. Biotechnol. Bioeng.,1984,26:1393-1394.
    [179]H. Tanaka, M. Matsumura, I. A. Veliky. Diffusion Characteristics of Substrates in Ca-alginate Gel Beads [J]. Biotechnol. Bioeng.,1984,26:53-58.
    [180]R. E. Ionescu, K. Abu-Rabeah, S. Cosnier, R. S. Marks. Improved Enzyme Retention from An Electropolymerized Polypyrrole-Alginate Matrix in the Development of Biosensors [J]. Electrochem. Commun.,2005,7:1277-1282.
    [181]D. Lan, B. X. Li, Z. J. Zhang. Chemiluminescence Flow Biosensor for Glucose Based on Gold Nanoparticle-Enhanced Activities of Glucose Oxidase and Horseradish Peroxidase [J]. Biosens. Bioelectron.,2008,24:934-938.
    [182]J. H. Lin, H. Zhang, S. S. Zhang. New Bienzymatic Strategy for Glucose Determination by Immobilized-Gold Nanoparticle-Enhanced Chemiluminescence [J]. Sci. China, Ser. B,2009,52:196-202.
    [183]F. F. J. Charles, R. Robert, J. P. Anthony. A Study of the Direct o-Toluidine Blood Glucose Determination [J]. Clinica Chimica Acta,1973,43:105-111.
    [184]A. M. Girelli, E. Mattei. Application of Immobilized Enzyme Reactor in on-Line High Performance Liquid Chromatography:A review [J]. J. Chromatogr. B,2005: 819:3-16.
    [1]B. C. X., T. Wang, E. Liu. Chemiluminescence Determination of Gossypol at Trace Levels Using Flow Injection as Sample Introduction Techniques [J]. J. Anal. Chem., 2008,63:1078-1082.
    [2]Y. M. Huang, W. B. Liu. Flow-Injection Chemiluminescence Determination of Phentolamine Based on its Enhancing Effect on the Luminol-Potassium Ferricyanide System [J]. J. Pharm. Biomed. Anal.,2005,38:537-542.
    [3]Y. M. Huang, Z. J. Zhang, D. J. Zhang, J. G. Lv. A Flow Injection Chemiluminescence System for the Determination of Isoniazid [J]. Fresenius J. Anal. Chem.,2000,368:429-431.
    [4]W. F. Niu, N. Feng, F. Nie, J. R. Lu. Investigating the Post-Chemiluminescence Behavior of Phenothiazine Medications in the Luminol-Potassium Ferricyanide System:Molecular Imprinting-Post-Chemiluminescence Method for the Determination of Chlorpromazine Hydrochloride [J]. Anal. Bioanal. Chem.,2006, 385:153-160.
    [5]Z. H. Song, N. Zhang, L. Wang. In Vitro Determination of Dobesilate in Medicine and Human Urine with Chemiluminescence Detection [J]. Microchim. Acta,2003, 142:205-211.
    [6]E. B. Liu, B. C. Xue. Ultrasensitive Assay of Rhein in Medicine Based on its Enhanced Luminol-K3Fe(CN)6 Chemiluminescence Reaction Using the Flow Injection Technique [J]. Microchim. Acta,2006,153:51-56.
    [7]胡尚伟,刘卫兵,黄玉明.流动注射化学发光测定黄芩甙[J].西南师范大学学报(自然科学版),2006,31:85-88.
    [8]刘丽珍,韩素琴.鲁米诺-铁氰化钾化学发光体系测定吲哚乙酸[J].山西师范大学学报(自然科学版),2009,23:74-77.
    [9]H. J. Zhou, Z. J. Zhang, D. Y. He, Y. Xiong. Flow Through Chemiluminescence Sensor Using Molecularly Imprinted Polymer as Recognition Elements for Detection of Salbutamol [J]. Sens. Actuators, B,2005,107:798-804.
    [10]S. T. Li, J. S. Wang. Determination of Terbutaline Sulfate by Capillary Electrophoresis with Chemiluminescence Detection [J]. J. Chromatogr. B,2009, 877:155-158.
    [11]D. Y. He, Z. J. Zhang, Y. Huang, Y. F. Hu. Chemiluminescence Microflow Injection Analysis System on A Chip for the Determination of Nitrite in Food [J]. Food Chem.,2007,101:667-672.
    [12]何德勇,吕弋,胡玉斐,黄英,章竹君.鲁米诺-铁氰化钾化学发光体系测定盐酸 异丙肾上腺素[J].分析化学,2003,31:1247-1249.
    [13]S. L. Zhao, J. S. Wang, F. G. Ye, Y. M. Liu. Determination of Uric Acid in Human Urine and Serum by Capillary Electrophoresis with Chemiluminescence Detection [J]. Anal. Biochem.,2008,378:127-131.
    [14]S. H. Wang, X. T. Wei, L. Y. Du, H. S. Zhang. Determination of Bisphenol A Using a Flow Injection Inhibitory Chemiluminescence Method [J]. Luminescence,2005, 20:46-50.
    [15]S. Q. Han. Determination of Puerarin by Capillary Electrophoresis with Chemiluminescence Detection [J]. J. Chromatogr. B,2009,877:1591-1594.
    [16]D. Y. He, Z. J. Zhang, H. J. Zhou, Y. Huang. Micro Flow Sensor on a Chip for the Determination of Terbutaline in Human Serum Based on Chemiluminescence and A Molecularly Imprinted Polymer [J]. Talanta,2006,69:1215-1220.
    [17]D. Yang, H. Y. Li, Z. Y. Li, Z. B. Hao, J. P. Li. Determination of Rutin by Flow Injection Chemiluminescence Method Using the Reaction of Luminol and Potassium Hexacyanoferrate(Ⅲ) with the Aid of Response Surface Methodology [J]. Luminescence,2009, DOI:10.1002/bio.1172.
    [18]N. Feng, J. R. Lu, Y. H. He, J. X. Du. Post-Chemiluminescence Behaviour of Ni2+, Mg2+, Cd2+and Zn2+in the Potassium Ferricyanide-Luminol Reaction [J]. Luminescence,2005,20:266-270.
    [19]W. Liu, Z. J. Zhang, Z. Q. Liu. Determination of p-lactam Antibiotics in Milk Using Micro-Flow Chemiluminescence System with on-Line Solid Phase Extraction [J]. Anal. Chim. Acta,2007,592:187-192.
    [20]Y. G. Hu, X. X. Li, Z. T. Pang. Indirect Chemiluminescence Detection for Capillary Zone Electrophoresis of Monoamines and Catechol Using Luminol-K3[Fe(CN)6] System [J]. J. Chromatogr. A,2005,1091:194-198.
    [21]S. L. Zhao, W. L. Bai, H. Y. Yuan, D. Xiao. Detection of Paracetamol by Capillary Electrophoresis with Chemiluminescence Detection [J]. Anal. Chim. Acta,2006, 559:195-199.
    [22]S. L. Zhao, Y. Huang, Y. M. Liu. Microchip Electrophoresis with Chemiluminescence Detection for Assaying Ascorbic Acid and Amino Acids in Single Cells [J]. J. Chromatogr. A,2009,1216:6756-6751.
    [23]S. L. Zhao, W. L. Bai, B. Wang, M. He. Determination of Levodopa by Capillary Electrophoresis with Chemiluminescence Detection [J]. Talanta,2007,73:142-146.
    [24]L. C. Niu, Z. H. Song, D. H. Chen. Determination of Sudan IV in Hot Chilli Powder with Luminol/Dissolved Oxygen Chemiluminescence System [J]. J. Sci. Food. Agric.,2010,90:338-342.
    [25]X. M. Chen, Z. J. Lin, Z. M. Cai, X. Chen, X. R. Wang. Electrochemiluminescence Detection of Dichlorvos Pesticide in Luminol-CTAB Medium [J]. Talanta,2008,76: 1083-1087.
    [26]Z. H. Song, Q. L. Yue, C. N. Wang. Flow Injection Chemiluminescence Determination of Femtogram-Level Cobalt in Egg Yolk, Fish Tissue and Human Serum [J]. Food Chem.,2006,94:457-463.
    [27]Z. H. Song, S. Hou. Sub-Picogram Determination of Vitamin B12 in Pharmaceuticals and Human Serum Using Flow Injection with Chemiluminescence Detection [J]. Anal. Chim. Acta,2003,488:71-79.
    [28]X. D. Shao, H. Y. Liu, X. F. Gao, W. Q. Chen, Z. H. Song. Determination of Norfloxacin in Pharmaceuticals, Human Serum, and Urine Using A Luminol-Dissolved Oxygen Chemiluminescence System [J]. Chem. Pap.,2007,61: 353-358.
    [29]X. Xie, X. He, X. Qiu, Z. Song. In Vitro Monitoring Chlorogenic Acid in Human Urine and Serum by a Flow Injection System Exploiting the Luminol-Dissolved Oxygen Chemiluminescence Reaction [J]. Curr. Drug Metab.,2007,8:443-777.
    [30]李菁菁,张玲,屠一锋.纳米SnO2增敏鲁米诺化学发光的研究与应用[J].分析测试学报,2009,28:63-66.
    [31]孟磊,刘炎超,毕士峰,张念伟.水体中溶解氧的静态注射化学发光法测定[J].光谱实验,2009,26:338-340.
    [32]邱小香,宋正华.流动注射化学发光法测定人体血清和金银花中的绿原酸[J].纺织高校基础科学学报,2008,21:498-500.
    [33]刘华俊.5-磺基水杨酸增敏化学发光分析法同时测定两种价态铁[J].襄樊学院学报,2003,24:25-27.
    [34]Z. Y. Cheng, G. T. Yan, Y. Z. Li, W. B. Chang. Determination of Antioxidant Activity of Phenolic Antioxidants in a Fenton-type Reaction System by Chemiluminescence Assay [J]. Anal. Bioanal. Chem.,2003,375:376-380.
    [35]L. Y. Min, X. Z. Wu. Chemiluminescence from Luminol Solution after Illumination of a 355 nm Pulse Laser [J]. Luminescence,2009,24:400-408.
    [36]A. Miyamoto, K. Nakamura, N. Kishikawa, Y. Ohba, K. Nakahima, N. Kuroda. Quasi-Simultaneous Determination of Antioxidative Activities against Superoxide Anion and Nitric Oxide by a Combination of Sequential Injection Analysis and Flow Injection analysis with Chemiluminescence Detection [J]. Anal. Bioanal. Chem.,2007:388:1809-1814.
    [37]L. Y. Min, X. Z. Wu, S. Tetsuya, H. Inoue. Time-Resolved Chemiluminescence Study of the TiO2 Photocatalytic Reaction and its Induced Active Oxygen Species [J]. Luminescence,2007,22:105-112.
    [38]A. Krasowska, A. Plasecki, A. Murzyn, K. Sigler. Assaying the Antioxidant and Radical Scavenging Properties of Aliphatic Mono-and Di-N-oxides in Superoxide Dismutase-Deficient Yeast and in a Chemiluminescence Test [J]. Folia. Microbiol., 2007,52:45-51.
    [39]申金山,陈立法,高文玲,周清泽.碘和碘化物在鲁米诺化学发光分析体系中的应用[J].理化检验-化学分册,1998,34:132-134.
    [40]W. R, Seitz, D. M. Hercules. A Quantitative Study of Chemiluminescence from the Iodine-Luminol Rreaction [J]. J. Am. Chem. Soc.,96:4094-4098.
    [41]S. L. Zhao, C. Xie, Y. R. Song, Y. M. Liu. A Facile and Sensitive Chemiluminescence Detection of Amino Acids in Biological Samples after Capillary Electrophoretic Separation [J]. Electrophoresis,2005,26:1745-1750.
    [42]C. K. Pires, K. L. Marques, J. L. M. Santos, R. A. S. Lapa, J. L. F. C. Lima, E. A. G. Zagatto. Chemiluminometric Determination of Carvedilol in a Multi-pumping Flow System [J]. Talanta,2005,68:239-244.
    [43]F. R. P. Rocha, E. Rodenas-Torralba, B. F. Reis, A. Morales-Rubio, M. Guardia. A Portable and Low Cost Equipment for Flow Injection Chemiluminescence Measurements [J]. Talanta,2005,67:673-677.
    [44]N. Ratanawimarnwonga, N. Amornthammarong, N. Choengchan, P. Chaisuwan, M. Amatatongchai, P. Wilairat, I. D. McKelvie, D. Nacapricha. Determination of Iodide by Detection of Iodine Using Gas-diffusion Flow Injection and Chemiluminescence [J]. Talanta,2005,65:756-761.
    [45]M. A. Sanchez, F. R. P. Rocha. A Critical Evaluation of a Flow-Cell Based on a Liquid Core Waveguide for Chemiluminescence Measurements [J]. Luminescence, 2008,23:410-416.
    [46]晨晓霓,张成孝,吕九如.测定甲氨蝶呤的在线电生次氯酸根流动注射化学发光法[J].分析测试学报,2000,19:47-49.
    [47]谢志鹏,钟洪鸣,罗六保,汪敬武.高效液相色谱流动注射联用电化学发光法测定赣南脐橙中的维生素C[J].分析试验室,2007,26:95-97.
    [48]郎惠云,李亚荣,张维平,张秀军,申晔华.流动注射-化学发光法测定乌拉地尔[J].高等化学学报,2003,4:618-620.
    [49]李献锐,王庆飞,申金山,童汝亭.在线电生次氯酸根流动注射化学发光法测定卡托普利[J].河北师范大学学报(自然科学版),2005,29:491-498.
    [50]D. Nacapricha P. Sangkarn, C. Karuwan, T. Mantim, W. Waiyawat, P. Wilairat, Cardwell, I. D. McKelvie, N. Ratanawimarnwong. Pervaporation-Flow Injection with Chemiluminescence Detection for Determination of Iodide in Multivitamin Tablets [J]. Talanta,2007,72:626-633.
    [51]E. Nalewajko, A. Wiszowata, A. Kojlo. Determination of Catecholamines by Flow-Injection Analysis and High-Performance Liquid Chromatography with Chemiluminescence Detection [J]. J. Pharm. Biomed. Anal.,2007,1673-1681.
    [52]Y. T. Zhang, Z. J. Zhang, Y. H. Sun. Development and Optimization of an Analytical Method for the Determination of Sudan Dyes in Hot Chilli Pepper by High-Performance Liquid Chromatography with on-Line Electrogenerated BrO--Luminol Chemiluminescence Detection [J]. J. Chromatogr. A,2006,1129: 34-40.
    [53]E. P. Borges, A. F. Lavorante, B. F. Reis. Determination of Bromide Ions in Seawater Using Flow System with Chemiluminescence Detection [J]. Anal. Chim. Acta,2005,528:115-119.
    [54]Z. H. Song, S. Hou. Determination of Picomole Amounts of Thiamine through Flow-Injection Analysis Based on the Suppression of Luminal-KIO4 Chemiluminescence System [J]. J. Pharm. Biomed. Anal.,2002,28:683-691.
    [55]C. N. Wang, Z. H. Song. In Vitro Monitoring of Nanogram Levels of Puerarin in Human Urine Using Flow Injection Chemiluminescence [J]. Bioorg. Med. Chem. Lett.,2004,14:4127-4130.
    [56]B. X. Li, X. Y. Zhang, C. X. Zhang. The Second Chemiluminescence Emission of Luminal-Periodate-Menadione Sodium Bisulfite System and its Analytical Application [J]. Anal. Chim. Acta,2006,575:212-216.
    [57]S. F. Li, X. Z. Li, Y. Q. Zhang, F. Huang, F. F. Wang, X. W. Wei. Enhanced Chemiluminescence of the Luminal-KIO4 System by ZnS Nanoparticles [J]. Microchim. Acta,2009,167:103-108.
    [58]Z. J. Cao, C. W. Lau, J. Z. Lu. A General Chemiluminescence Method for the Determination of Surfactants Based on its Quenching Effect on the Luminol-NaIO4-Cyclodextrin Reaction [J]. Analyst,2004,129:1262-1266.
    [59]Z. H. Song, S. Hou. Chemiluminescence Assay for Uric Acid in Human Serum and Urine Using Flow-Injection with Immobilized Reagents Technology [J]. Anal. Bioanal. Chem.,2002,372:327-332.
    [60]Z. H. Song, L. Wang. Reagentless Chemiluminescence Flow Sensor for the Determination of Riboflavin in Pharmaceutical Preparations and Human Urine [J]. Analyst,2001,126:1393-1398.
    [61]尚芳红.高碘酸钾-鲁米诺化学发光体系测定木犀草素[J].西南大学学报(自然科学版).2009,31;116-117.
    [62]Z. H. Song, Q. L. Yue, C. N. Wang. Flow Injection Chemiluninescence for Detecting Pictogram Amounts of Dobesilate in Human Urine [J]. Spectrochim. Acta A,2004,60:2377-2382
    [63]Z. P. Wang, Z. J. Zhang, Z. F. Fu, W. F. Luo, X. Zhang. Flow-Injection Chemiluminescence Determination of Aminomethylbenzoic Acid and Aminophylline Based on N-bromosuccinimide-Luminol Reaction [J]. Talanta,2004, 62:611-617.
    [64]A. Safavi, M. A. Karimi. Flow Injection Determination of Cationic Surfactants by Using N-bromosuccinimide and N-chlorosuccinimide as New Oxidizing Agents for Luminol Chemiluminescence [J]. Anal. Chim. Acta,2002,468:53-63.
    [65]A. Safavi, M. A. Karimi, M. R. H. Nezhad. Flow Injection Determination of Isoniazid Using N-bromosuccinimide-and N-chlorosuccinimide-Luminol Chemiluminescence Systems [J]. J. Pharm. Biomed. Anal.,2003,30:1499-1506.
    [66]A. Safavi, M. A. Karimi, M. R. H. Nezhad. Flow Injection Analysis of Riboflavin with Chemiluminescence Detection Using a N-halocompounds-Luminol System [J]. Luminescence,2005,20:170-175.
    [67]Z. P. Pi, C. H. Liu, Y. S. Fan, Y. C. Wang, X. R. Duan. A Chemiluminescent Metalloimmunoassay Based on Silver Deposition on Colloidal Gold Labels [J]. Anal. Biochem.,2006,359:247-252.
    [68]B. X. Li, Y. Z. He, C. L. Xu. Simultaneous Determination of Three Organophosphorus Pesticides Residues in Vegetables Using Continuous-Flow Chemiluminescence with Artificial Neural Network Calibration [J]. Talanta,2007, 72:223-230.
    [69]范小兵,沙大年,梁小凤,韩超,胡天喜.过氧亚硝基-鲁米诺化学发光体系的改进[J].生物化学与生物物理进展,2001,28:251-255.
    [70]W. Z. Feng, L. X. Zhao, W. Yan, F. Ji, Y. L. Wei, J. M. Lin. Molecularly Imprinted Solid-Phase Extraction and Flow-Injection Chemiluminescence for Trace Analysis of 2,4-dichlorophenol in Water Samples [J]. Anal. Bioanal. Chem.,2008,391: 1073-1079.
    [71]X. F. Hou, Z. J. Zhang, Y. Zhao, J. Ma. Microdialysis Sampling and Chemiluminescence Detection for in vivo and Real-Time Study of the Lead Metabolism in Rabbit Blood [J]. Microchim. Acta,2007,159:223-228.
    [72]Z. P. Wang, Z. J. Zhang, Z. F. Fu, X. Zhang. Sensitive Flow-Injection Chemiluminescence Determination of Terbutaline Sulfate Based on Enhancement of the Luminol-permanganate reaction [J]. Anal. Bioanal. Chem.,2004,378: 834-840.
    [73]牛卫芬,吕九如.高锰酸钾-鲁米诺化学发光体系分子印迹-后化学发光法测定奋乃静[J].分析化学,2007,35:281-284.
    [74]闫瑞芳,章竹君.流动注射后化学发光法测定阿米卡星[J].分析化学,2009,10:1519-1522.
    [75]石文兵.流动注射微乳液化学发光法测定溴丙胺太林[J].应用化学,2008,25:583-586.
    [76]陈波,石文兵,黄玉明.纳米微反应器化学发光法测定氢溴酸加兰他敏.西南大学学报(自然科学版),2009,31:58-61.
    [77]石文兵.流动注射纳米微反应器化学发光法测定盐酸二氧丙嗪[J].应用化学,2008,441-444.
    [78]王术皓,庄惠生,姚型军,杜凌云.流动注射阻抑化学发光法测定己烯雌酚[J].分析试验室,2006,25:10-12.
    [79]姚型军,王术皓,杜凌云.基于I--N-氯代丁二酰亚胺-鲁米诺反应体系流动注射化学发光法测定白藜芦醇[J].分析测试学报,2006,25:88-91.
    [80]杜凌云,季宁宁,王术皓.N-溴代丁二酰亚胺氧化体系流动注射化学发光法测定水中苯酚[J].光谱学与光谱分析,2005,25:1943-1946.
    [81]Y. H. Li, W. F. Niu, J. R. Lu. Sensitive Determination of Phenothiazines in Pharmaceutical Preparation and Biological Fluid by Flow Injection Chemiluminescence Method Using Luminol-KMnO4 System [J]. Talanta,2007,71: 1124-1129.
    [82]H. Chen, Z. J. Gong, Z. J. Zhang. Coupling Microdialysis with Flow Injection Chemiluminescence Detection for a Protein-Drug Interaction Study [J]. J. Pharm. Biomed. Anal.,2006,41:1412-1417.
    [83]K. Tsukagoshi, T. Saito, R. Nakajima. Analysis of Antioxidants by Microchip Capillary Electrophoresis with Chemiluminescence Detection Based on Luminol Reaction [J]. Talanta,2008,77:514-517.
    [84]L. Wang, Y. X. Li, D. H. Zhao, C. Q. Zhu. A Novel Enhancing Flow-Injection Chemiluminescence Method for the Determination of Glutathione Using the Reaction of Luminol with Hydrogen Peroxide [J]. Microchim. Acta,2003,141: 41-45.
    [85]T. B. Xin, S. X. Liang, X. Wang, H. F. Li, J. M Lin. Determination of Estradiol in Human Serum Using Magnetic Particles-Based Chemiluminescence Immunoassay [J]. Ana. Chim. Acta,2008,627:277-284.
    [86]P. Qu, C. Y. Shan, H. Lu, Z. H. Lu. Flow-Injection Chemiluminescence Determinations for Human Blood Lead Using Controlled Reagent Release Technology [J]. Microchim. Acta,2008,163:321-326.
    [87]C. F. Ding, H. Zhong, S. S. Zhang. Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using NanoCuS Tags [J]. Biosens. Bioelectro.,2008,23:1314-1318.
    [88]S. D. Kulkarni, S. T. Nandibewoo. A Kinetic and Mechanistic Study on Oxidation of Isoniazid Drug by Alkaline Diperiodatocuprate(Ⅲ)-A Free Radical Intervention [J]. Transition Me. Chem.,2006,31:1034-1039.
    [89]谢恩海,孟庆水,王之朴.二过碘酸合镍(Ⅳ)氧化酒石酸钠的动力学[J].物理化学学报,1992,8:500-504.
    [90]B. X. Li, Z. J. Zhang, X. W. Zheng, C. L. Xu. Flow Injection Chemiluminescence Determination of Isoniazid Using on-Line Electrogenerated Manganese(Ⅲ) as Oxidant [J]. Microchem. J.,1999,63:374-380.
    [91]A. Safavi, M. A. Karimi, N. M. R. Hormozi. Flow Injection Determination of Isoniazid Using N-bromosuccinimide-and N-chlorosuccinimide-Luminol Chemiluminescence Systems [J]. J. Pharm. Biomed. Anal.,2003,30:1499-1506.
    [92]A. Safavi, M. A. Karimi, N. M. R. Hormozi. Flow-Injection Determination of Isoniazid Using Sodium Dichloroisocyanurate-and Trichloroisocyanuric Acid-Luminol Chemiluminescence Systems [J]. IL Farmaco,2003,59:481-486.
    [93]J. Xi, B. A. Shi, X. P. Ai, Z. K. He. Chemiluminescence Detection of Isoniazid Using Ru(phen)32+-Isoniazid-Ce(IV) System [J]. J. Pharm. Biomed. Anal.,2004,36: 237-241.
    [94]Y. M. Huang, Z. J. Zhang, D. J. Zhang, J. G. Lv. A Flow Injection Chemiluminescence System for the Determination of Isoniazid [J]. Fresenius J. Anal. Chem.,2000,368:429-431.
    [95]G. X. Li, X. W. Zheng. Highly Sensitive Electrogenerated Chemiluminescence Isoniazid with NiO Nanoparticles-Modified Graphite Electrode [J]. Anal. Lett., 2007,40:1853-1863.
    [96]陈新谦,金有豫,汤光.新编药物学[M].第15版.北京:人民卫生出版社,2003,77.
    [97]M. L. Sanchez-Martanez, M. P. Aguilar-Caballos, A. Gomez-Hens. Long-Wavelength Fluorescence Polarization Immunoassay:Determination of Amikacin on Solid Surface and Gliadins in Solution [J]. Anal. Chem.,2007,79: 7424-7430.
    [98]M. Confino, P. Bontchev. Spectrophotometric Determination of Amikacin, Kanamycin, Neomycin and Tobramycin [J]. Microchim. Acta,1990,3:305-309.
    [99]M. Rizk, Y. El-Shabrawy, N. A. Zakhari, S. S. Toubar, L. A. Carreira. Fluorimetric Determination of Aminoglycoside Antibiotic Using Lanthanide Probe Ion Spectroscopy [J]. Talanta,1995,42:1849-1856.
    [100]M. L. Sanchez-Martinez, M. P. Aguilar-Caballos, A. Gomez-Hens. Selective Kinetic Determination of Amikacin in Serum Using Long-Wavelength Fluorimetry [J]. J. Pharm. Biomed. Anal.,2004,34:1021-1027.
    [101]Y. El-Shabrawy. Fluorimetric Determination of Aminoglycoside Antibiotics in Pharmaceutical Preparations and Biological Fluids [J]. Spectrosc Lett.,2002,35: 99-109.
    [102]N. H. Zawilla, B. Li, J. Hoogmartens, E. Adams. Improved Reversed-Phase Liquid Chromatographic Method Combined with Pulsed Electrochemical Detection for the Analysis of Amikacin [J]. J. Pharm. Biomed. Anal.,2007,43:168-173.
    [103]E. Galanakis, N. C. Megoulas, P. Solich, M. A. Koupparis. Development and Validation of a Novel LC Non-Derivatization Method for the Determination of Amikacin in Pharmaceuticals Based on Eevaporative Light Scattering Detection [J]. J. Pharm. Biomed. Anal.,2006,40:1114-1120.
    [104]G. Brajanoskia, J. S. Hoogmartensa, K. Allegaertb, E. Adamsa. Determination of Amikacin in Cerebrospinal Fluid by High-Performance Liquid Chromatography with Pulsed Electrochemical Detection [J]. J. Chromatogr. B,2008,867:149-152.
    [105]S. Nicoli, P. Santi. Assay of Amikacin in the Skin by High-Performance Liquid Chromatography [J]. J. Pharm. Biomed. Anal.,2006,41:994-997.
    [106]J. M. Serrano, M. Silva. Determination of Amikacin in Body Fluid by High-Performance Liquid-Chromatography with Chemiluminescence Detection [J]. J. Chromatogr. B,2006,843:20-24.
    [107]J. M. Ramos Fernandez, J. M. Bosque-Sendra, A. M. Garcia-Campana, F. Ales Barrero. Chemiluminescence Determination of Amikacin Based on the Inhibition of the Luminol Reaction Catalyzed by Copper [J]. J. Pharm. Biomed. Anal.,2005,36: 969-974.
    [108]P. Norouzi, G. R. N. Bidhendi, M. R. Ganja, A. Sepehri, M. Ghorbani. Sub-Second Accumulation and Stripping for Pico-Level Monitoring of Amikacin Sulphate by Fast Fourier Transform Cyclic Voltammetry at a Gold Microelectrode in Flow-Injection Systems [J]. Microchim. Acta,2005,152:123-129.
    [109]K. A. Thabaj, S. A. Chimatadar, S. T. Nandibewoor. Dual Mechanism of Oxidation of DL-methionine by Diperiodatoargentate (Ⅲ) in Aqueous Alkaline Medium (Stopped Flow Technique) [J]. J. Mol. Struct.,2008; 882:88-95.
    [110]P. J. Rao, B. Sethuram, T. N. Rao. Kinetics of Oxidative Deamination of Some Amino Acids by Diperiodatoargentate (Ⅲ) in Alkaline Medium [J]. React. Kinet. Catal. Lett.,1985; 29,289-296.
    [111]江虹.甲基蓝双波长光度法测定阿米卡星[J].分析科学学报,2004;20(4):415-417.
    [112]M. L. Luis, J. M. G. Fraga, F. Jimenez, A. I. Jimenez, J. J. Arias. Simultaneous Spectrophotometric Determination of Diuretics by Using Multivariate Calibration Methods [J]. Talanta,2001,53:761-770.
    [113]D. G. Mascher, W. Tscherwenka, H. J. Mascher. Method Development for Dihydralazine with HPLC-MS/MS-an Old but Tricky Substance in Human Plasma [J]. J. Pharm. Biomed. Anal.,2007,43:631-645.
    [114]C. Laugel, P. Chaminade, A. Baillet, D. Ferrier. Ion-Pair Reversed-Phase Liquid Chromatographic Determination of Dihydralazine [J]. J. Chromatogr. A,1994,686: 344-349.
    [115]冀宛丽,赵家太.HPLC法测定复方罗布麻片(Ⅱ)中硫酸双肼屈嗪的含量[J].2008,20:41-42.
    [116]Y. Xiong, H. J. Zhou, Z. J. Zhang, D. Y. He, C. He. Determination of Hydralazine with Flow Injection Chemiluminescence Sensor Using Molecularly Imprinted Polymer as Recognition Element [J]. J. Pharm. Biomed. Anal.,2006,41:694-700.
    [117]X. F. Yang, D. B. Wu, H. Li. Flow Injection Chemiluminescence Determination of Dihydralazine Sulphate Based on Permanganate Oxidation Sensitized by Rhodamine B [J]. Luminescence,2004,19:322-327.
    [118]X. F. Yang, H. Li. Flow-Injection Chemiluminescence Determination of Dihydralazine Sulfate Based on Hexacyanoferrate(Ⅲ) Oxidation Sensitized by Eosin Y [J]. Talanta,2004,64:478-483.
    [119]H. C. Yao, X. F. Yang, H. Li. Chemiluminescence of Peracetic Acid in Alkaline Medium and its Application to Dihydralazine Sulfate Determination [J]. Microchim. Acta,2006,153:171-178
    [120]X. F. Yang. Chemiluminescence Investigation of Carbon Dioxide-Enhanced Oxidation of Dihydralazine Sulfate by Peroxynitrite and its Application to Pharmaceutical Analysis [J]. Anal. Chim. Acta,2008,616:190-195.
    [1]林金明.化学发光基础理论与应用[M].化学工业出版社:北京,2004,5:121.
    [2]K. Mizuno, S. Hata and S. Tomioka, Measurements of Extra-Weak Chemiluminescence [J]. Chem. Pharm. Bull.,1970,18:2588-2589.
    [3]J. Stauff, U. Bergmann. Chemiluminescence von Oxydationsreaktionen VII. Carbonat-Radikale als Quellen von Chemiluminescence [J]. Z. Phys. Chem. Neue Folge,1972,78:263-276.
    [4]R. W. Abbott, A. Townshend. The Chemiluminescence Determination of Drugs [J]. Anal. Proc.,1986,23:25-26.
    [5]R. W. Abbott, A. Townshend, R. Gill. Determination of Morphine by Flow Injection Analysis with Chemiluminescence Detection [J]. Analyst,1986,111:635-640.
    [6]A. A. Alwarthan, A. Townshend. Chemiluminescence Determination of Buprenorphine Hydrochloride by Flow Injection Analysis [J]. Anal. Chim. Acta, 1986,185:329-333.
    [7]R. W. Abbott, A. Townshend, R. Gill. Determination of Morphine in Body Fliuds by High-Performance Liquid Chromatography with Chemiluminescence Detection [J]. Analyst,1987,112:397-406.
    [8]S. A. Al-Tamrah, A. Townshend. Determination of Naphthols by Flow-Injection Chemiluminescence [J]. Anal. Chim. Acta,1987,202:247-250.
    [9]W. Cao, X. M. Mu, J. H. Yang, W. B. Shi, Y. C. Zheng. Flow Injection-Chemiluminescence Determination of Phenol Using Potassium Permanganate and Formaldehyde System [J]. Spectrochim. Acta, Part A,2007,66: 58-62.
    [10]S. L. Fan, L. K. Zhang, J. M. Lin. Post-Column Detection of Benzenediols and 1,2,4-benzenetriol Based on Acidic Potassium Permanganate Chemiluminescence [J]. Talanta,2006,68:646-652.
    [11]D. W. Percy, J. L. Adcock, X. A. Conlan, N. W. Barnett, M. E. Gange, L. K. Noonan, L. C. Henderson, P. S. Francis. Determination of Citrus Aurantium Protoalkaloids Using HPLC with Acidic Potassium Permanganate Chemiluminescence Detection [J].2010,80:2191-2195.
    [12]T. Slezak, P. S. Francis, N. Anastos, N. W. Barnett. Determination of Synephrine in Weight-Loss Products Using High Performance Liquid Chromatography with Acidic Potassium Permanganate Chemiluminescence Detection [J]. Anal. Chim. Acta,2007,593:98-102.
    [13]F. Nie, J. R. Lu. Determination of Fenfluramine Based on Potassium Permanganate-Calcein Chemiluminescence System [J]. Talanta,2008,74: 1242-1246.
    [14]J. W. Costin, N. W. Barnett, S. W. Lewis, D. J. McGillivery. Monitoring the Total Phenolic/Antioxidant Levels in Wine Using Flow Injection Analysis with Acidic Potassium Permanganate Chemiluminescence Detection [J]. Anal. Chim. Acta, 2003,499:47-56.
    [15]J. A. M. Pulgarin, L. F. G. Bermejo, P. F. Lopez. Sensitive Determination of Captopril by Time-Resolved Chemiluminescence Using the Stopped-Flow Analysis Based on Potassium Permanganate Oxidation [J]. Anal. Chim. Acta,2005,546: 60-67.
    [16]S. L. Liao, X. P. Wu, Z. H. Xie. Determination of Some by Flow Injection Analysis with Acidic Potassium Permanganate-Formaldehyde Chemiluminescence Detection [J]. Anal. Chim. Acta,2005,537:189-195.
    [17]L. Yi, H. C. Zhao. S. L. Chen, L. P. Jin, D. D. Zheng, Z. L. Wu. Flow-Injection Analysis of Two Fluoquinolones by the Sensitizing Effect of Terbium(Ⅲ) on Chemiluminescence of the Potassium Permanganate-Sodium Sulfite System [J]. Talanta,2003,61:403-409.
    [18]G. H. Wan, H. Cui, H. S. Zheng, J. Zhou, L. J. Liu, X. F. Yu. Determination of Tetracyclines Residues in Honey Using High-Performance Liquid Chromatography with Potassium Permanganate-Sodium Sulfite-β-cyclodextrin Chemiluminescence Detection [J]. J. Chromatogr. B,2005,824:57-64.
    [19]C. Thongpoon, B. Liawruangrath, S. Liawruangrath, R. A. Wheatley, A. Townshend. Flow Injection Chemiluminescence Determination of Cefadroxil Using Potassium Permanganate and Formaldehyde System [J]. J. Pharm. Biomed. Anal.,2006,42: 277-282.
    [20]G. Z. Tsogas, D. L. Giokas, P. G. Nikolakopoulos, A. G. Vlessidis, N. P. Evmiridis. Determination of the Pesticide Carbaryl and its Photodegradation Kinetics in Natural Waters by Flow Injection-Direct Chemiluminescence Detection [J]. Anal. Chim. Acta,2006,573-574:354-359.
    [21]H. Y. Yao, B. Wu, H. B. Qin, Y. Y. Chen. A High Throughput Chemiluminescence Method for Determination of Chemical Oxygen Demand in Waters [J]. Anal. Chim. Acta,2009,633:76-80.
    [22]J. L. Adcock, N. W. Barnett, J. W. Costin, P. S. Francis, S. W. Lewis. Determination of Selected Neurotransmitter Metabolites Using Monolithic Column Chromatography Coupled with Chemiluminescence Detection [J]. Talanta,2005,67: 585-589.
    [23]A. Kojlo, J. Michalowski, E. Wolyniec. Chemiluminescence Determination of Thioridazine Hydrochloride by Flow-Injection Analysis [J]. J. Pharm. Biomed. Anal.,2000,22:85-91.
    [24]J. A. M. Pulgarin, L. F. G. Bermejo, J. A. R. Aranda. Time-Rresolved Chemiluminescence:A Novel Tool for Improved Emission Sequence in Stopped-Flow Analysis Application to a Kinetic Study of the Oxidation of Naloxone [J]. Anal. Chim. Acta,2004,517:111-117.
    [25]A. Townshend, J. A. M. Pulgarin, M. T. Alanon Pardo. Flow Injection-Chemiluminescence Determination of Propranolol in Pharmaceutical Preparations [J]. Anal. Chim. Acta,2003,488:81-88.
    [26]M. C. Icardo, M. Misiewicz, A. Ciucu, J. V. Garcia Mateo, J. Martinez Calatayud. Fl-on Line Photochemical Reaction for Direct Chemiluminescence Determination of Photodegradated Chloramphenicol [J]. Talanta,2003,60:405-414.
    [27]J. A. M. Pulgarin, L. F. G. Bermejo, J. M. L. Gallego. M. N. S. Garcia. Simultaneous Stopped-Flow Determination of Morphine and Naloxone by Time-Resolved Chemiluminescence [J]. Talanta,2008,74:1539-1546.
    [28]Y. Wei, Z. J. Zhang, Y. T. Zhang, Y. H. Sun. Determination of Propylthiouracil and Methylthiouracil in Human Serum Using High-Performance Liquid Chromatography with Chemiluminescence Detection [J]. J. Chromatogr. B,2007, 854:239-244.
    [29]M. Liu, J. R. Lv, Y. H. He, J. X. Du. Molecular Imprinting-Chemiluminescence Sensor for the Determination of Brucine [J]. Anal. Chim. Acta,2005,541:99-104.
    [30]B. X. Li, L. L. Guo, C. L. Xu, L. M. Ma. Flow-Injection Chemiluminescence Determination of Chrysin and Baicalein Assisted by Theoretical Prediction of Chemiluminescence Behavior of Chrysin and Baicalein [J]. Spectrochim. Acta, Part A,2008,71:892-897.
    [31]J. J. Ren, H. Y. Liu, Y. H. Hao, P. G. He, Y. Z. Fang. Determination of Resveratrol in Red Wine by Solid Phase Extraction-Flow Injection Chemiluminescence Method [J]. Chin. Chem. Lett.,2007,18:985-988.
    [32]Y. H. Li, J. R. Lu. Flow Injection Chemiluminescence Determination of Naproxen Based on KMnO4-Na2SO3 Reaction in Neutral Aqueous Medium [J]. Anal. Chim. Acta,2006,577:107-110.
    [33]Z. Y. Zhang, X. Li, X. L. Wang, S. L. Chen, B. H. Song, H. C. Zhao. Determination of Ciprofloxacin by Flow Injection Analysis Based on Chemiluminescence System [J]. J. Rare Earths,2006,24:285-288.
    [34]Z. P. Wang, Z. J. Zhang, Z. F. Fu, D. L. Chen, X. Zhang. Flow-Injection Chemiluminescence Detection for Studying Protein Binding of Terbutaline Sulfate with on-Line Microdialysis Sampling [J]. J. Pharm. Biomed. Anal.,2003,33: 765-773.
    [35]M. C. S. Alonso, L. L. Zamora, J. M. Calatayud. Determination of the Flavor Enhancer Maltol through a FIA-Direct Chemiluminescence Procedure [J]. Anal. Chim. Acta,2001,438:157-163.
    [36]H. Pasekova, M. Polasek, J. F. Cigarro, J. Dolejsova. Determination of Some Sulphonamides by Sequential Injection Analysis with Chemiluminescence Detection [J]. Anal. Chim. Acta,2001,438:165-173.
    [37]H. Pasekova, M. Polask. Determination of Procaine, Benzocaine and Tetracaine by Sequential Injection Analysis with Permanganate-Induced Chemiluminescence Detection [J]. Talanta,2000,52:67-75.
    [38]J. A. M. Pulgarin, L. F. G. Bermejo, J. A. R. Aranda. Development of Time-Resolved Chemiluminescence for the Determination of Antu in River Water, Wheat, Barley, and Oat Grain Samples [J]. J. Agric. Food Chem.,2005,53: 6609-6615.
    [39]J. X. Du, W. X. Liu, J. R. Lu. Chemiluminescence Behaviour of Alkaline Earth Metal Ions in the Potassium Permanganate-Fluorescein Reaction [J]. Luminescence, 2003,18:341-345.
    [40]S. Q. Han. Chemiluminescence Determination of Indole Derivatives in Human Body Fluids and Soil by Flow Injection Analysis Using Potassium Permanganate [J]. Microchim. Acta, DOI:10.1007/s00604-009-0257-9.
    [41]G. N. Chen, F. X. Huang, X. P. Wu, Z. F. Zhao, J. P. Duan. Chemiluminescence Determination of Melatonin and Some of its Derivatives Using Potassium Permanganate and Formaldehyde System [J]. Anal. Bioanal. Chem.,2003,376: 873-878.
    [42]M. Yaqoob, A. Rehman, A. Wassem, A. Nabi. Determination of Iodide Using Flow Injection with Acidic Potassium Permanganate Chemiluminescence Detection [J]. Luminescence,2006,21:221-225.
    [43]Z. H. Xie, X. Q. Ouyang, L. Q. Guo, X. C. Lin, G. N. Chen. Determination of Methyltestosterone Using Flow Injection with Chemiluminescence Detection [J]. Luminescence,2005,20:231-235.
    [44]X. Q. Xu, Q. Lin, X. Y. He, F. F. Fu, G. N. Chen. Determination of Protoberberine Alkaloids in Medicinal Plants Based on Acidic Potassium Permanganate Chemiluminescence System [J]. Luminescence,2009, DOI:10.1002/bio.1169.
    [45]J. Huclova, D. Satinsky, H. Sklenarova, R. Karlicek. Determination of Salbutamol Using on-Line Solid-Phase Extraction and Sequential Injection Analysis. Comparison of Chemiluminescence and Fluorescence Detection [J]. Anal. Bioanal. Chem.,2003,376:448-454.
    [46]X. Y. Xiong, Q. Z. Zhang, F. M. Xiong, Y. H. Tang. Determination of Three Nonsteroidal Anti-Inflammatory Drugs in Human Plasma by LC Coupled with Chemiluminescence Detection [J]. Chromatographia,2008,67:929-934.
    [47]M. Yaqoob, A. Waseem, A. Nabi. Determination of Total Iron in Fresh Waters Using Flow Injection with Potassium Permanganate Chemiluminescence Detection [J]. J. Anal. Chem.,2006,61:917-921.
    [48]A. Townshend, J. A. M. Pulgarin, M. Te. A. Pardo. Flow Injection Chemiluminescence Determination of Naftopidil Based on Potassium Permanganate Oxidation in the Presence of Formaldehyde or Formic Acid [J]. Anal. Bioanal. Chem.,2005,381:925-931.
    [49]X. F. Yang, D. B. Wu, H. Li. Flow Injection Chemiluminescence Determination of Dihydralazine Sulphate Based on Permanganate Oxidation Sensitized by Rhodamine B [J]. Luminescence,2004,19:322-327.
    [50]W. Cao, J. H. Yang, C. X. Sun, Y. J. Chen, Q. F. Gao. Flow Injection-Chemiluminescence Determination of Amoxycillin Using Potassium Permanganate and Formaldehyde System [J]. Luminescence,2005,20:20-24.
    [51]A. Waseem, M. Yaqoob, A. Nabi. Flow-Injection Determination of Carbaryl and Carbofuran Based on KMnO4-Na2SO3 Chemiluminescence Detection [J]. Luminescence,2007,22:349-354.
    [52]H. W. Sun, L. Q. Li, X. Y. Chen. Flow-Injection Enhanced Chemiluminescence Method for Determination of Ciprofloxacin in Pharmaceutical Preparations and Biological Fluids [J]. Anal. Bioanal. Chem.,2006,384:1314-1319.
    [53]W. Cao, J. H. Yang, C. X. Sun, Z. J. Zhang, Q. F. Gao. Flow-Injection Chemiluminescence Method for the Determination of Penicillin G Potassium [J]. Luminescence,2005,20:238-242.
    [54]S. L. Fan, L. K. Zhang, J. M. Lin. Post-Column Detection of Benzenediols and 1,2,4-benzenetriol Based on Acidic Potassium Permanganate Chemiluminescence [J]. Talanta,2006,68:646-652.
    [55]J. L. Adcock, P. S. Francis, N. W. Barnett. Emitting Species in Chemiluminescence Reaction with Acidic Potassium Permanganate; A Re-Evaluation Based on New Spectroscopic Evidence [J]. J. Fluoresc.,2009,19:867-874.
    [56]J. L. Adcock, P. S. Francis, N. W. Barnett. Acidic Potassium Permanganate as a Chemiluminescence Reagent-A Review [J]. Anal. Chim. Acta,2007,601:36-67.
    [57]B. J. Hindson, N. W. Barnett. Analytical Applications of Acidic Potassium Permanganate as a Chemiluminescence Reagent [J]. Anal. Chim. Acta,2001,445: 1-19.
    [58]A. J. Brown, P. S. Francis, J. L. Adcockb, K. F. Lim, N. W. Barnett. Manganese(Ⅲ) and Manganese(Ⅳ) as Chemiluminescence Reagents:A Review [J]. Anal. Chim. Acta,2008,624:175-183.
    [59]T. Korenaga, X. Zhou, K. Odada, T. Moriwake. Determination of Chemical Oxygen Demand by Flow-Injection Method Using Cerium (Ⅳ) Sulphate as Oxidizing Agent [J]. Anal. Chim. Acta,1993,272:237-244.
    [60]I. I. Koukli, A. C. Calokerinos, T. P. Hadjiioannou. Continous-Flow Chemiluminescence Determination of Acetaminophen by Reduction of Cerium (Ⅳ) [J]. Analyst,1989,114:711-714.
    [61]A. A. Alwarhan. Chemiluminescence Determination of Tryptophan in a Flow Injection System [J]. Anal. Chim. Acta,1995,317:233-237.
    [62]X. J. Yu, J. F. Bao. Determination Ofnorfloxacin Using Gold Nanoparticles Catalyzed Cerium (Ⅳ)-Sodium Sulfite Chemiluminescence [J]. J. Lumin.,2009, 129:973-978.
    [63]L. Yi, H. C. Zhao, C. Y. Sun, S. L. Chen, L. P. Jin. Flow-Injection Chemiluminescence Study of Ce (Ⅳ)/Na2SO3/Tb(Ⅲ)/Fluoquinolone Antibiotic System with DNA [J]. Spectrochim. Acta, Part A,2003,59:2541-2546.
    [64]H. Y. Liu, J. J. Ren, Y. H. Hao, H. C. Ding, P. G. He, Y. Z. Fang. Determination of Metoprolol Tartrate in Tablets and Human Urine Using Flow-Injection Chemiluminescence Method [J]. J. Pharm. Biomed. Anal.,2006,42:384-388.
    [65]S. W. Sun, J. R. Lu. Flow-Injection Post Chemiluminescence Determination of Atropine Sulfate [J]. Anal. Chim. Acta,2006,580:9-13.
    [66]J. A. Ocana, M. Callejon, F. J. Barragan, F. F. D. Rosa. Lanthanide Sensitized Chemiluminescence Determination of Grepafloxacin in Tablets and Human Urine [J]. Anal. Chim. Acta,2003,482:105-113.
    [67]N. Lian, H. C. Zhao, C. Y. Sun, S. L. Chen, Y. Lu, L. P. Jin. A Study on Terbium Sensitized Chemiluminescence of Ciprofloxacin and Its Application [J]. Microchem. J.,2003,74:223-230.
    [68]J. A. Ocana, F. J. Barragan, M. Callejon, F. D. Rosa. Application of Lanthanide-Sensitised Chemiluminescence to the Determination of Levofloxacin, Moxifloxacin and Trovafloxacin in tablets [J]. Microchim. Acta,2004,144: 207-213.
    [69]Y. H. He, J. R. Lu, H. G. Zhang, J. X. Du. Molecular Imprinting-Chemiluminescence Determination of Norfloxacin Using a Norfloxacin-Imprinted Polymer as the Recognition Material [J]. Microchim. Acta, 2005,149:239-244.
    [70]X. H. Zhang, J. Ouyang, S. D. Zhai, G. M. Huang, H. C. Zhao. Flow-Injection with Enhanced Chemiluminescence Detection of Ofloxacin in Human Plasma [J]. Luminescence,2005,20:362-369.
    [71]王旭,赵慧春.依诺沙星的铽敏化化学发光法[J].药学学报,2001:36:613-615.
    [72]聂丽华,赵慧春,王旭.Tb3+敏化化学发光法测定氟罗沙星[J].分析化学,2001,29:910-912.
    [73]C. Y. Yang, Z. J. Zhang, S. M. Chen, F. Yang. Molecularly Imprinted on-Line Solid-Phase Extraction Combined with Chemiluminescence for the Determination of Pazufloxacin Mesilate [J]. Microchim. Acta,2007,159:299-304.
    [74]连宁,赵慧春,孙春燕,金林培,张仲伦,郑雁珍.加替沙星铽敏化化学发光与应用[J].高等学校化学学报,2002,23:564-566.
    [75]孙春燕,赵慧春,易琳,陆燕.流动注射光化学敏化化学发光法测定斯帕沙星[J].分析化学,2002,30:920-924.
    [76]S. L. Chen, H. C. Zhao, C. Y. Sun. A Study on Terbium Sensitized Chemiliuminescence of Pipemidic Acid and Its Application [J]. Anal. Lett.,2002, 35:1705-1714.
    [77]L. H. Nie, H. C. Zhao, X. Wang, L. Yi, Y. Lu, L. P. Jin, H. M. Ma. Determination of Lomefloxacin by Terbium Sensitized Chemiluminescence Method [J]. Anal. Bioanal. Chem.,2002,374:1187-1190.
    [78]J. A. Ocana, M. Callejon, F. J. Barragan. Lanthanide Sensitized Chemiluminescence Determination of Grepafloxacin in Tablets and Human Urine [J]. Anal. Chim. Acta, 2003,482:105-113.
    [79]N. Lian, H. C. Zhao, C. Y. Sun. A Study on Terbium Sensitized Chemiluminescence of Ciprofloxacin and Its Application [J]. Microchem. J.,2003,74:223-230.
    [80]X. H. Zhang, O. Y. Jin, S. D. Zhai, G. M. Huang, H. C. Zhao. Flow-Injection with Enhanced Chemiluminescence Detection of Ofloxacin in Human Plasma [J]. Luminescence,2005,20:362-369.
    [81]X. Wang, H. C. Zhao, L. H. Nie, L. P. Jin, Z. L. Zhang. Europium Sensitized Chemiluminescence Determination of Rufloxacin [J]. Anal. Chim. Acta,2001,445: 169-175.
    [82]张四纯,武亚艳,赵瑞,李华.流动注射化学发光法测定N-四氢苯并噻唑亚胺希夫碱[J].分析化学,2000,28:357-360.
    [83]S. C. Zhang, Y. Y. Wu, H. Li. Flow Injection Chemiluminescence Determination of N-tetrahydrobenzothiazolylimines [J]. Analyst,2000,125:753-757.
    [84]Y Rao, Y. Tong, X. R. Zhang, G. A. Luo, W. R. G. Baeyens. Determination of Ofloxacin Using a Chemiluminescence Flow-Injection Method [J]. Anal. Chim. Acta,2000,416:227-230.
    [85]A. F. Aly, A. N. Alarfaj, A. A. Alwarthan. Flow-Injection Chemiluminescence Analysis of Some Bezamides by There Sensitizing Effect on the Cerium-Sulphite Reaction [J]. Talanta,2001,54:715-725.
    [86]S. C. M. Alonso, L. L. Zamora, J. M. Aalatayud. Flow-Injection with Chemiluminescence Detection for the Determination of Iproniazid [J]. Anal. Chim. Acta,2001,437:225-231.
    [87]M. L. Karine, S. M. L. Joao, L. C. F. L. Jose. Multicommutated Flow System for the Chemiluminescence Determination of Clomipramine in Pharmaceutical Preparations [J]. Anal. Chim. Acta,2004,518:31-36.
    [88]C. Y. Sun, B. Liu, J. H. Li. Sensitized Chemiluminescence of CdTe Quantum-Dots on Ce(Ⅳ)-Sulfite and Its Analytical Applications [J]. Talant,2008,75:447-454.
    [89]A. A. Al-Warthan. Flow Injection Chemiluminometric Determination of Folic Acid in Pharmaceutical Formulation [J]. Anal. Sci.,1994,10:919-922.
    [90]Y. J. Ma, M. Zhou, X. Y Jin, Z. Y Zhang, X. L. Teng, H. Chen. Flow-Injection Chemiluminescence Assay for Ultra-trace Determination of DNA Using Rhodamine B-Ce(Ⅳ)-DNA Ternary System in Sulfuric Acid Media [J]. Anal. Chim. Acta,2004,501:25-30.
    [91]W. B. Liu, Y. M. Huang. Cerium (Ⅳ)-Based Chemiluminescence of Phentolamine Sensitized by Rhodamine 6G [J]. Anal. Chim. Acta,2004,506:183-187.
    [92]Y M. Huang, Z. H. Chen. Chemiluminescence of Chlorpromazine Hydrochloride Based on Cerium(Ⅳ) Oxidation Sensitized by Rhodamine 6G [J]. Talanta,2002,57: 953-959.
    [93]J. A. M. Pulgarin, A. A. Molina, G. Perez-Olivares Nieto. Determination of Hydrochlorothiazide in Pharmaceutical Preparations by Time Resolved Chemiluminescence [J]. Anal. Chim. Acta,2004,518:37-43.
    [94]Q. L. Zhang, H. Cui. Simultaneous Determination of Quercetin, Kaempferol, and Isorhamnetin in Phytopharmaceuticals of Hippophae Rhamnoides L. by High Performance Liquid Chromatography with Chemiluminescence Detection [J]. J. Sep. Sci.,2005,28:1171-1178.
    [95]J. A. M. Pulgarin, A. A. Molina, G. P.O. Nieto. Rapid Determination of Hydroflumethiazide in Dosage Forms by Time-Resolved Chemiluminescence [J]. Microchim. Acta,2007,159:349-356.
    [96]R. F. Wang, L. J. Wan, Q. Li, X. D. Liu, Y. M. Huang. Chemiluminescence of Synephrine Based on the Cerium (Ⅳ)-Rhodamine B system [J]. Luminescence, 2007,22:140-146.
    [97]S. H. He, D. Y. He, Z. J. Zhang. Chemiluminescence System of Ce(Ⅳ)-RhB-Bismerthiazol [J]. Front. Chem. China.,2008,3:422-724.
    [98]Y. Xiong, H. J. Zhou, Z. J. Zhang, D. Y. He, C. He. Molecularly Imprinted on-Line Solid-Phase Extraction Combined with Flow-Injection Chemiluminescence for the Determination of Tetracycline [J]. Analyst,2006,131:829-834.
    [99]H. Chen, M. Zhou, X. Y. Jin, Y M. Song, Z. Y. Zhang, Y. J. Ma. Chemiluminescence Determination of Ultramicro DNA with a Flow-Injection Method [J]. Anal. Chim. Acta,2003,478:31-36.
    [100]S. J. Wang, H. M. Ma, J. Li, X. Q. Chen, Z. J. Bao, S. N. Sun. Direct Determination of Reduced Glutathione in Biological Fluids by Ce(Ⅳ)-Quinine Chemiluminescence [J]. Talanta,2006,70:518-521.
    [101]L. F. Capitan-Vallvey, M. C. Valencia Miron, R. A. Acosta. Chemiluminescence Determination of Sodium 2-mercaptoethane Sulfonate by Flow Injection Analysis Using Cerium(Ⅳ) Sensitized by Quinine [J]. Talanta,2000,51:1155-1161.
    [102]Q. Q. Jiang, F. Nie, J. R. Lu. Chemiluminescence Determination of Bromhexine Hydrochloride with Morin as Chemiluminescent Reagent [J]. Luminescence,2008, 23:32-36.
    [103]杨春艳,熊艳,何超,章竹君.分子印迹固相萃取-化学发光测定盐酸金霉素[J].应用化学,2007,24:273-277.
    [104]L. L. Liu, J. C. Bao, M. Fang, L. F. Li, Z. H. Dai. Electrogenerated Chemiluminescence for the Sensitive Detection of Leucine Using Ru (bpy)32+ Immobilized on Dendritic Pd Nanoparticle [J]. Sens. Actuators, B,2009,139: 527-531.
    [105]X. Y. Wang, J. M. Zhou, W. Yun, S. S. Xiao, Z. Chang, P. G. He, Y. Z. Fang. Detection of Thrombin Using Electrogenerated Chemiluminescence Based on Ru (bpy)32+-Doped Silica Nanoparticle Aptasensor via Target Protein-Induced Strand Displacement [J]. Anal. Chim. Acta,2007,598:242-248.
    [106]Y H. Sun, Z. J. Zhang, Z. J. Xi, Z. L. Shi, W. Tian. Determination of Itopride Hydrochloride by High-Performance Liquid Chromatography with Ru (bpy)32+ Electrogenerated Chemiluminescence Detection [J]. Anal. Chim. Acta,2009,648: 174-177.
    [107]L. H. Zhang, S. J. Dong. Electrogenerated Chemiluminescence Sensing Platform Using Ru (bpy)32+ Doped Silica Nanoparticles and Carbon Nanotubes [J]. Electrochem. Commun.,2006,8:1687-1691.
    [108]X. Hun, Z. J. Zhang. Electrogenerated Chemiluminescence Sensor for Metoclopramide Determination Based on Ru(bpy)32+-Doped Silica Nanoparticles Dispersed in Nafion on Glassy Carbon Electrode [J]. J. Pharm. Biomed. Anal.,2008, 47:670-676.
    [109]L. H. Zhang, Z. A. Xu. S. J. Dong. Electrogenerated Chemiluminescence Biosensor Based on Ru (bpy)32+ and Dehydrogenase Immobilized in Sol-Gel/Chitosan/Poly(sodium 4-styrene sulfonate) Composite Material [J]. Anal. Chim. Acta,2006,575:52-26.
    [110]L. H. Zhang, Z. H. Guo, Z. A. Xu, S. J. Dong. Highly Sensitive Electrogenerated Chemiluminescence Produced at Ru (bpy)32+ in Eastman-AQ55D-Carbon Nanotube Composite Film Electrode [J]. J. Electroanal. Chem.,2006,592:63-67.
    [111]T. T. Jia, Z. M. Cai, X. M. Chen, Z. J. Lin, X. L. Huang, X. Chen, G N. Chen. Electrogenerated Chemiluminescence Ethanol Biosensor Based on Alcohol Dehydrogenase Functionalized Ru (bpy)32+ Doped Silica Nanoparticles [J]. Biosens. Bioelectron.,2009,25:263-267.
    [112]H. Y Wang, X. L. Zhang, Z. Tan, W. Yao, L. Wang. Enhanced Electrogenerated Chemiluminescence of Ru (bpy)32+/TPrA System on CdS Nanocrystals Film [J]. Electrochem. Commun.,2008,10:170-174.
    [113]Y Li, H. L. Qi, F. Fang, C. X. Zhang. Ultrasensitive Electrogenerated Chemiluminescence Detection of DNA Hybridization Using Carbon-Nanotubes Loaded with Tris (2,2'-bipyridyl) Ruthenium Derivative Tags [J]. Talanta,2007,72: 1704-1709.
    [114]Y. K. Lyu, K. J. Kyung, W. Y. Lee. Functionalized Magnetic Nanoparticle with Poly(3-thiopheneacetic acid) and its Application for Electrogenerated Chemiluminescence Sensor [J]. Synth. Met.,2009,159:571-575.
    [115]L. H. Zhang, F. Wang, S. J. Dong. Layer-by-Layer Assembly of Functional Silica and Au Nanoparticles for Fabricating Electrogenerated Chemiluminescence Sensor [J]. Electrochim. Acta,2008,53:6423-6427.
    [116]H. N. Choi, S. H. Cho, Y. J. Park, D. W. Lee, W. Y. Lee. Sol-Gel-Immobilized Tris (2,2'-bipyridyl)ruthenium(Ⅱ) Electrogenerated Chemiluminescence Sensor for High-Performance Liquid Chromatography [J]. Anal. Chim. Acta,2005,541: 49-56.
    [117]H. Kodamatani, Y. Komatsu, S. Yamazaki, K. Saito. Electrogenerated Chemiluminescence Reaction of Tris (2,2'-bipyridine)ruthenium(Ⅱ) with 2,5-dimethylthiophene as Co-Reactant in Aqueous Solution [J]. Anal. Chim. Acta, 2008,622:119-125.
    [118]C. A. Lindino, L. O. S. Bulhoes. Determination of Fenoterol and Salbutamol in Pharmaceutical Formulations by Electrogenerated Chemiluminescence [J]. Talanta, 2007,72:1746-1751.
    [119]Z. Chang, X. W. Zheng. Highly Sensitive Electrogenerated Chemiluminescence (ECL) Method for Famotidine with Pre-anodizing Technique to Improve ECL Reaction Microenvironment at Graphite Electrode Surface [J]. J. Electroanal. Chem.,2006,587,161-168.
    [120]H. Wang, C. X. Zhao, Y. L. H. L. Qi. Electrogenerated Chemiluminescence Detection for Deoxyribonucleic Acid Hybridization Based on Gold Nanoparticles Carrying Multiple Probes [J]. Anal. Chim. Acta,2006,575:205-211.
    [121]W. Yun, X. Y. Wang, P. Dong, J. K. Zhu, Y. Xu, P. G. He, Y. Z. Fang. Electrogenerated Chemiluminescence Immunoassay for Human IgG with Electrochemical Polymerization-Based Immobilization Method [J]. Chin. J. Anal. Chem.,2009,37:8-12.
    [122]M. S. Burkhead, H. Wang, M. Fallet, E. M. Gross. Electrogenerated Chemiluminescence:An Oxidative-Reductive Mechanism Between Quinolone Antibiotics and Tris (2,2'-bipyridyl)ruthenium(Ⅱ) [J]. Anal. Chim. Acta,2008,613: 152-162.
    [123]J. G. Li, Q. Y. Yan, Y. L. Gao, H. X. Ju. Electrogenerated Chemiluminescence Detection of Amino Acids Based on Precolumn Derivatization Coupled with Capillary Electrophoresis Separation [J]. Anal. Chem.,2006,78:2694-2699.
    [124]M. H. Xiang, R. Lei, N. Li, K. Li. Electrogenerated Chemiluminescence of Ruthenium (Ⅱ) Bipyridyl Complex Directly Immobilized on Glassy Carbon Electrodes [J]. J. Appl. Electrochem.,2009,39:921-925.
    [125]R. Nakao, K. Furutsuka, T. Fukumura, M. Yamaguchi, K. Suzuki. Quality Control of PET Radiopharmaceuticals by High-Performance Liquid Chromatography with Tris (2,2'-bipyridyl)ruthenium(Ⅱ) Electrogenerated Chemiluminescence Detection [J]. Biomed. Chromatogr.,2010,24:202-208.
    [126]L. H. Shen, X. X. Li, H. L. Qi, C. X. Zhang. Electrogenerated Chemiluminescence of Ruthenium Complex Immobilized in a Highly Cross-Linked Polymer and its Analytical Applications [J]. Luminescence,2008,23:370-375.
    [127]X. Hun, Z. J. Zhang. Electrogenerated Chemiluminescence Sensor for Itopride with Ru(bpy)32+-Doped Silica Nanoparticles/Chitosan Composite Films Modified Electrode [J]. Sens. Actuators, A,2008,131:403-410.
    [128]Z. Chang, J. M. Zhou, K. Zhao, N. N. Zhu, P. G. He, Y. Z. Fang. Ru (bpy)3 2+-Doped Silica Nanoparticle DNA Probe for the Electrogenerated Chemiluminescence Detection of DNA Hybridization [J].Electrochim. Acta,2006, 52:575-580.
    [129]G. H. Wan, H. Cui, Y. L. Pan, P. Zheng, L. J. Liu. Determination of Quinolones Residues in Prawn Using High-Performance Liquid Chromatography with Ce(IV)-Ru(bpy)32+-HNO3 Chemiluminescence Detection [J]. J. Chromatogr. B, 2006,843:1-9.
    [130]B. Rezaei, A. Mokhtari. A Simple and Rapid Flow Injection Chemiluminescence Determination of Cysteine with Ru(phen)32+-Ce(Ⅳ) System [J]. Spectrochim. Acta A,2007,66:359-363.
    [131]K. Mervartova, M. Polask, J. M. Calatayud. Sequential Injection Analysis (SIA)-Chemiluminescence Determination of Indomethacin Using Tris [(2,2'-bipyridyl)]ruthenium(Ⅲ) as Reagent and Its Application to Semisolid Pharmaceutical Dosage Forms [J]. Anal. Chim. Acta,2007,600:114-121.
    [132]A. A. Ensafi, F. Hasanpour, T. Khayamian, A. Mokhtari, M. Taei. Simultaneous Chemiluminescence Determination of Thebaine and Noscapine Using Support Vector Machine Regression [J]. Spectrochim. Acta, Part A,2010,75:867-871.
    [133]B. Rezaei, T. Khayamian, A. Mokhtari. Simultaneous Determination of Codeine and Noscapine by Flow-Injection Chemiluminescence Method Using N-PLS Regression [J]. J. Pharm. Biomed. Anal.,2009,49:234-239.
    [134]A. A. Ensafi, F. Hasanpour, T. Khayamian, A. Mokhtar. Simultaneous Chemiluminescence Determination of Promazine and Fluphenazine Using Support Vector Regression [J]. Talanta,2009,79:534-548.
    [135]J. A. Murillo, A. A. Molina, A. M. Pena, I. D. Meras, A. J. Giron [J]. Resolution of Ofloxacin-Ciprofloxacin and Ofloxacin-Norfloxacin Binary Mixtures by Flow-Injection Chemiluminescence in Combination with Partial Least Squares Multivariate Calibration [J]. J. Fluoresc.,2007,17:481-491.
    [136]M. M. Karim, S. K. Lee, H. S. Lee, Z. U. Bae, K. H. Choi. A Batch Chemiluminescence Determination of Enoxacin Using a Tris-(1,10-phenanthroline) Ruthenium(Ⅱ)-Cerium(Ⅳ) System [J]. J. Fluoresc.,2006,16:535-540.
    [137]B. A. Shi, D. Y. Zeng, X. H. Ji, J. Xi, X. P. Ai, Z. K. He. Investigation of Ru (phen)32+-Hydrazine-Ce(Ⅳ) Chemiluminescence System and Its Analytical Application [J]. Wuhan University Journal of Natural Sciences,2006,11:672-676.
    [138]S. H. Lee, C. W. Jeon, S. M. Wabaidur. Flow-Injection Chemiluminescence Determination of Aspartic Acid in Tea Leaves Using Tris (2,2'-bipyridyl) ruthenium (Ⅱ)-Ce(Ⅳ) System [J]. J. Fluoresc.,2008,18:655-660.
    [139]F. S. Yu, Y. B. Zhang, F. Chen, L. H. Chen. Chemiluminescence Method for the Determination of Piroxicam by the Enhancement of the Tris-(4,7-diphenyl-1,10-phenanthrolinedisulphonic acid) ruthenium(Ⅱ) (RuBPS)-Cerium(Ⅳ) System and Its Application [J]. Luminescence,2009,24:50-54.
    [140]X. H. Ji, Z. K. He, D. W. Pang. On-Line Chemical Generation of Tris(2,2'-bipyridyl) ruthenium(Ⅲ) and Its Application in CE with Chemiluminescence Detection [J]. Electrophoresis,2007,28:3260-3267.
    [141]J. Xi, X. H. Ji, S. H. Zhang, X. P. Ai, Z. K. He. Investigation of RuBPS-Ce(Ⅳ) Chemiluminescence Reaction and Its Application in Determination of Two Diuretics [J]. Anal. Chim. Acta,2005,541:193-198.
    [142]S. L. Wei, L. X. Zhao, X. L. Cheng, J. M. Lin. Determination of Naproxen with Flow Injection Chemiluminescence of Ru(bpy)32+-PbO2 System and Its Application for the Binding Study of Naproxen to Protein [J]. Anal. Chim. Acta,2005,545: 65-73.
    [143]F. E.O. Suliman, M. M. Al-Hinai, S. M. Z. Al-Kindy, S. B. Salama. Chemiluminescence Determination of Chlorpheniramine Using Tris (1,10-phenanthroline)-ruthenium(Ⅱ) Peroxydisulphate System and Sequential Injection Analysis [J]. Luminescence,2009,24:2-9.
    [144]Z. J. Lin, X. M. Chen, Z. M. Cai, P. W. Li, X. Chen, X. R. Wang. Chemiluminescence of Tryptophan and Histidine in Ru (bpy)32+-KMn04 Aqueous Solution [J]. Talanta,2008,75:544-550.
    [145]H. Y. Han, Z. K. He, Y. E. Zeng. Chemiluminescence Method for the Determination of Glutathione in Human Serum Using the Ru(phen)32+-KMnO4 System [J]. Microchim. Acta,2006,155:431-434.
    [146]W. Ruengsitagoon, S. Liawruangrath, A. Townshend. Flow Injection Chemiluminescence Determination of Paracetamol [J]. Talanta,2006,69:976-983.
    [147]A. Townshend, W. Ruengsitagoon, C. Thongpoon, S. Liawruangrath. Flow Injection Chemiluminescence Determination of Tetracycline [J]. Anal. Chim. Acta, 2005,541:105-111.
    [148]Z. J. Xi, Z. J. Zhang, Y. H. Sun. Z. L. Shi, W. Tian. Determination of Indole-3-acetic Acid and Indole-3-butyric Acid in Mung Bean Sprouts Using High Performance Liquid Chromatography with Immobilized Ru (bpy)32+-KMnO4 Chemiluminescence Detection [J]. Talanta,2009,79:216-221.
    [149]C. Thongpoon, B. Liawruangrath, S. Liawruangrath, R. A. Wheatley, A. Townshend. Flow Injection Chemiluminescence Determination of Cephalosporins in Pharmaceutical Preparations Using Tris (2,2'-bipyridyl) ruthenium (Ⅱ)-Potassium Permanganate System [J]. Anal. Chim. Acta,2005,553:123-133.
    [150]F. E. O. Suliman, M. M. Al-Hinai, S. M. Z. Al-Kindy, S. B. Salama. Enhancement of the Chemiluminescence of Penicillamine and Ephedrine after Derivatization with Aldehydes Using Tris(bipyridyl)ruthenium(Ⅱ) Peroxydisulfate System and Its Analytical Application [J]. Talanta,2008,74:1256-1264.
    [151]A. Waseem, M. Yaqoob, A. Nabi. Flow Injection Determination of Thyroxine in Pharmaceutical Preparations Using Tris(2,2'-bipyridyl)ruthenium(Ⅲ)-NADH Chemiluminescence Detection [J]. Talanta,2007,71:56-61.
    [152]L. J. Zhang, C. L. Xu, B. X. Li. Sensitized Chemiluminescence of CdTe Quantum-Dots on Ce(Ⅳ)-Sulfite and Its Analytical Applications [J]. Microchem. J., 2009,doi:10.1016/j.microc.2009.11.011.
    [153]Y. Lv, R. Zhao, Z. L. Zhu, X. S. Xu, X. R. Zhang. A Novel Chemiluminescence Method for the Determination of Orciprenaline Based on Ferricyaniderhodamine 6G [J]. Luminescence,2005,20:298-302.
    [154]J. L. Lopez-Paz, M. Catala-Icardo, B. Anton-Garrido. Determination of Diquat by Flow Injection-Chemiluminescence [J]. Anal. Bioanal. Chem.,2009,394: 1073-1079.
    [155]何树华,李超英,田开江.铁氰化钾-二氯荧光素-甲基多巴化学发光体系的研究[J].分析科学学报,2006,22:707-709.
    [156]范顺利,李薇,林金明,王学锋.反相流动注射-化学发光法测定氢化可的松[J].分析化学,2004,11:1421-1425.
    [157]汪敬武,谢强,杨佳.快速化学发光联用流动注射技术测定西咪替丁[J].分析实验室,2006,25:60-63.
    [158]何树华,吕弋,何德勇,胡玉斐,章竹君.铁氰化钾-罗丹明6G化学发光体系测定维脑路[J].西南师范大学学报(自然科学版),2003,28:606-608.
    [159]Y. H. Tang, N. N. Wang, X. Y. Xiong, F. M. Xiong, S. J. Sun. A New Sensitive Flow-Injection Chemiluminescence Method for the Determination of H2-Receptor Antagonists [J]. Luminescence,2007,22:343-348.
    [160]张琰图,杨维平,章竹君,田穗康.铁氰化钾化学发光体系测定利福平的研究[J].分析试验室,2003,22,33-35.
    [161]李保新,刘伟,章竹君.铁氰化钾化学发光体系测定芦丁.分析化学,2001,29,428-430.
    [162]E. P. Marti, M. C. Icardo, L. L. Zamora, G. M. A. Fos, J. Martinez Calatayud. Theoretical Prediction of the Chemiluminescence Behaviour of the Ergot Alkaloids Direct Flow Injection Chemiluminescence Determination of Ergotamine Tartrate [J]. Anal. Chim. Acta,2004,527:177-186.
    [163]Y. Lv, Z. J. Zhang, Y. F. Hu, D.Y He, S. H. He. A Novel Chemiluminescence Method for Determination of Terbutaline Sulfate Based on Potassium Ferricyanide Oxidation Sensitized by Rhodamine 6G [J]. J. Pharm. Biomed. Aanl.,2003,32: 555-561.
    [164]吴蔓莉,李保新,章竹君.在线电生强氧化剂钻Ⅲ-化学发光法测定地塞米松磷酸钠[J].分析化学,2001,29:267-270.
    [165]杨红兵,张成孝.在线电生Mn(Ⅲ)流动注射化学发光法测定氨基比林[J].分析实验室,2001,20:43-46.
    [166]晨晓霓,申双龙.在线电生Mn(Ⅲ)流动注射化学发光法测定盐酸氯丙嗪[J].山西大学学报(自然科学版),2001,24:230-233.
    [167]晨晓霓,申双龙,张成孝,吕九如.在线电生锰Ⅲ-流动注射化学发光法测定地塞米松磷酸钠[J].分析化学,2002,30:1501-1503.
    [168]张红鸽,祝兴华,何云华.锰(Ⅳ)-安乃近-甲醛化学发光体系研究[J].分析实验室,2005,24:5-7.
    [169]L. X. Zhao, B. X. Li, Z. J. Zhang, J. M. Lin. Chemiluminescencent Flow-through Sensor for Automated Dissolution Testing of Analgin Tablets Using Manganese Dioxide as Oxidate [J]. Sens. Actuators, B.2004,97:266-271.
    [170]B. X. Li, Z. J. Zhang, L. X. Zhao, C. L. Xu. Chemiluminescence Flow-through Sensor for Ofloxacin Uing Solid-Phase PbO2 as an Oxidant [J]. Talanta,2002,57: 765-771.
    [171]刘伟,李保新,章竹君.测定利福平的化学发光新体系[J].分析化学,2002,30:86-88.
    [172]梁耀东.流动注射化学发光测定盐酸小檗碱[J].西安科技大学学报,2005,25:194-197.
    [173]C. W. Lau, J. Z. Lu, M. Kai. Chemiluminescence Determination of Tetracycline Based on Radical Production in a Basic Acetonitrile-Hydrogen Peroxide Reaction [J]. Anal. Chim. Acta,2004,503:235-239.
    [174]K. Funato, T. Imai, K. Nakashima, M. Otagiri. High-Performance Liquid Chromatography with Chemiluminescence Detection of Penbutolol and Its Hydroxylated Metabolite in Rat Plasma [J]. J. Chromatogr. B,200,757:229-235.
    [175]M. Kai, H. Kinoshita, M. Morizono. Chromatographic Determinations of a P-lactam Antibiotic, Cefaclor by Means of Fluorescence, Chemiluminescence and Mass Spectrometry [J]. Talanta,2003,60:325-334.
    [176]M. Kai, H. Kinoshita, K. Ohta, S. Hara, M. K. Lee, J. Z. Lu. Sensitive Determination of a b-lactam Antibiotic, Cefaclor by Liquid Chromatography with Chemiluminescence Detection [J]. J. Pharm. Biomed. Anal.,2003,30:1765-1771.
    [177]H. Chen, R. B. Li, L. Lin, G. S. Guo, J. M. Lin. Determination of L-ascorbic Acid in Human Serum by Chemiluminescence Based on Hydrogen Peroxide-Sodium Hydrogen Carbonate-CdSe/CdS Quantum Dots System [J]. Talanta,2008, doi:10.1016/j.talanta.2010.03.024.
    [178]X. F. Hu. H. Y. Han, L. J. Hua, Z. H. Shen. Electrogenerated Chemiluminescence of Blue Emitting ZnSe Quantum Dots and Its Biosensing for Hydrogen Peroxide [J]. Biosens. Bioelectron.2010,25:1843-1846.
    [179]A. Safavi, M. A. Karimi. Flow Injection Chemiluminescence Determination of Sulfide by Oxidation with N-bromosuccinimide and N-chlorosuccinimide [J]. Talanta,2002,57:491-500.
    [180]H. Y. Liu, L. Zhang, Y. H. Hao, Q. J. Wang, P. G. He, Y. Z. Fang. Flow-Injection Chemiluminescence Determination of Meloxicam by Oxidation with N-bromosuccinimide [J]. Anal. Chim. Acta,2005,541:187-192.
    [181]J. Michalowski, A. Kojlo. Use of Amino-Carbonyl Reaction and Chemiluminescence Detection to the Flow-Injection Determination of Some Amino Acids [J]. Talanta,2001,54:107-113.
    [182]J. Michalowski, P. Halaburda, A. Kojlo. Determination of Humic Acid in Natural Waters by Flow Injection Analysis with Chemiluminescence Detection [J]. Anal. Chim. Acta,2001,438:143-148.
    [183]J. X. Du, L. Hao, Y. H. Li, J. R. Lv. Flow Injection Chemiluminescence Determination of Nitrofurazone in Pharmaceutical Preparations and Biological Fluids Based on Oxidation by Singlet Oxygen Generated in N-bromosuccinimide-Hydrogen Peroxide Reaction [J]. Anal. Chim. Acta,2007, 582:98-102.
    [184]J. L. Zhang, Q. J. Song, X. Hu, E. H. Zhang, H. Gao. Dye-Sensitized Phototransformation of Chlorophenols and Their Subsequent Chemiluminescence Reactions [J]. J. Lumin.2008,128:1880-1885.
    [185]Z. P. Wang, Z. J. Zhang, Z. F. Fu, Y. Xiong, X. Zhang. A Flow-Injection Ultrafiltration Sampling Chemiluminescence System for on-Line Determination of Drug-Protein Interaction [J]. Anal. Bioanal. Chem.,2003,377:660-665.
    [186]罗万芬,曾仁权.流动注射化学发光测定抗坏血酸及其机理探讨[J].河南师范大学学报(自然科学版),2004,32:69-72.
    [187]赵解静,吕九如.二溴荧光素-N-氯代丁二酰亚胺化学发光体系测定片剂及人血浆中的氢溴酸右美沙芬[J].分析科学学报,2009,25:391-395.
    [188]E. W. Campion, R. J. Glynn, L. O. DeLabry. Asymptomatic Hyperuricemia:Risk and Concequences in the Normative [J]. Aging Study Am. J. Med.,1987,82: 421-426.
    [189]T. W. Yoo, K. C. Sung, H. S. Shin, B. J. Kim, B. S. Kim, J. H. Kang, M. H. Lee, J. R. Park, H. Kim, E. J. Rhee,W. Y. Lee, S. W. Kim, S. H. Ryu, D. G. Keum. Relationship between Serum Uric Acid Concentration and Insulin Resistance and Metabolic Syndrome [J]. Circ. J.,2005,69:928-933.
    [190]T. Nakagawa, H. Hu, S. Zharikov, K. R. Tuttle, R. A. Short,O. Glushakova, X. Ouyang, D. I. Feig, E. R. Block, J. Herrera-Acosta, J. M. Patel, R. J. Johnson. A Causal Role for Uric Acid in Fructose-Induced Metabolic Syndrome [J]. Am. J. Physiol.Renal Physiol.,2006,290:625-631.
    [191]G. Sturm, B. Kollerits, U. Neyer, E. Ritz, Florian Kronenberg and for the MMKD Study Group. Uric Acid as a Risk Factor for Progression of Non-Diabetic Chronic Kidney Disease? The Mild to Moderate Kidney Disease (MMKD) Study. Experimental Gerontology,2008,43:347-352.
    [192]J. J. Carroll, H. Coburn, R. Douglass, A. L. Babson. A Simplified Alkaline Phosphotungstate Assayfor Uric Acid in Serum [J]. Clin. Chem.,1971,17:158-160.
    [193]R. Sakuma, T. Nishina, M. Kitamura. Deproteinizing Methods Evaluated for Determination of Uric Acid in Serum by Reversed-Phase Liquid Chromatography with Ultraviolet Detection [J]. Clin. Chem.,1987,33:1427-1430.
    [194]O. C. Ingebretsen, J. Borgen, M. Farstad. Uric Acid Determinations: Reversed-Phase Liquid Chromatography with Ultraviolet Detection Compared with Kinetic and Equilibrium Adaptations of the Uricase Method [J]. Clin. Chem.,1982, 28:496-498.
    [195]K. M. Kim, G. N. Henderson, X. Ouyang, R. F. Frye,Y. Y. Sautin, D. I. Feig, R. J. Johnson. A Sensitive and Specific Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Intracellular and Extracellular Uric Acid [J]. J. Chromatogr. B,2009,877:2032-2038.
    [196]G. T. Sanders, A. J. Pasman, F. J. Hoek. Determination of Uric Acid with Uricase and Peroxidase [J]. Clin. Chim. Acta,1980,101:299-303.
    [197]D. W. Moss. Methodological Principles in the Enzymatic Determination of Substrates Illustrated by the Measurement of Uric Acid [J]. Clin. Chim. Acta,1980, 105:351-360.
    [198]V. Sanz, S. Marcos, J. Galban. Uric Acid Determination Using Uricase and the Autotransducer Molecular Absorption Properties of Peroxidase [J]. Anal. Chim. Acta,2008,607:211-218.
    [199]X. Y. Wang, T. Hagiwara, S. C. Uchiyama. Immobilization of Uricase within Polystyrene Using Polymaleimidostyrene as a Stabilizer and Its Application to Uric Acid Sensor [J]. Anal. Chim. Acta,2007,587:41-46.
    [200]S. L. Zhao, J. S. Wang, F. G. Ye, Y. M. Liu. Determination of Uric Acid in Human Urine and Serum by Capillary Electrophoresis with Chemiluminescence Detection [J]. Anal. Biochem.,2008,378:127-131.
    [201]Y. Lv, Z. J. Zhang, F. N. Chen. Chemiluminescence Biosensor Chip Based on a Microreactor Using Carrier Air Flow for Determination of Uric Acid in Human Serum [J]. Analyst,2002,127:1176-1179.
    [202]D. Y. He, Z. J. Zhang, Y. Huang, Y. F. Hu, H. J. Zhou, D. L. Chen. Chemiluminescence Micro flow Injection Analysis System on a Chip for the Determination of Uric Acid without Enzyme [J]. Luminescence,2005,20:271-275.
    [203]Z. Li, M. L. Feng, J. R. Lu. KMnO4-Octylphenyl Polygylcol, Ether Chemiluminescence System for Flow Injection Analysis of Uric Acid in Urine [J]. Microchem. J.,1998,59:278-283.
    [204]H. C. Hong, H. J. Huang. Flow Injection Analysis of Uric Acid with a Uricase-and Horseradish Peroxidase-Coupled Sepharose Column Based Luminol Chemiluminescence System [J]. Anal. Chim. Acta,2003,499:41-46.
    [205]E. B. Liu, H. Q. Wei. Determination of Uric Acid by Chemiluminescence. Spectroscopy and Spectral Analysis,2005,25:1213-1215.
    [206]Y. H. Zeng, J. J. Xu, K. B. Wu. Electrochemical Determination of Uric Acid Using a Mesoporous SiO2-Modified Electrode [J]. Microchim. Acta,2008,161:249-253.
    [207]J. Horwath-Winter, S. Kirchengast, A. Meinitzer, C. Wachswender, C. Faschinger, O. Schmut. Determination of Uric Acid Concentrations in Human Tear Fluid, Aqueous Humour and Serum [J]. Acta Ophthalmologica,2009,87:188-192.
    [208]P. Kannan, S. Abraham John. Determination of Nanomolar Uric and Ascorbic Acids Using Enlarged Gold Nanoparticles Modified Electrode [J]. Anal. Biochem.,2009, 386:65-72.
    [209]K. Itiaba, M. Hsiung, J. Crawhall. Uric Acid Estimation:A Comparison of the Manual Uricase-UV and the Phosphotungstate Auto-Analyzer Methods [J]. Clin. Biochem.,1975,8:316-319.
    [210]J. S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu, F. S. Sheu. Selective Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at Well-Aligned Carbon Nanotube Electrode [J]. Electroanalysis,2003,15: 1693-1698.
    [211]E. Popa, Y. Kubota, D. A. Tryk, A. Fujishima. Selective Voltammetric and Amperometric Detection of Uric Acid with Oxidized Diamond Film Electrodes [J]. Anal. Chem.2000,72:1724-1727.
    [212]P. J. P. Rao, B. Sethuram, T. N. Rao. Kinetics of Oxidative Deamination of Some Amino Acids by Diperiodatoargentate (Ⅲ) in Alkaline Medium [J]. React Kinet. Catal. Lett.,1985,29(1):289-296.
    [213]K. A. Thabaj, S. A. Chimatadar, S. T. Nandibewoor. Dual Mechanism of Oxidation of dl-methionine by Diperiodatoargentate(Ⅲ) in Aqueous Alkaline Medium (Stopped Flow Technique) [J]. J. Mol. Struct.,2008,882:88-95.
    [214]J. H. Shan, S. M. Li, S. Y. Huo, S. G. Shen, H. W. Sun. Kinetics and Mechanism of the Reduction of Dihydroxydiperiodatoargentate(Ⅲ) by 1,2-butylene Glycol in Alkaline Medium [J]. Transition Met. Chem.,2005,30:651-654.
    [215]N. P. Shetti, R. N. Hegde, S. T. Nandibewoor. Mechanistic Aspects of Uncatalysed and Os (Ⅷ) Catalysed Oxidation of 5-flourouracil-An Anticancer Drug by Alkaline Diperiodatoargentate (Ⅲ) [J]. Inorg. Chim. Acta,2009,362:2270-2278.
    [216]W. A. Moats. Determination of Lincomycin in Milk and Tissues by Reversed-Phase Liquid Chromatography [J]. J. Agric. Food Chem.,1991,39:1812-1816.
    [217]J. Olsovska, M. Jelinkova, P. Man, M. Koberska, J. Janata, M. Flieger. High-throughput Quantification of Lincomycin Traces in Fermentation Broth of Genetically Modified Streptomyces spp. Comparison of Ultra-Performance Liquid Chromatography and High-Performance Liquid Chromatography with UV Detection [J]. J. Chromatogr. A,2007,1139:214-220.
    [218]W. R. LaCourse, C. O. Dasenbrock. Pulsed Electrochemical Detection of Sulfur-Containing Antibiotics Following High Performance Liquid Chromatography [J]. J. Pharm. Biomed. Anal.,1999,19:239-252.
    [219]J. Szunyog, E. Adams, K. Liekens, E. Roets, J. Hoogmartens, Analysis of a Formulation Containing Lincomycin and Spectinomycin by Liquid Chromatography with Pulsed Electrochemical Detection [J]. J. Pharm. Biomed. Anal.,2002,29:213-220.
    [220]M. Dousa, Z. Sikac, M. Halama, K. Lemr. HPLC Determination of Lincomycin in Premixes and Feedstuffs with Solid-Phase Extraction on HLB OASIS and LC-MS/MS Confirmation [J]. J. Pharm. Biomed. Anal.,2006,40:981-986.
    [221]M. H. Chiu, H. H. Yang, C. H. Liu, J. M. Zen. Determination of Lincomycin in Urine and Some Foodstuffs by Flow Injection Analysis Coupled with Liquid Chromatography and Electrochemical Detection with a Preanodized Screen-Printed Carbon Electrode [J]. J. Chromatogr. B,2009,877:991-994.
    [222]T. S. Thompson, D. K. Noot, J. Calvert, S. F. Pernal. Determination of Lincomycin and Tylosin Residues in Honey Using Solid-Phase Extraction and Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry [J]. J. Chromatogr. A,2003,1020:241-250.
    [223]D. W. M. Sin, C. Ho, Y. C. Wong, S. K. Ho, A. C.B. Ip. Simultaneous Determination of Lincomycin and Virginiamycin Ml in Swine Muscle, Liver and Kidney by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry [J]. Anal. Chim. Acta,2004,517:39-45.
    [224]X. M. Fang, L. X. Feng, J. N. Ye, Y. Z. Fang. Determination of Lincomycin and Lincomycin B in Bulk Drug and Pharmaceutical Formulations by Capillary Zone Electrophoresis with Amperometric Detection [J]. Anal. Lett.,1996,29:1975-1984.
    [225]W. C. Yang, A. M. Yu, H. Y. Chen. Applications of a Copper Microparticle-Modified Carbon Fiber Microdisk Array Electrode for the Simultaneous Determination of Aminoglycoside Antibiotics by Capillary Electrophoresis [J]. J. Chromatogr A.,2001,905:309-318.
    [226]W. L. Luo, B. Z. Yin, C. Y. W. Ang. Larry Rushing, H. C. Thompson Jr. Determination of Lincomycin Residues in Salmon Tissues by Gas Chromatography with Nitrogen-Phosphorus Detection [J]. J. Chromatogr. B,1996,687:405-411.
    [227]X. Zhao, T. You, H. Qiu, J. Yan, X. Yang, E.Wang. Electrochemiluminescence Detection with Integrated Indium Tin Oxide Electrode on Electrophoretic Microchip for Direct Bioanalysis of Lincomycin in the Urine [J]. J. Chromatogr. B, 2004,810:137-142.
    [228]王志银,何云华,聂峰.流动注射-化学发光法测定盐酸林可霉素[J].分析实验室,2000,19:21-23.
    [229]C. Y. Yang, Z. J. Zhang, J. L. Wang. A New Luminol Chemiluminescence Reaction Using a Tetravalent Nickel-Periodate Complex as the Oxidant [J]. Microchim. Acta, 2009,167:91-96.
    [230]C. Y. Yang, Z. J. Zhang. Flow Injection Determination of Hydrogen Peroxide Using Diperiodatoargentate-and Diperiodatonickelate-Luminol Chemiluminescence [J]. Int. J. Environ. Anal. Chem.,2009, DOI:10.1080/03067310903276308.
    [231]国家药典委员会.中华人民共和国药典-二部[M].(2005)化学工业出版社,北京,2005,p532.
    [232]R. T. Mahesh, D. P. Pandurang, T. N. Sharanappa. Kinetics and Mechanism of Oxidation of L-Leucine by Alkaline Diperiodatonickelate(Ⅳ)-A Free Radical Intervention, Deamination, and Decarboxylation [J]. Monatsh. Chem.,2003,134: 1341-1352.
    [233]L. H. Abdulazizkhan, R. K. Mohammedsaleem, T. N. Sharanappa. Kinetics and Mechanism of the Oxidation of 1,10-Phenanthroline by Diperiodatonickelate (Ⅳ) in Aqueous Alkaline Medium [J]. Monatsh. Chem.2000,131:1129-1137.
    [234]N. T. Deftereos, A. C. Calokerinos, C. E. Efstathiou. Flow Injection Chemiluminometric Determination of Epinephrine, Norepinephrine, Dopamine and L-Dopa [J]. Analyst,1993,118:627-632.
    [235]P. Nagaraja, R. A. Vasantha, K. R. Sunitha. A New Sensitive and Selective Spectrophotometric Method for the Determination of Catechol Derivatives and Its Pharmaceutical Preparations [J]. J. Pharm. Biomed. Anal.,2001,25:417-424.
    [236]M. F. S. Teixeira, L. H. Marcolino-Junior, O. Fatibello-Filho. Flow Injection Spectrophotometric Determination of Adrenaline in Pharmaceutical Formulations Using a Solid-Phase Reactor Containing Lead (Ⅳ) Dioxide Immobilized in a Polyester Resin [J]. Il Farmaco,2002,57:215-219.
    [237]P. Solich, C. K. Polydorou, M. A. Koupparis, C. E. Efstathiou. Automated Flow-Injection Spectrophotometric Determination of Catecholamines (Epinephrine and Isoproterenol) in Pharmaceutical Formulations Based on Ferrous Complex Formation [J]. J. Pharm. Biomed. Anal.2000,22:781-789.
    [238]A. C. Torres, A. M. Romero, J. M. Calatayud. FIA-Fluorimetric Etermination of Adrenaline in Pharmaceutical Formulations by Oxidation with Molecular Oxygen [J]. Mikrochim. Acta,1998,128:187-190.
    [239]H. P. Wu, T. L. Cheng, W. L. Tseng. Phosphate-Modified TiO2 Nanoparticles for Selective Detection of Dopamine, Levodopa, Adrenaline, and Catechol Based on Fluorescence Quenching [J]. Langmuir,2007,23:7880-7885.
    [240]J. H. Yang, G. L. Zhang, X. Wu, F. Huang, C. G. Lin, X. H. Cao, L. M. Sun, Y J. Ding. Fluorimetric Determination of Epinephrine with o-phenylenediamine [J]. Anal. Chim. Acta,1998,363:105-110.
    [241]C. E. Cardoso, R.O. R. Martins, C. A. S. Telles, R. Q. Aucelio. Sequential Determination of Hydrocortisone and Epinephrine in Pharmaceutical Formulations via Photochemically Enhanced Fluorescence [J]. Microchim. Acta,2004,146: 79-84.
    [242]Y. M. Guo, J. H. Yang, Xia Wu, H. Z. Mao. Study on the Co-Luminescence Effect of Tb-Gd-Epinephrine System and Its Application to the Sensitive Determination of Epinephrine at Nanomol Level [J]. Talanta,2007,73:227-231.
    [243]A. Thomas, H. Geyer, H. J. Mester, W. Schanzer, E. Zimmermann, M. Thevis. Quantitative Determination of Adrenaline and Noradrenaline in Urine Using Liquid Chromatography-Tandem Mass Spectrometry [J]. Chromatographia 2006,64: 587-591.
    [244]M. A. Fotopoulou, P. C. Ioannou. Post-Column Terbium Complexation and Sensitized Fluorescence Detection for the Determination of Norepinephrine, Epinephrine and Dopamine Using High-Performance Liquid Chromatography [J]. Anal. Chim. Acta,2002,462:179-185.
    [245]F. N. Chen, Y. X. Zhang, Z. J. Zhang. Simultaneous Determination of Epinephrine, Noradrenaline and Dopamine in Human Serum Samples by High Performance Liquid Chromatography with Chemiluminescence Detection [J]. Chin. J. Chem., 2007,25:942-946.
    [246]V. Carrera, E. Sabater, E. Vilanova, M. A. Sogorb. A Simple and Rapid HPLC-MS Method for the Simultaneous Determination of Epinephrine, Norepinephrine, Dopamine and 5-hydroxytryptamine:Application to the Secretion of Bovine Chromaffin Cell Cultures [J]. J. Chromatogr. B,2007,847:88-94.
    [247]W. Ma, D. M. Sun. Simultaneous Determination of Epinephrine and Dopamine with Poly (L-arginine) Modified Electrode [J]. Chin. J. Anal. Chem.,2007,35:66-70.
    [248]W. J. Kang, L. M. Niu, L. Ma.2,3-Dimercaptosuccinic Acid Self-Assembled Gold Electrode for the Simultaneous Determination of Epinephrine and Dopamine [J]. Chin. Chem. Lett.,2009,20:221-224.
    [249]Y. H. Zeng, J. Q. Yang, K. B. Wu. Electrochemistry and Determination of Epinephrine Using a Mesoporous Al-incorporated SiO2 Modified Electrode [J]. Electrochim. Acta,2008,53:4615-4620.
    [250]S. Shahrokhian, M. Ghalkhani, M. K. Amini. Application of Carbon-Paste Electrode Modified with Iron Phthalocyanine for Voltammetric Determination of Epinephrine in the Presence of Ascorbic Acid and Uric Acid [J]. Sens. Actuators, B, 2009,137:669-675.
    [251]H. Beitollahi, M. M. Ardakani, B. Ganjipour, H. Naeimi. Novel 2,2'-[1, 2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone Double-Wall Carbon Nanotube Paste Electrode for Simultaneous Determination of Epinephrine, Uric Acid and Folic Acid [J]. Biosens. Bioelectron.,2008,24:362-368.
    [252]P. Kalimuthu, S. A. John. Simultaneous Determination of Epinephrine, Uric Acid and Xanthine in the Presence of Ascorbic Acid Using an Ultrathin Polymer Film of 5-amino-1,3,4-thiadiazole-2-thiol Modified Electrode [J]. Anal. Chim. Acta,2009, 647:97-103.
    [253]Z. S. Yang, G. Z. Hu, Xi Chen, J. Zhao, G. C. Zhao. The Nano-Au Self-Assembled Glassy Carbon Electrode for Selective Determination of Epinephrine in the Presence of Ascorbic Acid [J]. Colloids Surf. B,2007,54:230-235.
    [254]N. B. Li,W. Ren, H. Q. Luo. Caffeic Acid-Modified Glassy Carbon Electrode for the Simultaneous Determination of Epinephrine and Dopamine [J]. Electroanalysis, 2007,19:1496-1502.
    [255]F. Li, H. Cui, X. Q. Lin. Determination of Adrenaline by Using Inhibited Ru(bpy)32+ Electrochemiluminescence. Anal. Chim. Acta,2002,471:187-194.
    [256]J. X. Du, L. H. Shen, J. R. Lu. Flow Injection Chemiluminescence Determination of Epinephrine Using Epinephrine-Imprinted Polymer as Recognition Material [J]. Anal. Chim. Acta,2003,489:183-189.
    [257]J. Michalowski, P. Halaburda. Flow-Injection Chemiluminescence Determination of Epinephrine in Pharmaceutical Preparations Using Raw Apple Juice as Enzyme Source [J]. Talanta,2001,55:1165-1171.
    [258]X. W. Zheng, Z. H. Guo, Z. J. Zhang. Flow-Injection Electrogenerated Chemiluminescence Determination of Epinephrine Using Luminol [J]. Anal. Chim. Acta,2001,441:81-86.
    [259]G. J. Zhou, G. F. Zhang, H. Y. Chen. Development of Integrated Chemiluminescence Flow Sensor for the Determination of Adrenaline and Isoprenaline [J]. Anal. Chim. Acta,2002,463:257-263.
    [260]Z. H. Guo, S. J. Dong. Electrogenerated Chemiluminescence Determination of Dopamine and Epinephrine in the Presence of Ascorbic Acid at Carbon Nanotube/Nafion-Ru(bpy)32+ Composite Film Modified Glassy Carbon Electrode [J]. Electroanalysis,2005,17:607-612.
    [261]Y. Y. Su, J. Wang, G. N. Chen. Determination of Epinephrine Based on its Enhancement for Electrochemiluminescence of Lucigenin [J]. Talanta,2005,65: 531-536.
    [262]C. Y. Yang, Z. J. Zhang. A Novel Chemiluminescence Reaction System for the Determination of Lincomycin with Diperiodatonickelate (Ⅳ) [J]. Microchim. Acta, 2010,168:293-298.
    [263]S. G. Palop, A. M. Romero, J. M. Calatayud. Oxidation of Adrenaline and Noradrenaline by Solved Molecular Oxygen in a FIA Assembly [J]. J. Pharm. Biomed. Anal.2002,27:1017-1025.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700